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ABSTRACT: Quantifying the conformational ensembles of biomolecules is fundamental
to describing mechanisms of processes such as protein folding, interconversion between
folded states, ligand binding, and allosteric regulation. Accurate quantification of these
ensembles remains a challenge for conventional molecular simulations of all but the
simplest molecules due to insufficient sampling. Enhanced sampling approaches, such as
metadynamics, were designed to overcome this challenge; however, the nonuniform frame
weights that result from many of these approaches present an additional challenge to
ensemble quantification techniques such as Markov State Modeling or structural clustering.
Here, we present rigorous inclusion of nonuniform frame weights into a structural clustering method entitled shapeGMM. The result
of frame-weighted shapeGMM is a high dimensional probability density and generative model for the unbiased system from which
we can compute important thermodynamic properties such as relative free energies and configurational entropy. The accuracy of this
approach is demonstrated by the quantitative agreement between GMMs computed by Hamiltonian reweighting and direct
simulation of a coarse-grained helix model system. Furthermore, the relative free energy computed from a shapeGMM probability
density of alanine dipeptide reweighted from a metadynamics simulation quantitatively reproduces the underlying free energy in the
basins. Finally, the method identifies hidden structures along the actin globular to filamentous-like structural transition from a
metadynamics simulation on a linear discriminant analysis coordinate trained on GMM states, illustrating how structural clustering
of biased data can lead to biophysical insight. Combined, these results demonstrate that frame-weighted shapeGMM is a powerful
approach to quantifying biomolecular ensembles from biased simulations.

Conformational ensembles of molecules dictate many of their
thermodynamic properties. Conventional molecular dynamics
(MD) simulations allow us to sample models of these
ensembles but suffer from the so-called rare event problem.
A variety of enhanced sampling techniques, such as
Metadynamics (MetaD),1,2 Adaptive Biasing Force,3 Gaussian
accelerated MD,4 and Temperature Accelerated MD/Driven
Adiabatic Free Energy Dynamics,5,6 have been developed to
promote faster sampling by effectively heating some degrees of
freedom.7 Unfortunately, due to the biased sampling of many
of these approaches, it is not obvious how to use the biased
configurations in methods such as Markov State Models
(MSMs)8,9 and/or structural clustering approaches that
quantify the conformational ensemble. Here, we adapt
shapeGMM,10 a probabilistic structural clustering method, to
rigorously quantify the unbiased conformational ensembles
generated from biased simulations. The result is a high
dimensional Gaussian mixture model (GMM) characterizing
the unbiased landscape that can be used to extract important
thermodynamic quantities and to give additional insight
beyond the low dimensional projections often used to
represent free energy landscapes.

Meaningful quantification of conformational ensembles from
large molecular simulations requires the grouping of similar
frames by using a clustering algorithm. Clustering algorithms
for molecular simulation can be grouped into two categories:
temporal and structural. Temporal clustering, such as spectral
clustering of the transition matrix,11,12 has been successfully
applied to MD trajectories to achieve kinetically stable clusters
for use in objects like MSMs.13−15 Enhanced sampling
techniques, however, can distort the underlying kinetics of
the system, making temporal clustering difficult to apply
properly in these circumstances. While there have been efforts
to build MSMs from enhanced sampling data16,17 it still
remains a challenge.18 Additionally, building MSMs relies on
an initial structural clustering step, making it critical to perform
this step accurately, even in the context of enhanced sampling.
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Structural clustering involves partitioning either frames or
feature space into a finite number of elements. This can be
achieved from enhanced sampling data, but care must be taken
to properly account for the nonuniform weights of the frames.
Previous efforts to use structural clustering algorithms on

enhanced sampling simulations have focused on partitional, as
opposed to model-based, algorithms. The main results of
partitional algorithms are cluster populations that can be
reweighted based on enhanced sampling frame weights to
estimate the unbiased populations.16,19 Model-based clustering
algorithms offer many advantages over partitional algorithms,
the most relevant being that the resulting probability density
can be used to predict clusterings on new data and estimate
thermodynamic properties of the underlying ensemble.
Reweighting the cluster populations of model-based algorithms
a posteriori is, however, not satisfactory for methods such as
GMMs, as the frame weights will affect the determination of
additional model parameters. It is possible to use multiple
copies of frames to approximately account for the frame
weights, but this can yield intractably large trajectories and
inaccuracies due to rounding.
In this work, we present an adaptation to shapeGMM,10 a

probabilistic structural clustering method on particle positions,
to directly account for nonuniform frame weights. As opposed
to introducing copies of input data and maintaining uniform
weights, the current method directly accounts for nonuniform
frame weights and is thus more efficient and scalable than the
alternative. In the next section, we briefly introduce the
shapeGMM method and the adaptations necessary to account
for nonuniform frame weights. This is followed by a
demonstration of the method on three examples of increasing
difficulty, specifically demonstrating that our proposed choices
of frame weights from MetaD simulations result in a reliable
clustering procedure. We show in benchmark cases how this
method can yield thermodynamic quantities directly and use
the complex case of actin flattening to show how a weighted
shapeGMM can give physical insight into the conformations
sampled, in a case where unbiased simulation would not be a
practical option. In addition, frame-weighted shapeGMM is
implemented in an easy-to-use python package (pip
install shapeGMMTorch).

2. THEORY AND METHODS
2.1. Overview of ShapeGMM. In shapeGMM, a

particular configuration of a macromolecule is represented by
a particle position matrix, xi, of order N × 3, where N is the
number of particles being considered for clustering. To
account for translational and rotational invariance, the proper
feature for clustering purposes is an equivalence class

[ ] = { + }x x R R1 : , SO(3)i i i N i
T

i i
3 (1)

where i is a translation in 3, Ri is a rotation
3 3, and 1N

is the N × 1 vector of ones. [xi] is thus the set of all rigid body
transformations, or orbit, of xi.
The shapeGMM probability density is a Gaussian mixture

given by
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where the sum is over the K Gaussian mixture components, ϕj
is the weight of component j, and N(xi|μj, Σj) is a normalized
multivariate Gaussian given by
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where μ is the mean structure, Σ is the covariance, and gi−1xi is
the element of the equivalence class, [xi], that minimizes the
squared Mahalanobis distance in the argument of the
exponent. Determining the proper transformation, gi, is
achieved by translating all frames to the origin and then
determining the optimal rotation matrix. Cartesian and
quaternion-based algorithms for determining optimal rotation
matrices are known for two forms of the covariance were
considered Σ ∝ I3N

20,21 or Σ = ΣN ⊗ I3,
22,23 where ΣN is the N

× N covariance matrix and ⊗ denotes a Kronecker product. In
this paper, we employ only the more general Kronecker
product covariance.
2.2. Incorporating Nonuniform Frame Weights in

shapeGMM. Previously, each frame in shapeGMM was
considered to be equally weighted. Approximate weighting of
frames could be taken into account by including frames
multiple times in the training data to give them more
importance; however, this introduces the imprecision of
rounding to the nearest integer and can be extremely
computationally expensive due to the large increase in amount
of training data. Here, we take nonuniform frame weights into
account by performing weighted averages in the Expectation
Maximization estimate of model parameters { }, ,j j j ,
consistent with other fixed-weight GMM procedures.24

Considering a normalized set of frame weights, {wi} where
== w 1i

M
i1 for M frames, their contribution to the probability

can be accounted for by weighting the estimate of the posterior
distribution of latent variables
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The frame weight will propagate to the estimate of
component weights, means, and covariances in the Max-
imization step through γZdi
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Additionally, the log likelihood per frame is computed as a
weighted average
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2.3. Choosing Number of Clusters. Performing
shapeGMM requires the user to choose a number of clusters,
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K. The “optimal” choice will be system and problem specific
and potentially has no correct answer. The choice is no
different if you consider uniformly or nonuniformly weighted
frames. We used a cluster scan with a combination of the
elbow method and cross validation to assess if our choice of K
is reasonable. A good choice of clusters based on this approach
is to find the number of clusters where the increase in log-
likelihood with K is decreasing fastest, which we can evaluate
by choosing the minimum of the second derivative of ln(L)
with respect to the number of clusters. In practice, this works
well for simple systems, but it may be hard to pick a “best”
choice for more complex systems, so we may seek a choice that
is physically interpretable.
2.4. Assigning Frames to Clusters. After the model

parameters have been fit using fuzzy assignments, individual
frames are assigned to the cluster in which that frame has the
largest likelihood [largest value, γZdi

(j)]. This is the standard
procedure for clustering from a GMM and is no different for
the frame-weighted version.
2.5. Implementation. We have completely rewritten

shapeGMM in PyTorch for computational efficiency and the
ability to use GPUs. The current implementation takes an
array of frame weights as an optional argument to both the fit
and predict functions (the code defaults to uniform weights).
The PyTorch implementation is significantly faster than the
original version and is available both on github (https://
github.com/mccullaghlab/shapeGMMTorch) and PyPI (pip
install shapeGMMTorch). Examples are also provided
on that github, and all examples from this paper are provided
in a second github page discussed below.
2.6. Choosing Training Sets. For nonuniformly weighted

frames, the choice of training set may be important. We have
attempted a variety of training set sampling schemes and have
found that, at least for the frame weight distributions that we
have encountered, uniform sampling of the training data is at
least as good as any importance sampling scheme. We discuss
this further and show results for three different training set
selection schemes for the beaded helix system in Section S1.
2.7. Biasing and Weighting Frames. If configuration x is

generated from an MD simulation at constant T and V then
P(x) ∝ exp[−H(x)/kBT] where H is the system’s Hamil-
tonian.25 If x is generated from an MD simulation at a different

state point (e.g., different T) or with a different Hamiltonian, it
is sampled from a different distribution Q(x). Samples from Q
can be reweighted to P with weights25

x
x
x

w
P
Q

( )
( )
( ) (9)

from which averages over P can be estimated. This approach is
effective only if Q and P are finite over the same domain.
Nonetheless, eq 9 underlies many enhanced sampling
approaches, for example, it is the basis of the original
formulation of umbrella sampling.26 By including weights in
shapeGMM, we can predict the importance of clusters at
nearby state-points or for similar systems.
2.8. Thermodynamic Quantities from ShapeGMM.

Many Thermodynamic quantities can be computed from fit
shapeGMM probability densities. One such quantity is the
configurational entropy

= =x x x xS P P P( ) ln ( ) d ln ( ) Pconfig (10)

The configurational entropy has an analytic solution for a
single multivariate Gaussian but for the general mixture of
multivariate Gaussians we use sampling and Monte Carlo
integration to approximate the integral.

To do so accurately requires that we generate points from
the shapeGMM objects and not just use the trajectory on
which the object was fit. We introduced a generate
function as an attribute to a fit shapeGMM object that
produces configurations sampled from the underlying trained
distribution.

The second Thermodynamic quantity we consider is the free
energy cost to move from one distribution to another. This is
also known as the relative entropy or Kullback−Leibler
divergence and the cost to go from distribution Q to
distribution P is given by

= =x
x
x

x
x
x

D P Q P
P
Q

P
Q

( ) ( ) ln
( )
( )

d ln
( )
( ) PKL

(11)

Here, again, we generate points from distribution P and
average the difference in log likelihoods of these points in P
and Q to assess this value. It should be noted that this is a
nonequilibrium free energy and is thus not necessarily

Figure 1. Beaded helix ε reweighting. Trajectory data for a 12 bead polymer having i, i + 4 interactions with strength ε = 6 was reweighted to
predict the ensemble for ε values ranging from 4.5 to 7 in increments of 0.1. (A) The corresponding free energies as a function of the linear
discriminant (LD) between the two helices are plotted with ε values denoted by the color bar on the right-hand. The weights per frame were fed in
to shapeGMM to perform a cluster scan. (B) The resulting log likelihood per frame as a function of number of clusters from the cluster scan. (C)
Second derivative of the curves from (B). Error bars in (B,C) are estimated as the standard deviation from three different training sets. The true
curve for ε = 6 is given in black dashed lines in all three panels.
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symmetric.27,28 The quantity can prove useful in applications,
for example measuring the free energy cost to shift a
distribution from an apo to a ligand-bound state, for
example.29,30

A symmetric metric is useful when comparing the similarity
of two distributions. Here we opt for the Jensen−Shannon
divergence (JSD)31 given by

= +P Q D P M D Q MJSD( )
1

2 ln 2
( ( ) ( ))KL KL (12)

where = +M P Q( )1
2

is the midpoint distribution between P
and Q. JSD is restricted to between 0 and 1.
All three of these measures were implemented in the

similarities library of the shapeGMM code. They use
point generation and Monte Carlo sampling to assess the
integrals and thus return both the mean value and the standard
error.

3. RESULTS AND DISCUSSION
3.1. Proof of Concept: Reweighting the Beaded Helix.

To demonstrate the accuracy of the frame-weighted
shapeGMM process we perform Hamiltonian reweighting of
a nonharmonic beaded helix previously studied in refs 10 and
32. The system is composed of 12 beads connected in a
sequential fashion by stiff harmonic bonds. Every fifth pairwise
interaction is given by an attractive Lennard-Jones potential
with well depth ε. The value of ε relative to kT dictates the
stability of an α-helix-like structure as compared to a
completely disordered state. Additionally, because of the
symmetry of the model, both the left- and right-handed
helices have equal probability no matter the value of ε. A value
of ε = 6 in reduced units forms stable helices while allowing
transitions between the two folded states; here, we performed a
long unbiased trajectory to sample both left and right states, as
well as possibly intermediates (see Sec. A1 for details).
ShapeGMM suggests that three clusters is a good choice for

a simulation of the beaded helix with ε = 6. Shown in blacked
dash line in Figure 1A is the unbiased free energy for this
system computed as F(s) = −ln P(s) for a linear discriminant
(LD) reaction coordinate.33 By performing a scan over the
number of clusters on 100k frames from an unbiased
trajectory, we identify three clusters as the optimal number
by observing a definite kink in the curves in Figure 1B and the
presence of a minimum in the second derivative in Figure 1C.
These clusters correspond to the left- and right- helical states
as well as a partially unfolded intermediate cluster, examples
shown in Figure 1A.
Reweighted clustering of the beaded helix system predicts

that the prevalence of the partially unfolded intermediate will
disappear at ε = 6.5. To demonstrate this, we performed frame-
weighted shapeGMM cluster scans of our trajectory at ε = 6
with weights corresponding to ε values ranging from 4.5 to 7.0
in increments of 0.1. Given that the samples come from a
Boltzmann distribution, the weights for each frame given by eq
9 are = | = |w( ) e x x

i
U U k T( ( 6) ( ))/( )ii B . The log likelihood of the

shapeGMM fits as a function of the number of clusters is
shown in Figure 1B,C with ε values indicated in the color bar
on the right. We see that as ε increases from 6, the minimum in
the second derivative moves from 3 clusters to 2 cluster. The
transition occurs between ε = 6.4 and ε = 6.5. This suggests
that a simulation run at ε values of greater than 6.4 (in reduced
units) will not exhibit the partially unfolded third cluster.

These results are consistent with the increasing free energy
barrier height as a function of ε depicted in Figure 1A.

The reweighting of ε for the beaded helix example also
predicts that only one cluster will be present for a small ε. In
Figure 1B, the elbow at 3 clusters is evident for ε values as low
as ε = 5 and becomes less pronounced below this threshold.
While a minimum at 3 clusters is still observed in the second
derivative plot for ε = 4.5, the trend is clear that as ε becomes
small the choice of anything other than 1 cluster is less well
supported by the elbow heuristic. This is an expected result,
and consistent with the reduced free-energy barriers observed
for small ε in Figure 1A, as ε approaches thermal energy, the
prevalence of anything other than an unfolded state is
entropically unfavorable.

ShapeGMM reweighted clustering also produces quantita-
tively accurate probability densities for the beaded helix. To
demonstrate this, we compute a reweighted shapeGMM object
(ε = 6 → 8) to a shapeGMM object trained on an unbiased
trajectory at ε = 8, which we refer to as ground truth (GT).
Because, as predicted, transitions at ε = 8 are very unlikely, this
object is trained on simulations, each with 100k frames,
initiated from left and right helices, and concatenated. Two
controls are included that are fit to the ε = 6 trajectory without
reweighting: the predicted 3 cluster object and that same
object with only the cluster populations reweighted to ε = 8.
To quantitatively compare between two probability densities
we use two similarity metrics, both described above in more
detail and introduced as eqs 10 and 11: Jensen−Shannon
divergence (JSD) and change in configurational entropy Sconfig.
These similarity metrics between the GT and the three
different shapeGMM objects are tabulated in Table 1. JSD is a

symmetric metric bounded between 0 and 1 where 0 indicates
no divergence and 1 indicates complete divergence between
the two probabilities. The reweighted shapeGMM object
demonstrates a very small JSD (0.0071 ± 0.0003) to the GT as
compared to either of the ε = 6 objects (0.357 ± 0.002 or
0.401 ± 0.002). This trend holds true when comparing relative
Sconfig’s with the difference in Sconfig between the reweighted
and GT ε = 8 shapeGMM probabilities being within error of 0.
These results indicate that the ε = 8 reweighted shapeGMM
probability density is nearly identical with the GT.

Table 1. Similarity Measures between Three Beaded Helix
Probability Densities Fit from a Simulation with ε = 6, Q,
and the “Ground-Truth” (GT) Probability Density Fit to a
Simulation at ε = 8a

Q JSD(GT∥Q) ΔSconfig/R

K εR

3 6.0 0.401(2) 7.22(3)
3 6.0/8.0b 0.357(2) 4.30(2)
2 8.0 0.0071(3) 0.00(2)

aThe reweighted probability densities are denoted by the number of
clusters, K, and the value of ε used in reweighting, εR. The three Qs
are K = 3 clusters and weighted to εR = 6.0, K = 3 clusters from εR =
6.0 with only the cluster populations reweighted to ε = 8, and K = 2
clusters completely reweighted to εR = 8. The similarity measures are
the Jensen−Shannon divergence (JSD) and the difference in
configurational entropy ΔSconfig = SconfigQ − SconfigGT. Error in the
last digit is included in parentheses and is estimated as Monte Carlo
sampling errors in estimating the integrals. bOnly the cluster
populations are reweighted to ε = 8 in this probability density.
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3.2. Conformational States of Alanine Dipeptide
from Metadynamics Simulations. Alanine Dipeptide
(ADP) in a vacuum is a common benchmark system for
methods designed to sample and quantify conformational
ensembles. In this work, we demonstrate that ADP MetaD
simulations can be used directly to achieve equilibrium
clustering by using various estimates of the frame weights. In
Well-tempered MetaD (WT-MetaD), a history dependent bias
is generated by adding Gaussian hills to a grid at the current
position in collective variable (CV) space2,34 such that the bias
at time t for CV value position si is given by

=
<

sV t h( , ) e es x s
i

t

V T Q( , )/ ( ( ( )) ) /2i i
2 2

(13)

where h is Gaussian height, and σ is the width, and T + ΔT is
an effective sampling temperature for the CVs. Rather than
setting ΔT, one typically chooses the bias factor γ = (T +
ΔT)/T, which sets the smoothness of the sampled
distribution.2,34 Asymptotically, a free energy surface
(FES) can be estimated from the applied bias by

=s sF V t( ) ( , )
1

34,35 or using a reweighting
scheme.34,36 In MetaD, frames are generated from a time
dependent Hamiltonian, so the choice of frame weights for
clustering is not obvious. Reweighting of MetaD trajectories to
compute free energy surfaces was accomplished through
several different schemes.
For a static bias V added to the initial Hamiltonian, the

weight of a frame given by eq 9 would be =w e s
i

V k T( )/i B . Our
first choice of frame weights (termed “bias”) corresponds to
using this formula even though the bias is time-dependent. A
second choice that removes some of the time-dependence is to
use =w e s

i
V t c t k T( ( ( )) ( ))/i i B , where c(t) = −kBT ln⟨e−V(s(t))/kBT⟩ is

the bias averaged over the CV grid at a fixed time. The quantity
V(si(ti)) − c(t) is called the “reweighting bias” and can be
computed automatically in PLUMED,37 hence we term
clustering using this scheme “rbias”. Finally, we
eva lua te another commonly used approach to
compute Boltzmann weights of each frame postfacto,38

which in the case of WT-MetaD would correspond to
= =w e es x s x

i
F k T V k T( ( ))/ /( 1) ( ( ))/i ifinal B final B ; we label these

weights “fbias”. Other more sophisticated reweighting schemes
have also been proposed, e.g. in refs 38 and 39, but we did not
test these here because, as will be seen, the bias, rbias, and fbias
approaches all worked well for our test system. However,
shapeGMM, as implemented, is capable of using any choice of
frame weights. We include “uniform” weights as a control.
For assessing the best choice of weights, we performed a 100

ns WT-MetaD simulation on ADP biasing backbone dihedral
angles ϕ and ψ using bias factor 10, saving every 1 ps to
generate 100,000 frames (see Section A1 for full details). The
five atoms involved in the ϕ and ψ dihedral angles were chosen
for shapeGMM clustering. The coordinates of these atoms and
the frame weights from the four different schemes were fed
into shapeGMM. The log likelihood per frame of the resulting
fits as a function of number of clusters is shown in Figure 2A.
In general, the three nonuniformly weighted clustering objects
result in significantly higher log likelihoods than the uniform
weights for equivalent numbers of clusters K > 2, indicating a
better fit to the underlying data. The significant kink in the
cluster scans for the nonuniformly weighted objects at 2
clusters indicates that at least 2 clusters are necessary for a

good fit to the data; there is still substantial increase going
from 2 to 3 clusters, however, indicating that there may be
additional insight gained at K = 3 and above, as we shall see.

Nonuniform frame-weighted shapeGMM produces physi-
cally relevant clusterings. Figure 2B indicates how sampled
points in ϕ and ψ space are assigned to two, three, or four
clusters when using each of the choices of frame weights, with
the underlying free energy landscape computed from a
weighted histogram with the same choices of weights as used
for the clustering indicated by contour lines. Clustering with
uniform weights has little correlation with the underlying free
energy landscape, whereas performance is much better when
using any of the nonuniform weighting schemes. Weighted
clustering with K = 2 tends to split the landscape into one
cluster covering the most extended upper-left “C5” basin near
(−2,2), while using a second cluster to cover the rest of the
landscape (see ref 40 for a naming convention). However, a
higher number of clusters allows for separating the upper left
basin into its two constituent states, C5 and “C7eq” at (−2,1),
while also revealing the presence of the minor “C7ax” state at
(1,−1). Slight differences in contour FES correspond with
slight differences in the weighted cluster assignments; for
example, in the K = 3 case the upper left and bottom left parts
of the axial basin are disconnected at Ψ = 0 for bias weights but
connected for rbias and fbias weights.

Nonuniform frame-weighted shapeGMM also works for
standard (untempered) MetaD1,34 with ΔT → ∞. For
untempered MetaD, we favor rbias weights because the final
bias is not static and the instantaneous bias diverges, meaning
that initial frames receive no weight. In Figure S2, we show
that shapeGMM clustering with rbias weights performs much
better than equally weighted frames, and results are

Figure 2. WT-MetaD simulation for ADP with BF 10. Each column
represents a particular choice of weights been used in frame-weighted
SGMM. (A) Cluster scans for each choice of frame weights using 50k
frames, 4 training sets and 10 attempts for each case. (B) Clusterings
performed for K = 2, 3, 4 are shown by coloring each of 100k sampled
points by their cluster assignment. Contour lines indicate the
underlying free energy surface as computed from the WT-MetaD
simulation via reweighting with the different choice of weights.
Contours indicate free energy levels above the minimum from 1 to 11
kcal/mol with a spacing of 2 kcal/mol.
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comparable to our study with WT-MetaD, indicating that
frame-weighted shapeGMM can be extended to this method as
well.
Nonuniform frame-weighted shapeGMM probability den-

sities quantitatively capture the correct free energy basins.
Because we know that the free energy in dihedral space is a
good proxy for the configuration space of ADP, we here
quantify the accuracy of our GMM fits (which are 15-
dimensional objects) by predicting this FE landscape directly
from the GMMs. To do so, we generate 1M samples in
Cartesian space from each GMM object and compute the FES
from an unweighted histogram of the backbone dihedral

angles. Figure 3 shows a comparison of these predicted FES
with the reference FES computed directly from the WT-
MetaD bias, as described above. Here we see that uniform
weights produces FES that span all of dihedral space but whose
minima are not centered on the true minima.

In contrast, the FESs generated from the nonuniform
weighting schemes demonstrates that the clustering above
captures the nature of the underlying FES as well as could be
expected given a limited number of clusters. FES for K = 2
captures the primary C7 equatorial global minimum and C5
metastable state, while going to three or more clusters also
allows resolution of the minor C7 axial basin. As should be

Figure 3. FE profiles obtained from GMM objects trained on BF = 10 MetaD data. Each column corresponds to a different choice of bias and each
row corresponds to a different number of clusters used. These are computed as unweighted histograms from 1M samples obtained from each GMM
object. Black circles placed on the FEs are the centers calculated from the reference structures corresponding to different clusters, with the size
indicating their relative population. Contour lines indicate the underlying free energy surface as computed from the WT-MetaD simulation,
positioned at 1.0 to 11.0 kcal/mol with a spacing of 2 kcal/mol above the global minimum.

Figure 4. (A) Cartoon representation of Actin monomer. The arrows representing the magnitude and directions of the LD vector acting on 375 Cα
atoms. SD1 to SD4 are four subdomains defined for the monomer.41 d is the distance between center of masses (COMs) of subdomains SD2 and
SD4. ϕ is the dihedral angle defined using COMs of SD2-SD1-SD3-SD4 respectively. (B) FES calculated by performing an unweighted histogram
of ∼1M samples generated from GMM. Contour lines represent the reweighted FE obtained from restarted OPES-MetaD trajectory using fbias
frame weights. Contours are positioned at 1 to 11 kcal/mol with a spacing of 2 kcal/mol above the global minimum. Colored circles are the
locations for different cluster centers weighted by relative population. (C) Snapshots of frames belonging to different clusters (front view). (D) Top
view for the same.
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expected, the GMM objects only resolve the configurational
landscape of our system around the minima, and cannot
resolve (nonconvex) high free energy regions. Importantly, we
note that the results reflect an intrinsic error due to the fact
that we are fitting an anharmonic landscape to a locally
harmonic model, resulting in an overestimate of the FES away
from the minima. We can also compute a FES that covers the
entire energy landscape using a Monte Carlo procedure
described in Section S3, resulting in FES shown in Figure S3
that are qualitatively correct but which also reflect the inherent
overestimation of the Gaussian model.
The comparison of FESs can be further quantified by

difference metrics, which also provide an alternative metric to
choose the best method or best number of clusters. In Figure
S4 we show both the root-mean-squared error (RMSE) for the
sampled region and the JSD as compared to the reference FES.
While the uniform weights perform poorly, we see that all
other weights do comparably well for 3 or more clusters. Using
RMSE as a metric, rbias weights are the most accurate by a
small margin, and a five state clustering is the best within the
range of K = 2 to K = 6. Additionally, we compute the change
in configurational entropy between all shapeGMM objects and
the MetaD ground truth (ΔSconfig in Table S1). The trend is
similar to the other metrics in that the weighted objects all
have a smaller magnitude ΔSconfig compared to the uniform
weights. We also include a modified uniform weight
shapeGMM object (uniformmodf in Table S1) in which we
reweight only the cluster populations (ϕj) after the
shapeGMM fit using final bias weights. ΔSconfig values for
these objects are almost identical to the unmodified uniform
object, indicating that simply reweighting cluster populations is
unsatisfactory for shapeGMM.
3.3. Elucidating Conformational States of the Actin

Monomer. Up to this point, we have established that we can
accurately train a GMM with data weighted from MetaD or
Hamiltonian reweighting for small systems. In this section, we
demonstrate that this approach can provide insight into the
data for a complex biochemical problem. The actin
cytoskeleton, composed of filaments of actin, plays major
roles in a wide range of active biological processes, including
cell motility and division.42−44 Actin filaments are noncovalent
polymers that form from head-to-tail assembly of globular actin
(G-actin), which is a 375-amino acid protein consisting of four
primary subdomains (Figure 4A). Each actin monomer
contains a bound nucleotide that is in the form of ATP in
G-actin and is eventually hydrolyzed to ADP as filaments
“age”.43,45 The polymerization from G-actin to filamentous
actin (F-actin) results in a flattening of the protein which is
characterized by a reduction of the ϕ dihedral angle shown in
Figure 4A.43 An open question in the field is whether the flat
state is metastable in solution, or whether it is only stabilized
when contacting the end of a filament.46 Additionally,
structural intermediates along the flattening pathway remain
elusive.
Previous efforts to directly sample the flattening of G-actin

have proven to be difficult. These efforts employed umbrella
sampling or MetaD on two experimentally defined coordinates
ϕ and d and demonstrate the difficulty in sampling the
conformational landscape of actin, either because restraining
those coordinates traps you in the starting state, or because a
MetaD bias can quickly push you into unphysical regions of
configuration space.41,47 Other related efforts have investigated
the role of flattening on ATP hydrolysis catalyzed by actin, and

analogous transitions in the homologous proteins Arp2 and
Arp3.45,47−51 None of these previous studies have identified
intermediate structures that might occur during flattening.

Here, we report for the first time biased MD simulations that
sample reversibly the flat to twisted transition of actin by using
our method to produce a position linear discriminant analysis
(posLDA)33 coordinate separating the two states. To
determine the LDA reaction coordinate, we performed two
short MD simulations starting from each of these states and
used 10 ns from the twisted and 5 ns from the flat state
(shorter because it eventually flattens;48 see Section A1 for full
details). We then performed iterative alignment of all frames in
both states (using positions of all 375 Cα atoms) to the global
mean and covariance as described in ref 33. LDA on the
resulting aligned trajectory yielded a single posLDA coordinate
that separates the twisted and flat states. The coefficients for
the posLDA coordinate separating the two states is illustrated
using a porcupine plot in Figure 4A. We then performed the
OPES variant of WT-MetaD52,53 along this reaction coordinate
as described in Section A1.

Frame-weighted shapeGMM trained on an OPES MetaD
trajectory indicates that five distinct structural states can be
occupied during a twisted to flat transition of actin. The
trajectory generated contains two full round trip trajectories
between flat and twisted states as measured by changes in ϕ
(Figure S6), which provides sufficient sampling to investigate
the observed conformations and approximate relative free
energies. The FES estimated from this approach is shown in
Figure S6. To increase the number of samples available for
clustering purposes, we initiated new simulations using a fixed
bias taken from the end of the simulation as described in
Section A1. A cluster scan using these additional frames (see
Figure S7) shows small kinks at K = 3 and K = 5, and in Figure
4B,C we show results for K = 5 in more detail. Reasonable
agreement between the training set and the cross validation set
in Figure S7 demonstrates a lack of overfitting on this data set.

The FES computed from the shapeGMM probability density
(K = 5) agrees well with the MetaD free energy. Figure 4B
shows the FESs computed from the shapeGMM probability
density (in the colormap) and the MetaD (in the contours).
The FESs are shown in the space of the ϕ and d coordinates
illustrated in Figure 4A which have been used to describe the
G- to F-actin transition, for better comparison with earlier MD
studies.41,47 The MetaD simulation was performed in ϕ and
the LD coordinate so was reweighted into these coordinates
using the same weights fed into shapeGMM. There is
impressively good quantitative agreement between the surfaces
up to 3 kcal/mol (∼5kBT) considering the very high
dimensionality of the GMM. The agreement around the
energy minima in this space indicates that the shapeGMM
probability density is a good representation of the MetaD
simulation results for these regions.

The five state shapeGMM model is in contrast to the two
states that would be predicted just by looking at a 2D free
energy projection. Overlain on the FES depicted in Figure 4B
are circles indicating the average ϕ and d for the structures
assigned to each cluster, with the size indicating their relative
population. The five state clustering detected two clusters in
the flat F-actin like basin (ϕ ∼ −3) and three states in or
around the twisted basin (ϕ < −10). The 2D FESs either in d
and ϕ (Figure 4B) or in the sampled ϕ and LD (Figure S6)
space have two basins. Clustering in this space would thus
likely yield two states. The five-state shapeGMM probability
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density, however, quantitatively matches the 2D FES thus
demonstrating the potential oversimplification achieved in
lower dimensional clusterings.
Figure 4C,D shows representative snapshots from the frames

assigned to each cluster in two different orientations. To give
some interpretation to these three different states, we have
computed the average root-mean-square deviation (RMSD) to
several published crystal or CryoEM structures of actin alone
(twisted), in a filament (flattened), or in complex with an actin
binding protein for the Cα atoms available in all crystal
structures (numbers 7−38, 53−365 out of a total of 375). The
twisted states (C = 0, 1, 4) all have lower RMSD to twisted
than flat actin subunits, while the converse is true for the flat
states (C = 2, 3). State C = 4, which is the most twisted, has
the lowest rmsd to the starting structure 1NWK54 (1.67 Å)
and ADP-bound actin 1J6Z55 (1.73 Å) than do clusters 0 and 1
(2.59 Å, 2.48 Å). It is expected based on earlier work that our
simulations would produce a less twisted equilibrium state for
ATP-bound actin than what is seen in the crystal structure
(which was solved with a nonhydrolyzable ATP analog54).
What is interesting is that the clustering algorithm still picks up
on this more twisted state as a possible structure despite the
fact that early frames in the trajectory have relatively low
weight (since they have little bias applied at that point).
Interestingly, states C = 0 and C = 1 have equally low rmsd

to actin structures in complex with another protein as to the
twisted structures considered, for example 2.59 and 2.48 Å
rmsd to the twisted starting structure 1NWK, but 2.28 and
2.09 Å to the structure of actin complexed with the protein
profilin (3UB556), which is how a large fraction of actin
monomers are found in cells. This suggests that our weighted
GMM models may be able to point us toward biologically
relevant configurations within a conformational ensemble.
Within the flat states, the most noteworthy difference

appears to be in the disordered D-loop (upper right), with
cluster 3 having a significantly higher variance than cluster 2.
This difference is also evident if we look at the root-mean-
squared-fluctuations (RMSF) of the D-Loop residues shown in
Figure S8. This lower RMSF state (C = 2) could correspond to
one of the intermediates previously probed through MetaD
simulations along a disordered-folded pathway for the D-loop,
which were metastable for the ATP-bound actin used in our
study, but would be expected to become more stabilized after
conversion to ADP.57 Meanwhile, on close inspection (C = 3)
it seems to contain some more disordered structures and some
partially folded structures, meaning that the higher variance
could be a result of combining two subpopulations into one
single state. As it stands, both flattened states have higher
RMSF than all twisted states, suggesting a coupling between D-
loop structure and twisting that was previously ascribed to
nucleotide state (ATP vs ADP), as opposed to the conforma-
tional transition which results in ATP hydrolysis, and this
would be an interesting question to consider in the future.

4. CONCLUSIONS
In this work, we present a probabilistic structural clustering
protocol that can rigorously account for nonuniform frame
weights. This ability allows shapeGMM to be applied, directly,
to reweighted or enhanced sampling simulation data to achieve
a clustering of the underlying Hamiltonian of interest.
Additionally, we demonstrate that the resulting shapeGMM
probability density is a good approximation to the underlying
unbiased probability and can thus be used to calculate

important thermodynamic quantities, such as relative free
energies and configurational entropies. To do so, we took
advantage of our ability to generate biomolecular config-
urations from the trained clustering model; this is a unique and
powerful advantage of using a probabilistic clustering model
that operates directly in position space, which has not been
previously exploited to our knowledge.

By applying our method to the flattening of G-actin, we have
shown that this approach is capable of picking out physically
meaningful structural clusters even for highly complex systems
and illustrates how structural clustering on biased data can
provide additional insights that would be difficult to obtain
only by looking at the free-energy projected into low
dimensional coordinates.

In summary, our work represents a significant advance in our
ability to quantify biomolecular ensembles. In the future, we
envision this approach to be useful in quantifying important
biophysical processes, such as ligand binding and allosteric
regulation.

■ APPENDIX A

A1. Simulation Details
Input files, shapeGMM objects, and analysis codes used to
generate all figures are available from a github repository for
this article: https://github.com/hocky-research-group/
weighted-SGMM-paper. The simulation input files and plumed
parameter files are also included in a PLUMED-NEST
repository under the name plumID:24.009.

Beaded Helix. A 12-bead model designed to have two equi-
energetic ground states as left- and right-handed helices32 was
simulated in LAMMPS.58 11 harmonic bonds between beads
having rest length 1.0 and spring constant 100 form a polymer
backbone. Lennard-Jones (LJ) interactions between every i, i +
4 pair of beads with σ = 1.5 and a cutoff length of 3.0 give rise
to the helical shape. The ε value of this interaction dictates the
stability of the helices and was the focus of our reweighting.
Simulations were performed with ε = 6 as the baseline and
with ε = 8 and ε = 4.5 to assess the accuracy of the reweighting
scheme. All nonbonded i, i + 2 and farther also have a repulsive
WCA interaction with ε = 3.0 and σ = 3.0 added to prevent
overlap, with the ε for i, i + 2 reduced by 50%. Simulations at
temperature 1.0 were performed using “fix nvt” using a
simulation time step of 0.005 and a thermostat time step of 0.5.
A folding/unfolding trajectory of length 50,000,000 steps was
generated and analyzed as above. Here, all parameters are in
reduced (LJ) units.

Alanine Dipeptide in Vacuum. Alanine dipeptide simu-
lations were performed using GROMACS 2019.6 with
PLUMED 2.9.0-dev. GROMACS mdp parameter and top-
ology files are obtained from previous PLUMED Tutorials
(Belfast-7: Replica Exchange I). AMBER99SB-ILDN force
field is used with a time step of 2 fs. NPT ensemble is sampled
using a velocity rescaling thermostat and Berendsen barostat
with a temperature of 300 K and pressure 1 bar. For MetaD
simulations we used PACE = 500, SIGMA = 0.3 Å (for both ϕ
and ψ) and HEIGHT = 1.2 kcal/mol. PLUMED input files are
available in our paper’s github repository for complete details.

Actin Monomer. Actin simulations were also performed
using GROMACS 2019.6 with PLUMED 2.9.0-dev. G-actin
with a bound ATP was built and equilibrated at 310 K as
described previously.48 The structure of the twisted, ATP-
bound actin is derived from the crystal structure with PDB ID
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1NWK,54 while that in the flat state is taken from PDB ID
2ZWH,59 with the nucleotide, magnesium ion, and surround-
ing water replaced with ATP as described previously. MD
simulation for ∼5 ns was performed to relax the starting
structure. NPT simulation was performed with a 2 fs time step.
Parrinello−Rahman barostat is used along with a velocity
rescaling thermostat with a temperature of 310 K and pressure
1 bar. For OPES we used PACE = 500, BIASFACTOR = 12,
BARRIER = 15.0 kcal/mol and a multiple time step stride of 2.
Two UPPER_WALLS were employed ∼ −1° and 31 Å for ϕ
and d respectively. We also used one UPPER_WALLS at
+40.0 and one LOWER_WALLS at −40.0 for the posLDA
coordinate. All the walls used were quadratic with a spring
constant of KAPPA = 500 kcal/mol/nm2. PLUMED input files
are available in our paper’s github repository.
We performed ∼1 s of sampling along this LD coordinate

and dihedral angle ϕ using the On the Fly Probability
Enhanced Sampling variant of MetaD (OPES-MetaD).52,53

This method uses a kernel density estimate of the probability
distribution over the whole space for biasing rather than
building this bias through the sum of Gaussians. The bias at
time t for CV value si is given by the expression
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Here, Pt(s) is the current estimate of the probability
distribution, Zt is a normalization factor. Finally,

= ( )exp E
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is a regularization constant that ensures

the maximum bias that can be applied is ΔE. OPES-MetaD
data can be reweighted similarly to standard WT-MetaD, using
the exponential of the bias (which is similar to rbias for
MetaD) or using the estimated free energy of each frame from
the final bias.52

We chose the OPES variant of MetaD because (a) literature
precedent suggests that it converges more quickly than
standard WT-MetaD, and (b) it allows us to set an free-
energy cutoff above which bias is not applied (in this case 15
kcal/mol) which limits the amount of unphysical exploration,
in a similar manner to Metabasin-MetaD that we previously
showed was desirable for this problem.47 Even with this energy
cutoff, we needed to include upper and lower walls to prevent
overflattening or overtwisting observed here and in prior
attempts by us.48

A cluster scan on our OPES trajectory (Figure S7) showed a
large difference between training and cross-validation curves.
Hence we decided to generate additional training frames. We
did this by taking the bias accumulated after 900 ns of OPES
simulation and started four 1 ns simulations with random
velocities from each of 191 initial configurations from the
initial trajectory (separated by 5 ns each), saving every 5 ps;
this resulted in ∼153k frames available for clustering. The
resulting training and cross-validation curves are in much
better agreement as discussed in the main text; hence, these
data were used for clustering and analysis.
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