
Synaptic Effects Induced by Alcohol

David M. Lovinger,
National Institute on Alcohol Abuse and Alcoholism

Marisa Roberto
Scripps Research Institute

Abstract

Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic 

function are prominent among these effects. Acute exposure to EtOH activates or inhibits the 

function of proteins involved in synaptic transmission, while chronic exposure often produces 

opposing and/or compensatory/homeostatic effects on the expression, localization and function 

of these proteins. Interactions between different neurotransmitters (e.g. neuropeptide effects on 

release of small molecule transmitters) can also influence both acute and chronic EtOH actions. 

Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural 

actions of the drug, including acute intoxication, tolerance, dependence and the seeking and 

drinking of EtOH. The present chapter is an update of our previous Lovinger and Roberto (2013) 

chapter and reviews the literature describing these acute and chronic synaptic effects of EtOH with 

a focus on adult animals, and their relevance for synaptic transmission, plasticity and behavior.
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1. Acute EtOH Actions

Ethanol (EtOH) produces intoxication through actions on the central nervous system (CNS) 

at concentrations ranging from low mM to ~100 mM (at least in non-tolerant humans 

and experimental animals) (Cui & Koob, 2017). Several proteins involved in synaptic 

transmission are altered by EtOH effects within this concentration range. The target proteins 

include, but are not limited to, ion channels, neurotransmitter receptors and intracellular 

signalling proteins (Abrahao et al., 2017; Cui et al., 2015). The first section of this article 

will review the literature describing the most prominent acute EtOH effects on synaptic 

transmission in the CNS. This review is not meant to be comprehensive, but rather to cover 

those effects that have been observed most consistently, and that are thought to contribute to 

intoxication.
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1.1 Ligand-gated Ion Channels and Postsynaptic EtOH Effects

Ion channels are among the best characterized targets for acute EtOH actions (Lovinger 

1997, Vengeliene et al. 2008). Ligand-gated ion channels (LGICs) are heteromeric proteins 

that bind extracellular neurotransmitters or intracellular messengers and transduce that 

binding energy into opening of an intrinsic ion pore (Collingridge et al. 2009). Among 

those channels activated by extracellular neurotransmitters there are three classes.

1.1.1. Cys-loop LGICs—The “cys-loop” LGICs are pentameric proteins characterized 

by an obligatory cysteine double bond in the n-terminal binding domain. Each 

subunit protein contains an extracellular ligand-binding domain, four membrane spanning 

domains, and one large intracellular loop domain that also serves as a “portal” for ion 

permeability. This receptor class includes proteins with cation-permeable pores, the nicotinic 

acetylcholine (nAChR) and serotonin3 (5-HT3) receptors, as well as those with anion-

permeable pores, the γ-aminobutyric acidA (GABAA) and strychnine-sensitive glycine 

(GlyR) receptors. This class of receptors is distributed throughout the peripheral and central 

nervous systems.

Generally, acute EtOH exposure enhances the function of cys-loop LGICs (Aguayo et al. 

2002, Harris 1999, Hendrickson et al., 2013; Lovinger 1997, Perkins et al. 2010; Rahman et 

al., 2016, Söderpalm et al, 2017), but instances of inhibition of the nAChRs and GABAARs 

have been reported (Aguayo et al. 2002, Cardoso et al. 1999, Davis and De Fiebre 2006, 

Marszalec et al. 1994, Noori et al., 2018; Rahman et al., 2016; Roberto et al. 2003). The 

most common EtOH action is to potentiate channel opening in the presence of a low 

concentration of agonist by increasing probability of channel opening (Zhou et al. 1998), 

and/or increasing agonist affinity (Tonner and Miller 1995, Welsh et al. 2009). Direct EtOH 

binding to receptors is thought to underlie the potentiating action (Howard et al., 2014; 

Sauguet et al., 2013). This potentiating effect can influence both synaptic and extrasynaptic 

receptors (Sebe et al. 2003, Ye et al. 2001, Eggers and Berger 2004, Ziskind-Conhaim et 

al. 2003; Herman et al., 2016a; Herman and Roberto, 2016) (Figure 1). For example, EtOH 

has been shown to increase the amplitude and/or duration of GABAA and GlyR-mediated 

inhibitory postsynaptic currents (IPSCs) (Sebe et al. 2003, Ziskind-Conhaim et al. 2003).

Ethanol potentiation of GABAA receptor function has been extensively studied. There are 

19 subunit proteins that contribute to the formation of GABAA receptors (International 

Union of Basic and Clinical Pharmacology, IUPHAR, database http://www.iuphar-db.org/

index.jsp). Many of these subunit combinations have been examined for function and 

pharmacology in heterologous expression systems. To briefly summarize a large body of 

data, there is evidence that EtOH potentiates the function of α/β/γ-subunit containing 

receptors, as well as those containing α4 or α6 along with β and δ subunits (Olsen et al. 

2007, Lobo and Harris 2008, Mihic et al. 1995, McCool et al. 2003). However, none of these 

findings has been uniformly replicated in all laboratories that have examined EtOH effects 

in heterologous systems (reviewed in Lovinger and Homanics 2007, Aguayo et al. 2002). 

Using cultured and isolated neurons, several investigators have observed potentiation of 

GABAAR function (Celentano et al. 1988, Reynolds and Prasad 1991, Aguayo 1990, Nishio 

and Narahashi 1990, Sapp and Yeh 1998), but this sort of effect has not been observed 
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in every neuronal type examined (e.g. McCool et al. 2003, White et al. 1990, Yamashita 

et al. 2006). A tonic GABAA-mediated current is observed in many CNS neurons, and is 

thought to reflect the function of extrasynaptic, high affinity GABA receptors containing the 

δ receptor subunit (Hanchar et al. 2005). Potentiation of this tonic current has been observed 

in recordings from cerebellum, hippocampus and thalamus using the brain slice preparation 

(Hanchar et al. 2005, Wei et al. 2004, Glykys et al. 2007, Jia et al. 2008, although see Botta 

et al. 2007). It should be noted that potentiation of GABAergic tonic current in cerebellar 

granule neurons does not require δ receptor subunits and involves EtOH-induced increases 

in interneuron firing (Diaz and Valenzuela, 2016; Wadleigh and Valenzuela, 2012). A recent 

study indicates a role for acetate-induced increases in GABA production in this EtOH action 

(Jin et al., 2021) Indeed, it has been suggested that EtOH inhibits GABAAR function in 

cerebellar granule neurons via a protein kinase C-dependent mechanism (Kaplan et al., 

2013).

EtOH potentiation of GABAA receptor function appears to depend on protein 

phosphorylation. Messing and co-workers have shown that activity of the epsilon subunit 

of protein kinase C (PKC) is necessary for EtOH potentiation of γ2-subunit containing 

GABAA receptors expressed heterologously in a mammalian cell line (Qi et al. 2007). 

This PKC action appears to involve phosphorylation of a specific serine residue on the γ2 

subunit. This finding may explain data from previous studies indicating the involvement 

of PKC in EtOH potentiation of GABAergic transmission (Weiner et al. 1994). However, 

in this earlier study it was not clear if the EtOH effects on transmission involved pre- or 

postsynaptic mechanisms. A parallel line of investigation indicates that PKCδ is necessary 

for EtOH potentiation of tonic current involving δ-subunit containing GABAARs (Choi et 

al. 2008). It is not yet clear if acute EtOH exposure activates PKC phosphorylation of 

the GABAAR or if phosphorylation on key amino acid residues is permissive for EtOH 

potentiation of receptor function, and this will be an interesting topic for future research.

Ethanol potentiation of glycine-activated chloride channels appears to be dependent on 

receptor subunit composition. Potentiation is consistently greater at receptors containing the 

α1 subunit (Davies et al. 2003, Mascia et al. 1996, Mihic et al. 1997), when expressed 

in xenopus laevis oocytes and in neurons that express this subunit (Förstera et al., 2017; 

Valenzuela et al. 1998b, although see McCool et al. 2003, Yevenes et al. 2008). Receptors 

containing the α2 subunit also exhibit EtOH potentiation (McCool et al. 2003; Gallegos et 

al., 2021), but may be less sensitive than those containing the α1 subunit (Mascia et al. 

1996). Ethanol interactions with both membrane-spanning and intracellular domains within 

the receptor have been implicated in potentiation (Burgos et al., 2015; Mascia et al., 1996). 

Inclusion of the β subunit along with α2 eliminates potentiation (McCool et al. 2003). 

Potentiation has also been observed in neurons from brain and spinal cord, particularly in 

regions where the α1 subunit is expressed (Aguayo et al. 1996, Ye et al. 2001). Potentiation 

of the function of GABAA and glycine receptors is thought to increase inhibition of 

neurons. Indeed, in the prefrontal cortex, potentiation of glycine effects on GlyRs is 

implicated in EtOH-induced inhibition of neurons (Badanich et al., 2013). Recently, it has 

been shown that taurine, a glycine receptor partial agonist, modulates GABAA mediate 

evoked synaptic transmission in central amygdala (CeA) of naïve rats, without affecting the 

acute alcohol-induced facilitation of GABAergic responses. Additionally, preapplication of 
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the glycine receptor-specific antagonist strychnine blocked the EtOH-induced increase in 

GABA responses in CeA neurons from naïve rats. In CeA neurons from dependent rats, 

taurine no longer influenced evoked responses, but now blocked the EtOH-induced increases 

(Kirson et al., 2020). The relative influence of effects on synaptic versus extrasynaptic 

channels in producing this inhibition remains to be determined.

Acute EtOH exposure potentiates the function of 5-HT3 receptors that contain an intrinsic 

cation channel (Lovinger 1991, Machu and Harris 1994). It is yet to be determined if this 

action alters pre- or postsynaptic mechanisms activated by this receptor.

1.1.2. Ionotropic Glutamate Receptors—The ionotropic glutamate receptors 

(iGluRs) constitute the second class of neurotransmitter activated LGICs. Three major 

classes of iGluRs exist, the AMPA receptors (AMPARs, gene name GRIA give proper iGluR 

name, made by GluRs1-4), the NMDA receptors (NMDARs1-3, gene name GRIN), and 

the kainate receptors (KARs, made by GluRs5-7 and KAs1-2, gene name GRIK). These 

receptors are now thought to be tetrameric and each subunit contains a large n-terminal 

domain and an extracellular loop domain that together participate in ligand binding via a 

“venus fly-trap” motif (Gouaux 2004). The subunits have three membrane spanning domains 

and a re-entrant pore-loop that forms the ion conduction pathway, as well as intracellular 

loops and a large intracellular c-terminal domain. The iGluRs are all cation-permeable, 

with varying ratios of Na+, K+ and Ca2+ selectivity. These receptors are present on all 

CNS neurons, where they mediate fast synaptic transmission and activation of intracellular 

signalling.

Ethanol has consistent inhibitory actions on iGluRs (although see Lu and Yeh 1999) (Figure 

1C,D). Inhibition of NMDARs at EtOH concentrations associated with intoxication is the 

best characterized of these effects (Criswell et al. 2003, Dildy and Leslie 1989, Hoffman 

et al. 1989, Lima-Landman and Albuquerque 1989, Lovinger et al. 1989). The synaptic 

responses mediated by NMDARs are also reduced by EtOH (Lovinger et al. 1990, Morrisett 

and Swartwelder 1993, Roberto et al., 2004b, Weitlauf and Woodward 2008, Wang et al. 

2007).

Functional NMDARs always contain an obligatory NR1 subunit in combination with at 

least one NR2 or NR3 subunit. While EtOH inhibits all NMDAR subtypes, differences in 

the sensitivity to inhibition have been observed for recombinant with receptors containing 

different subunit compositions. The most common observation is that EtOH is less potent 

at receptors containing the NR1/2C composition in comparison to those containing NR1/2A 

or NR1/2B (Masood et al., 1994, Chu et al. 1995, but see Kuner et al. 1993, Lovinger 

1995). There are several splice variants of the NR1 subunit, and a recent comprehensive 

study by Woodward and co-workers showed that the NR1 splicing status, in combination 

with the identity of the co-assembled NR2 subunit, has small but reliable effects on EtOH 

sensitivity (Jin and Woodward 2006). This NR1 splice variant effect could account for 

the previous difference in reports of low EtOH sensitivity of NR2C-containing receptors. 

Receptors containing the NR3 subunit are relatively insensitive to inhibition by EtOH, but 

inclusion of the NR2B subunit enhances the EtOH inhibitory action on NR3-containing 

receptors (Jin et al. 2008). In addition, Mg2+ enhances EtOH inhibition of several NR1/2 
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and N1/2/3 receptor combinations, especially when NR2B is present (Jin et al. 2008). This 

finding may account for the larger effect of EtOH on NR2B containing NMDARs seen in 

some neuronal preparations (e.g. Fink and Gothert 1996, Lovinger 1995).

Recent studies indicate that portions of the transmembrane domains and c-terminal domain 

of different NMDAR subunits contribute to ethanol sensitivity of the receptor (Honse et al. 

2004, Ren et al. 2003, 2007, 2012, 2013, 2017, Salous et al. 2009, Smothers et al. 2013, 

2016, Wu et al. 2019, Zhao et al. 2015, 2016).

Ethanol also inhibits the function of AMPARs, and effects can be seen at concentrations as 

low as 10 mM (Akinshola 2001, Akinshola et al. 2003, Dildy-Mayfield and Harris 1992, 

Moykkynen et al. 2003, Nieber et al. 1998, Wirkner et al. 2000). In neurons from the brain, 

EtOH generally shows lower potency for inhibition of AMPARs in comparison to NMDARs 

(Frye and Fincher, 2000, Lovinger et al. 1989, Lovinger 1995). The ethanol sensitivity 

of recombinant AMPAR receptors is not greatly altered by changing the receptor subunit 

composition (Lovinger 1993), although the potency of EtOH is slightly higher for inhibition 

of GluR1-containing in contrast to GluR3-containing GluRs in Xenopus laevis oocytes 

(Akinshola 2001). In addition, recombinant AMPA receptors containing GluRs 2 and 3 

exhibits slightly decreased EtOH sensitivity in comparison to those containing GluRs1, 2 

and 3 or 3 alone (Akinshola et al. 2003). Recent studies suggest that this EtOH action 

involves increased receptor desensitization (Moykkynen et al. 2003, 2009), and thus the 

drug has little impact on AMPAR-mediated synaptic responses at most synapses given that 

desensitization does not contribute to the amplitude or time course of excitatory postsynaptic 

currents (EPSCs) (Lovinger 1990, Ariwodola et al. 2003, but see Nie et al., 1993, Roberto et 

al., 2004b, Mameli et al., 2005; Zhu et al. 2007; Logrip et al., 2017; Herman et al., 2016b). It 

is notable that a recent study indicates that EtOH enhances AMPAR-mediated EPSCs in the 

VTA via an indirect mechanism involving nicotinic ACh receptors (Engle et al. 2015).

Inhibition of KAR-mediated responses has been observed at quite low EtOH concentrations 

(Costa et al., 2000; Lack et al., 2008, Valenzuela et al., 1998a; Weiner et al., 1999). 

However, direct examination of KAR-mediated ion current has yielded mixed results, 

at least for the receptor constructs examined to date (Dildy-Mayfield and Harris, 1992, 

Valenzuela et al. 1998a). Thus, it is not yet clear if EtOH inhibition of KAR function 

involves a direct effect on protein function or a more indirect action. Ethanol inhibition 

of iGluRs is generally thought to dampen neuronal excitability in many brain regions by 

reducing excitatory synaptic drive and inhibiting synaptic plasticity that requires iGluR 

activation.

1.1.3. Purinergic LGICs—The third major subtype of LGIC is the P2X purinergic 

receptor subclass. The P2X receptors are trimeric (Mio et al. 2005) with each subunit 

containing an n-terminal ligand binding domain, 2 membrane-spanning domains linked by 

an extracellular ligand binding domain, and a c-terminal intracellular domain of moderate 

length. The 2nd membrane-spanning domain appears to serve as the lining for the ion 

conduction pathway. Ethanol inhibits the function of most P2X receptor subtypes, with some 

effects reported at concentrations associated with intoxication (Davies et al. 2002, Li et al. 

1993). The P2X4 receptor appears to be the most sensitive to inhibition by EtOH, while 
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P2X3 receptors exhibit EtOH-induced potentiation (Davies et al. 2002, 2005). At present, 

the physiological consequences of P2X inhibition are unclear.

1.2. G Protein-Coupled Receptors and roles in EtOH Effects

The majority of neurotransmitter receptors are members of the G protein-coupled receptor 

(GPCR) superfamily. These receptors are specialized for binding a neurotransmitter, and 

this binding stimulates rearrangement of the protein to favor activation of intracellular 

signaling proteins known to bind GTP and GDP. In the GTP-bound state, the G protein 

is activated. Several forms of intracellular signaling proteins are affected by activated G 

proteins, including proteins that generate small molecule 2nd messengers, as well as protein 

kinases and ion channels. Thus, G protein activation can affect neurophysiology fairly 

directly by altering ion channel function, and can have a long-lasting influence on neuronal 

function by altering intracellular signaling and even gene expression.

Receptor-activated G proteins are heterotrimeric, consisting of α, β and γ subunits. The β 
and γ subunits form a tight complex, but when the G protein is activated the α subunit 

affinity for the β/γ complex is reduced. The result is that two signaling elements arise 

from the G protein activation and can act on different intracellular targets. The GPCRs 

act predominantly on three G protein subclasses; Gi/o, Gq-like and Gs-like (Wickman and 

Clapham 1995). The Gi/o G protein class has net inhibitory effects on neuronal function, 

through actions of both the α and β/γ protein subunits. For example, the α subunit inhibits 

the enzyme adenylyl cyclase (AC) that normally generates the 2nd messenger cAMP. The 

β/γ subunits activate potassium channels that inhibit neuronal activity (the so-called G 

protein-activated inward rectifier, GIRK, potassium channels). The β/γ subunits also inhibit 

the function of voltage-gated calcium channels, leading to inhibition of neurotransmitter 

release, and also appear to have more direct effects on vesicle fusion (Dolphin 2003; 

Elmslie 2003, Miller, 1998; Wu and Saggau, 1997). The Gq-like α subunits activate 

protein and lipid signaling pathways that activate ion channels that excite neurons, inhibit 

potassium channels, and increase neurotransmitter release. Thus, activation of the Gq 

subclass generally has a net excitatory effect on neuronal activity and synaptic transmission. 

The proximal effects of Gs-like G-protein activation are not always clear. The α subunit of 

these G proteins stimulates AC/cAMP formation which can enhance synaptic transmission 

and inhibits some potassium channels. The effects on ion channel function of the different 

G-proteins are outlined in detail in previous review articles (Luo et al. 2022; Mochida 2019; 

Proft and Weiss 2015; Wickman and Clapham 1995).

Direct effects of acute EtOH on the function of GPCRs and G proteins are generally weak. 

Furthermore, the physiological impact of these actions is not always clear. However, there 

are mechanisms involving these molecules that are influenced by EtOH. Studies beginning 

in the 1980s showed that EtOH can stimulate cAMP formation (Luthin and Tabakoff 1984, 

Rabin and Molinoff 1981). This may be due to direct EtOH actions on AC, but other 

proteins that influence GPCRs and their signaling might play roles in the neural actions 

of EtOH (Bjork et al. 2008; Bjork et al. 2013; Meinhardt et al., 2022). The physiological 

consequences of this AC activation have long been unclear. However, recent studies indicate 

that acute EtOH exposure can increase neurotransmitter release (described in greater detail 
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later in this review, Figure 1), and activation of AC is a strong candidate to mediate these 

effects (Kelm et al. 2008).

In heterologous expression systems, EtOH has been shown to inhibit responses to activation 

of GPCRs that couple to Gq-like G proteins. These findings mostly involve demonstrations 

that pharmacologically-relevant concentrations of EtOH reduce the ability of the GPCRs 

to activate a calcium-dependent chloride current in the Xenopus laevis oocyte preparation 

(Minami et al. 1997a,b, 1998). Among the GPCRs that have been examined in this context 

are metabotropic glutamate receptors (mGluRs), muscarinic ACh receptors and serotonin 

type 2 receptors. The observation that these receptor effects are all three inhibited despite 

differences in the structures of the receptor molecules themselves, indicates that the EtOH 

target site is likely downstream of the receptor itself. Indeed there is some evidence for 

involvement of protein kinase C, at least in the inhibition of muscarinic AChR (mAChR)-

induced responses (Minami et al. 1997b).

Ethanol can also potentiate the function of GIRK-type potassium channels (Aryal et al. 

2009, Kobayashi et al. 1999, Lewohl et al. 1999). This effect occurs at concentrations 

associated with intoxication and involves binding to a region of the channel implicated 

in phospholipid actions (Bodhinatan and Slesinger, 2013; Glaaser and Slesinger, 2017). 

The net effect of GIRK activation is to inhibit neuronal activity. This action of EtOH 

was originally observed in heterologous expression systems and in cerebellar granule 

neurons (Kobayashi et al. 1999, Lewohl et al. 1999), and subsequent studies have indicated 

similar actions in midbrain dopaminergic neurons (Federici et al. 2009). Ethanol effects 

on this G-protein target may contribute to intoxication. Studies by Blednov et al. (2001) 

indicate that loss of the GIRK2 channel subunit alters acute EtOH actions, while Tipps 

and coworkers (2016) showed enhanced ethanol conditioned place preference in mice 

lacking the GIRK2 subunit. The analgesic effects of ethanol are lost in mice carrying a 

missense mutation in GIRK2 (Kobayashi et al., 1999). Furthermore, constitutive deletion of 

GIRK3 in knockout (KO) mice selectively increased ethanol binge-like drinking, without 

affecting ethanol metabolism, sensitivity to ethanol intoxication, or continuous-access 

drinking (Herman et al., 2015). Notably, virally mediated expression of GIRK3 in the 

VTA reversed the phenotype of GIRK3 KO mice and further decreased the intake of their 

wild-type counterparts. In addition, GIRK3 deletion prevents ethanol-induced activation of 

VTA neurons and ethanol-induced release of dopamine in the nucleus accumbens (Herman 

et al., 2015). There is certainly a need for additional studies of how GIRK activation might 

contribute to intoxication.

1.3. Presynaptic Effects of EtOH

Ethanol potentiation of GABAergic synaptic inhibition is now known to result from both 

pre- and postsynaptic actions. As discussed in the section on LGICs, the postsynaptic 

effects result from potentiation of GABAA/anion channels. A large literature indicates 

that EtOH also acts to enhance GABA release from presynaptic terminals, and that this 

action contributes to enhanced synaptic inhibition (reviewed in Siggins et al. 2005) (Figure 

1). Increases in fast GABAergic synaptic transmission during EtOH treatment have been 

observed in cerebellum, hippocampus, VTA, hypoglossal nucleus, and amygdala, both 
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basolateral and central nuclei (Ariwodola and Weiner 2004, Ming et al. 2006, Kelm et 

al. 2007, Theile et al. 2008, Zhu and Lovinger 2006, Roberto et al. 2003, Sebe et al. 2003, 

Ziskind-Conhaim et al. 2003). These studies have been carried out mostly in brain slices and 

isolated brain neurons. Examination of spontaneous and miniature GABAergic IPSCs allows 

investigators to determine if the frequency of synaptic events is altered (a likely presynaptic 

change), or if the amplitude is affected (likely a postsynaptic change). Such analyses have 

consistently shown that the frequencies of spontaneous inhibitory postsynaptic currents 

(sIPSC) activated by spontaneous GABA release, and miniature inhibitory postsynaptic 

currents (mIPSC) activated by action potential-independent release of GABA quanta are 

increased at EtOH concentrations associated with intoxication, at least in the amygdala, 

cerebellum, hippocampus and VTA (Ariwodola and Weiner 2004, Zhu and Lovinger 2006, 

Theile et al. 2008, Roberto et al. 2003, Kelm et al. 2007; Jimenez et al., 2019; Herman et 

al., 2013b; Khom et al., 2020a,b; Kirson et al., 2021). These effects are rapid in onset and 

rapidly reversible following EtOH removal from tissue.

At present, little is known about the mechanisms underlying EtOH potentiation of GABA 

release. The increase in mIPSC frequency suggests that the site of EtOH action is 

downstream of action potential generation and calcium entry into the presynaptic terminal. 

Experiments in the cerebellum and VTA suggest that EtOH interacts with mechanisms 

involved in intracellular calcium release, perhaps increasing calcium concentrations in 

the presynaptic terminal (Kelm et al. 2007, Theile et al. 2009). It would be helpful to 

know if EtOH increases calcium concentrations in the relevant population of GABAergic 

presynaptic terminals. However, this is difficult to determine given the small size (<1μM 

diameter) of terminals, and the diversity of subtypes of terminals found on any given neuron. 

More recently, L-type voltage-gated calcium channels (LTCCs) have been implicated in the 

EtOH-induced increases in CeA action-potential dependent activity (neuronal firing rates 

and GABA release) in naïve rats, and ethanol dependence reduces CeA LTCC membrane 

abundance (Varodayan et al., 2017b). Notably, nifedipine, an LTCC antagonist, prevents 

ethanol induced GABA release and firing in naïve CeA, but not in dependent rats where a 

CRF1 antagonist (R121919) did. This switch from an LTCC- to a CRF1-based mechanism 

with alcohol dependence is accompanied by a shift from a role for inositol triphosphate 

receptor (IP3R) mediated calcium-induced calcium release to the involvement of ryanodine 

receptors (RyRs) (Varodayan et al., 2017b). Furthermore, P/Q-type voltage-gated calcium 

channels mediate ethanol-induced CeA vesicular GABA release in a PKA and PKC 

dependent manner in both naïve and dependent rats (Varodayan et al., 2017c; Cruz et al., 

2011).

In fact, the role of intracellular signaling pathways in this potentiating EtOH effect has also 

been examined. It is well established that activation of AC or PKC potentiates transmission 

at synapses throughout the nervous system (see Leenders and Sheng 2005, Nguyen and Woo 

2003 for review). Thus, it is logical to speculate that these signaling molecules might play 

a role in the acute alcohol action. Potentiation of GABA release onto cerebellar Purkinje 

neurons and principal neurons in the basolateral amygdala is eliminated in the presence of 

AC and protein kinase A (PKA) inhibitors (Kelm et al. 2008; Talani and Lovinger 2015), 

and is also affected by compounds targeting phospholipase C and PKC (Kelm et al. 2010). 

The potentiating effect of EtOH is impaired in the CeA in mice that lack PKCε (Bajo 
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et al. 2008). Thus, PKC is implicated in both the pre- and postsynaptic effects of EtOH 

at GABAergic synapses. It is notable that GABA release appears to be increased in the 

PKCε knockout mice prior to EtOH exposure, and thus the effect in this case may be 

more akin to occlusion rather than blockade of the drug action. Recently, a new class of 

PKCε inhibitors designed on the Rho-associated protein kinase (ROCK) inhibitor Y-27632, 

displayed selectivity for PKCε over other kinases, and prevented ethanol-stimulated GABA 

release in the mouse CeA slices (Blasio et al., 2018). Nevertheless, it remains to be 

determined if the effects of EtOH on these signaling molecules are direct or indirect. 

Indeed, several studies indicate that EtOH interacts with neuromodulators such as CRF and 

endocannabinoids to alter GABA release (Ariwodola and Weiner 2004, Nie et al., 2004, 

Talani and Lovinger 2015, Roberto et al. 2010a,b; Varodayan et al., 2015; Varodayan et al., 

2016).

Inhibition of GABA transmission by acute EtOH exposure has also been observed 

(Blomeley et al. 2011, Wilcox et al., 2014, Patton et al., 2016). Experiments in striatal 

brain slices support a presynaptic mechanism of decreased GABAergic transmission onto 

the medium spiny projection neurons (MSNs) (Wilcox et al., 2014, Patton et al., 2016). 

Using an optogenetic technique in which channel rhodopsin (ChR2) was expressed in 

parvalbumin-containing fast-spiking striatal GABAergic interneurons (FSIs), Patton and 

colleagues (2016) found that ethanol inhibited transmission at this synapse. This inhibition 

involves presynaptic inhibition of GABA release due to activation of delta opiate receptors, 

presumably secondary to increased extracellular enkephalin.

In contrast to the effects on GABA release, the vast majority of studies indicate that acute 

EtOH either has no effect or inhibits release of glutamate (reviewed in Siggins et al. 2005), 

although increases have been observed in some brain regions (Eggers and Berger 2004, 

Gioia et al. 201y, Herman et al. 2016b, Silberman et al. 2015, Xiao et al., 2009; Herman 

et al., 2016b). The vesicle-associated Munc 13 proteins are implicated in EtOH inhibition 

of glutamate release in the basolateral amygdala (Gioia et al. 2017) and neurotransmitter 

release in Drosophila melanogaster (Xu et al. 2018). These findings suggest differences 

between GABAergic and glutamatergic terminals in most brain regions that may be useful in 

determining what factors contribute to EtOH sensitivity of release.

1.4. Monoamines and Neurotransmitter Transport

Acute EtOH effects on neurotransmitter transport have been investigated using brain 

tissue and heterologous expression systems. In vivo studies indicate that EtOH increases 

monoamine levels in brain (reviewed in Deehan et al., 2016; Gonzales et al. 2004, 

LeMarquand et al. 1994, Thielen et al. 2001), and there is also evidence for EtOH-

induced increases in human ventral striatum (Aalto et al., 2015). However, most studies 

of neurotransmitter transporters show them to be relatively insensitive to EtOH. However, 

increased cell surface expression of the dopamine transporter (DAT) was observed when this 

protein was heterologously expressed (Mayfield et al. 2001, Maiya et al. 2002). This effect 

would most likely decrease striatal dopamine during acute in vivo EtOH exposure in rodents, 

and thus does not help to explain the findings from in vivo studies. However, there is some 

controversy as to whether EtOH has potent effects on dopamine uptake measured in brain 
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tissue using voltammetric techniques (Jones et al. 2006, Mathews et al. 2006, Robinson 

et al. 2005, Yavich and Tiihonen 2000). The EtOH-induced increase in striatal DA levels 

is unperturbed in DAT knockout mice, suggesting that the drug action responsible for this 

effect does not involve the transporter (Mathews et al. 2006). Furthermore, studies using in 
vitro voltammetry and in vivo microdialysis to measure dopamine levels indicate that direct 

infusion of EtOH into striatum does not alter DA levels (Mathews et al. 2006, Yan 2003, 

Yim et al. 1998). Thus, the physiological impact of alterations in DAT function is not yet 

clear. Ethanol decreases DA release in striatal brain slices, albeit only at high concentrations 

(Budygin et al., 2001; Schilaty et al., 2014), but DAT has not been implicated in this 

effect. Interestingly, acute EtOH (44 mM) also decreases DA release, without impacting 

noradrenaline, in CeA slices of naive rats (Hedges et al., 2020).

Examination of EtOH effects on the brain serotonergic system has yielded interesting 

findings. In addition to potentiating 5-HT3 receptor function, as mentioned in the previous 

section on ligand-gated ion channels, inhibition of 5-HT1c by EtOH has also been reported 

(Sanna et al. 1994) although it is not clear if this inhibition results from a direct effect 

on the receptor or on downstream signaling mechanisms. Exposure to acute EtOH also 

increases extracellular 5-HT levels in brain (LeMarquand et al., 1994, Thielen et al. 2001), 

and a recent report indicates that reduced 5-HT uptake may contribute to this effect as well 

as to the acute intoxicating effects of EtOH (Daws et al. 2006). A recent study showed 

that alcohol dependence and protracted withdrawal did not alter either 5-HT1A-mediated 

decrease of CeA GABA release or Htr1a expression but disrupted 5-HT2C-signaling without 

affecting Htr2c expression (Khom et al., 2020b). Collectively, those results provide detailed 

insights into modulation of CeA activity by the 5-HT system and unravel this system to 

chronic EtOH exposure. Thus, EtOH effects on serotonin and other monoamines require 

further examination.

1.5. Acetylcholine

Acute EtOH exposure has mixed effects on cholinergic synaptic transmission. As noted 

above, EtOH potentiates the function of some nicotinic ACh receptors, while inhibiting 

others. In addition, the Gq-coupled mAChRs are inhibited by acute EtOH (Candura et al. 

1992, Kovacs et al. 1995, Larsson et al. 1995, Sanna et al. 1994; Smith, 1983).

Early studies in the neuromuscular junction indicated that EtOH enhances and prolongs 

cholinergic synaptic transmission (Gage et al. 1975). These effects appeared to involve 

EtOH actions on the postjunctional (muscle) side of the synapse but were only observed 

at concentrations that would be near-lethal or lethal. This conclusion was supported by 

evidence that high concentrations of EtOH enhance responses to ACh directly applied to 

muscle (Bradley et al. 1980).

Mixed effects of acute EtOH on cholinergic synaptic function have been observed in 

different brain regions. In the striatum, the majority of ACh is provided by large, tonically 

active cholinergic neurons that ramify extensively and innervate many other striatal neuronal 

subclasses (Goldberg and Wilson 2017). Ethanol inhibits the tonic firing of these neurons, 

and this inhibition relieves tonic mAChR actions on striatal MSNs (Blomeley et al. 2011). 

The medial septum contains both cholinergic and non-cholinergic neurons. Acute EtOH 
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application enhances the firing rate of both neuronal subtypes (Ericson et al. 1984), and the 

increase observed in non-cholinergic neurons is prevented by an mAChR antagonist. In the 

hippocampal CA1 region, acute EtOH potentiates a slow postsynaptic current mediated by 

mAChRs (Madamba et al. 1995) and enhances responses to applied ACh measured in vivo 
(Mancillas et al. 1986). These acute effects in medial septum and hippocampus appear to be 

due to increased ACh tone.

Ethanol has also been shown to decrease ACh release in brain slices, including studies 

in cortex (Carmichael and Israel 1975, Kalant and Grose 1967) and striatum (Darstein 

et al. 1997). In vivo studies have also shown decreased ACh levels during acute alcohol 

exposure in brain regions including parietal cortex and the reticular system (Erickson and 

Graham 1988), as well as in hippocampus (Henn et al. 1998). In contrast, ACh levels in 

hypothalamic slices were increased following a single in vivo exposure to alcohol (Kaneyuki 

et al. 1995). Increased ACh has also been observed in vivo in the striatum, brainstem and 

VTA during acute exposure (Hunt and Dalton 1976; Larsson et al., 2005). It is not yet clear 

if the differential effects in different brain regions are due to molecular, cell-type or circuit 

differences in responses to EtOH. It should also be noted that these studies were performed 

using techniques with low temporal resolution, and thus it will be interesting to revisit 

alcohol effects on ACh release using newer approaches with subsecond resolution (Jing et 

al. 2018). More direct measurement of ACh release in brain slices would help to clarify the 

presynaptic effects of EtOH at cholinergic synapses in different brain regions.

1.6. EtOH and Synaptic Plasticity

Long-lasting changes in the efficacy of synaptic transmission are thought to contribute to 

brain development, learning and memory, and addiction (Hyman et al. 2006, Kauer and 

Malenka 2007). The most commonly studied forms of long-lasting synaptic plasticity are 

long-term potentiation (LTP), a persistent increase in synaptic transmission, and long-term 

depression (LTD), a persistent decrease in transmission. These types of plasticity are usually 

brought about by repetitive patterned activation of afferent inputs to a given postsynaptic 

neuron.

Effects of EtOH on LTP have been studied in different brain regions (Zorumski et al. 

2014; Lovinger and Kash 2015), but the majority of information comes from studies of 

the Schaffer collateral inputs to the CA1 pyramidal neurons of the hippocampal formation 

(Blitzer et al. 1990, Morrisett and Swartzwelder 1993, Mulkeen et al. 1987, Sinclair and Lo 

1986). Acute EtOH exposure generally suppresses the induction of LTP at this and other 

synapses (Yin et al. 2007, Blitzer et al. 1990, Givens and McMahon 1995, Morrisett and 

Swartzwelder 1993, Mulkeen et al. 1987, Sinclair and Lo 1986, Wayner et al. 1993, Weitlauf 

et al. 2004). Effects occur at EtOH concentrations associated with intoxication, and in some 

studies at surprisingly low concentrations (Blitzer et al. 1990, Fujii et al. 2008). While 

inhibition of NMDAR function has been implicated in EtOH-induced LTP reduction (Blitzer 

et al. 1990, Schummers and Browning 2001), other mechanisms, including enhanced 

GABAergic transmission, corticosterone, acetaldehyde and neurosteroid production have 

also been implicated (Izumi et al. 2007, 2015, Ramachandran et al. 2015, Schummers et al. 
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1997, Tokuda et al. 2013). Ethanol also inhibits LTP induced by kainate receptor activation 

in the basolateral amygdala (Lack et al., 2008).

There is not as much information regarding EtOH effects on LTD. Two prominent subtypes 

of LTD can be elicited in the hippocampal CA1 region. The most widely studied form of 

LTD is induced by repetitive low-frequency synaptic activation, and requires activation of 

NMDA receptors (Dudek and Bear 1992, Mulkey and Malenka 1992). In the hippocampal 

CA1 region LTD is enhanced by exposure to EtOH at a concentration associated with 

strong intoxication (Hendricson et al. 2002), although this observation has not been 

consistent (Izumi et al. 2005). In the nucleus accumbens (NAc), acute EtOH inhibits 

NMDAR-dependent LTD (Jeanes et al., 2011, 2014). Short-term in vivo exposure to EtOH 

prevents this LTD, and instead LTP is induced following low frequency stimulation (Jeanes 

et al., 2011).

Other forms of LTD observed in hippocampus and elsewhere involve activation of 

mGluRs (reviewed in Luscher and Huber 2010). One report indicates that EtOH, at 

concentrations associated with severe intoxication, prevents mGluR-LTD at hippocampal 

synapses (Overstreet et al. 1997). At glutamatergic synapses onto cerebellar Purkinje 

neurons mGluR-LTD involves decreased surface expression and function of AMPARs (Ito 

2001). Acute EtOH exposure inhibits this cerebellar LTD (Belmeguenai et al. 2008, Su et al. 

2010), most likely due to inhibition of voltage-gated calcium channels and mGluR function. 

This finding is intriguing given that acute EtOH is known to impair motor coordination, 

and cerebellar function has been implicated in these effects. In the dorsal striatum, LTD 

involving these receptors also requires endocannabinoid (EC) signaling from the post- to the 

presynaptic neuron (retrograde EC signaling) and subsequent activation of CB1 cannabinoid 

receptors (Gerdeman et al. 2002). The expression of this form of LTD appears to be on the 

presynaptic side of the synapse. Acute EtOH increases the expression of this EC-dependent 

mGluR-LTD in dorsal striatum (Yin et al. 2007). It is not presently clear what mechanisms 

contribute to this effect of EtOH.

2. Chronic EtOH Actions

2.1. Chronic EtOH Effects on Glutamatergic Transmission and Glutamate Roles in 
Synaptic Plasticity

Chronic EtOH treatment in animals provides critical information relevant to central changes 

that take place during long-term alcohol abuse in humans (Cui et al., 2013). Persistent 

ethanol exposure produces both tolerance and dependence. Tolerance is manifested as a 

decreased behavioral response to EtOH that implies a decrease in the intoxicating effects 

and other responses to the drug. Therefore, higher amounts of EtOH are required to achieve 

the same intoxicating effects seen with acute drug administration. Ethanol dependence 

is generally described by symptomology elicited during and following withdrawal from 

EtOH (Heilig et al. 2010). These effects include anxiety, dysphoria and increased seizure 

susceptibility, hyperalgesia and disruption of sleep states (Enoch 2008; Grobin et al. 1998; 

Kumar et al. 2009). Chronic EtOH treatment is known to induce many neuroadaptative 

changes in the CNS involving both glutamatergic and GABAergic synaptic transmission 

(reviewed in Roberto and Varodayan, 2017).
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The majority of work on chronic EtOH effects on glutamatergic transmission has focused 

on changes in glutamate receptors, particularly in light of the sensitivity of these receptors 

to acute EtOH actions (see previous discussion). Chronic EtOH exposure or intake generally 

produces an increase in the function of NMDARs and in NMDAR-mediated glutamatergic 

synaptic transmission (Cebere et al. 1999, Cheng et al., 2017; Grover et al. 1998, Gulya et 

al. 1991, Lack et al., 2007, Ma et al., 2017; Smothers et al. 1997) (Figure 1D), although 

decreases were observed in the medial prefrontal cortex (Holmes et al., 2012). Initial 

studies examined effects of receptor activation on neuronal calcium and nitric oxide signals 

either in preparations made from EtOH-exposed animals or in cultured neurons treated 

with ethanol in the medium (Grover et al., 1998; Gulya et al., 1991, Chandler et al. 1997, 

Iorio et al. 1992, Smothers et al. 1997). Exposure to EtOH for days to weeks increased 

NMDAR agonist-induced increases in intracellular calcium. These effects could be observed 

at EtOH concentrations that did not alter neuronal viability and did not affect baseline 

intracellular calcium levels. Furthermore, changes in responses to NMDAR activation were 

consistently larger than changes in the effects of activation of other ionotropic glutamate 

receptors (Chandler et al. 1997, Gulya et al. 1991, Smothers et al. 1997). Direct examination 

of ion current through the NMDAR pore has revealed effects consistent with a chronic 

EtOH-induced upregulation of NMDAR function (Floyd et al., 2003, Grover et al. 1998). 

An increase in the component of current mediated by NR2B-containing receptors has also 

been observed (Floyd et al. 2003, Kash et al. 2009, Roberto et al. 2004b, Roberto et al., 

2006). However, in the Nucleus accumbens core an increase in synaptic receptors containing 

the NR2C subunit contributes to changes in glutamatergic transmission and drinking despite 

adverse consequences (Seif et al., 2013). Interestingly, acute EtOH inhibition of NMDARs 

in most brain regions is still intact or even increased after chronic in vivo exposure (Floyd 

et al. 2003, Roberto et al., 2006; Roberto et al., 2004b), although a small decrease in 

inhibition was observed in medial septum/diagonal band neurons (Grover et al. 1998). 

Evidence of tolerance to EtOH inhibition during acute exposure has also been observed 

in hippocampal slices (Grover et al. 1994, Miyakawa et al. 1997). Overall, it appears 

that NMDAR function is still suppressed during intoxication even after prolonged EtOH 

exposure, and thus the increase in NMDAR function is likely to be dramatic after EtOH 

withdrawal following chronic exposure. In the mouse mPFC (Layer 5), chronic intermittent 

ethanol (CIE) and abstinence from CIE leads to enduring increases in synaptic glutamatergic 

transmission and long-term synaptic plasticity (Kroener et al., 2012). Consistent with the 

Kroener’s report, CIE exposure (for 15 days) increased the baseline amplitude of evoked 

NMDA currents in layer V pyramidal neurons of mPFC of rats examined either 1 week 

or 4 weeks into withdrawal (Trantham-Davidson et al., 2014). Glutamatergic transmission 

was also enhanced in layer 2/3 mPFC of 48 hr. withdrawn CIE mice compared to control 

mice (Pleil et al., 2015b). While this study did not separate out NMDAR- and AMPAR-

mediated currents, neurons from the infralimbic of CIE mice had larger sEPSC amplitudes, 

indicating altered postsynaptic receptor expression/function. Also, this enhancement of 

glutamatergic transmission in mPFC was accompanied by a reduction in sEPSC amplitudes 

in the CeA of the CIE mice. A recent study investigated the concomitant alterations in 

basal synaptic function and neuronal excitability in the rat mPFC and dentate gyrus of the 

hippocampus during CIE, protracted abstinence from CIE, and re-exposure to one ethanol 

vapor session during protracted abstinence (Avchalumov al., 2021a,b). Chronic ethanol 
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consistently increased excitability of layer 2/3 pyramidal neurons in the mPFC and granule 

cell neurons in the DG. In the DG, this effect persisted during 21 day of abstinence. 

Re-exposure did not enhance excitability, suggesting resistance to vapor-induced effects. 

Western blotting demonstrates enhanced phosphorylation of Ca2+/calmodulin-dependent 

protein kinase II (CaMKII), and reduced phosphorylation of NMDA receptor (N2A/2B 

subunits) (Avchalumov et al., 2021b; Natividad et al., 2018). One consequence of the 

increase in NMDAR-mediated calcium influx appears to be an increase in susceptibility to 

excitotoxic effects of NMDA (Chandler et al. 1993, Iorio et al. 1993), although enhanced 

NMDAR-mediated neuroprotection can also be observed in young cerebellar granule 

neurons (Pantazis et al. 1998). It has thus been postulated that excitotoxicity during EtOH 

withdrawal contributes to alcohol-related neuronal loss in the brain. Cortical NMDARs in 

appear to contribute to EtOH drinking in mice (Radke et al., 2017a), and this may be related 

to regulation of subunit expression and receptor function after chronic intake (Radke et al., 

2017b).

The mechanisms underlying the increase in NMDAR function are still under investigation, 

but several interesting facets of the story have already emerged. Analysis of receptor 

function and pharmacology, as well as examination of receptor subunit expression and 

location, indicate that receptors containing the NR2B subunit are the subtypes most strongly 

affected by chronic EtOH exposure (Carpenter-Hyland et al. 2004, Floyd et al. 2003, Kash 

et al. 2009, Roberto et al., 2004b) (Figure 1D). The molecular basis of increased NR2B 

function is less clear. While some investigators have reported increases in NR2B mRNA 

expression following chronic alcohol exposure in vitro (Hu et al. 1996, Snell et al., 1996), 

and in vivo (Follesa and Ticku 1995, Kash et al. 2009, Roberto et al. 2006) such increases 

have not been observed in every brain region (Cebere et al. 1999, Floyd et al. 2003, Lack 

et al., 2005). Increases in NR2B, and to a lesser extent NR2A, protein expression have 

also been observed using immunological techniques after both in vitro and in vivo EtOH 

exposure (Kash et al. 2005, Obara et al. 2009, Snell et al. 1996, Staples et al. 2015; 

Avchalumov et al., 2021). However, other investigators did not observe increased expression 

of this protein. Changes in expression of proteins that associate with NR2B may also 

contribute to chronic EtOH effects on transmission (Swartzwelder et al. 2016, Wills et al. 

2017). Increased expression of mRNA and protein for other NR subunits and particular NR1 

splice variants has been observed in some brain regions following chronic EtOH exposure 

(Raeder et al. 2008, Trevisan et al. 1994, Roberto et al., 2006, Winkler et al. 1999, but see 

Morrow et al. 1994), but there is less evidence for increased receptor function as a result 

of these increases. Thus, it is not clear if increased subunit expression is the driving force 

behind increased receptor function, and if so, what mechanisms underlie the increase in 

expression or trafficking.

Changes in subcellular distribution of receptors may also contribute to altered NMDAR 

function following chronic EtOH exposure. In cultured hippocampal neurons, exposure 

to EtOH leads to increased NMDAR expression in dendritic spines, the location of 

glutamatergic synapses (Carpenter-Hyland et al., 2004). This increased trafficking to 

spines is accompanied by an increase in the contribution of NMDARs to glutamatergic 

transmission, but does not appear to involve increased NMDAR protein expression. The 

synaptic NMDARs observed following chronic EtOH exposure appear to contain the NR2B 
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subunit. Increases in the contribution of NMDARs to glutamatergic synaptic transmission 

have also been observed following subacute (10s of seconds or min) EtOH exposure, and 

NR2B-containing receptors also appear to contribute to these increases (Wang et al. 2007, 

Yaka et al. 2003). Tyrosine phosphorylation by a Fyn-like kinase has been implicated in 

these rapid increases in the function of NR2B-containing receptors (Wang et al. 2007), but 

it is yet to be determined if this mechanism plays a role in chronic EtOH effects on the 

receptor.

Chronic EtOH effects on AMPA and kainate receptors have been examined, with variable 

results. Increases in AMPA receptor subunit mRNA have been observed in hippocampus 

following chronic EtOH exposure (Bruckner et al., 1997). Expression of AMPAR subunit 

proteins was also induced by chronic exposure in primary cortical cultures (Chandler et 

al., 1999), while increased AMPAR binding was observed in cortical membranes from 

EtOH-exposure animals, and AMPA receptor binding in cortical membranes (Haugbol et al., 

2005). Evidence of increased AMPAR function has also been reported following chronic 

EtOH exposure, as measured with intracellular calcium signals in cerebellar Purkinje 

neurons (Netzeband et al., 1999), and AMPA receptor-mediated synaptic responses are 

increased in basolateral amygdala (Lack et al. 2007). This latter effect was observed 

following during withdrawal but not just after the end of chronic EtOH exposure. However, 

other studies have reported that AMPAR expression and function are not altered following 

chronic EtOH exposure (e.g. Smothers et al. 1997). Chronic ethanol up-regulates neuronal 

activity via pentraxin (Narp) levels as well as increases in levels of the AMPAR subunits in 

the mouse NAcc (Ary, 2012). Additionally, Marty and Spigelman (2012) reported that the 

amplitude and conductance of AMPAR-mediated miniature EPSCs were increased in CIE-

treated rats due to an increase in a small fraction of functional postsynaptic GluA2-lacking 

AMPA receptors (Marty & Spigelman, 2012). Similarly, CIE induced a significant increase 

in baseline AMPAR-mediated signaling in D1+ but not D1- MSNs in the rat NAcc (Renteria 

et al., 2017). The factors that underlie this variability in findings may include the type of 

preparation examined, the duration and pattern of EtOH exposure, and whether assays were 

performed just after the end of drug exposure or after withdrawal had been allowed to 

proceed. Increased glutamatergic transmission involving both AMPA and NMDA receptors 

is observed at prefrontal cortex synapses in the dorsomedial striatum following chronic 

alcohol consumption (Ma et al., 2017), while increased AMPAR-mediated transmission was 

observed in ventral hippocampus and medial prefrontal cortex (Ewin et al. 2019; Varodayan 

et al. 2018; Avchalumov et al., 2021b). With respect to kainate receptors, Chandler and 

collaborations (Chandler et al., 1999) observed no change in receptor expression in cultured 

cortical neurons following chronic EtOH exposure. In contrast, enhancement of both subunit 

protein and kainate receptor function was found in cultured hippocampal neurons (Carta et 

al., 2002), and chronic intermittent EtOH increased KAR-mediated synaptic transmission in 

basolateral amygdala (Lack et al. 2009).

Chronic alcohol has also been associated with functional upregulation of mGluR2/3 receptor 

signaling in the CeA and bed nucleus of the stria terminalis (BNST) (Kufahl et al. 2011), 

as opposed to the downregulation observed in mPFC (Meinhardt et al., 2013, 2022). 

Furthermore, chronic ethanol self-administration (alcohol-deprivation model) also increased 

sEPSC rise times indicative of compromised CeA glutamatergic receptor function (Suarez 
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et al. 2019). Additionally, chronic intermittent ethanol treatment did not alter evoked 

CeA glutamate but decreased both spontaneous vesicular glutamate (mEPSCs) release and 

postsynaptic glutamate receptor function at rat CeA synapses (Varodayan et al. 2017a).

Chronic EtOH intake has also been shown to enhance intracellular signaling associated 

with mGluRs, particularly mGluR5, in the NAc (Cozzoli et al. 2009). While chronic EtOH 

drinking can induce increases in mGluR1 and mGluR5 protein expression in NAc and 

amygdala (Szumlinski et al. 2008, Obara et al. 2009), changes in mGluR5 signaling in NAc 

are not always associated with an increase in the protein itself (Szumlinski et al. 2008). In 

cultured cerebellar Purkinje neurons, exposure to EtOH for 11 days produced a decrease 

in mGluR-induced dendritic calcium signals (Netzeband et al. 2002). Clearly, more work is 

needed to determine how signaling by the many mGluR subtypes changes with long-term 

EtOH exposure and drinking.

Measurements of extracellular glutamate levels in brain have consistently shown increases 

produced by chronic EtOH exposure, especially after withdrawal or repeated cycles of 

withdrawal (Dahchour and DeWitte 1999, 2003, Pati et al. 2016, Rossetti and Carboni 

1995; Roberto 2004b). However, reduced glutamate levels were observed following chronic 

ethanol drinking in mPFC (Meinhardt et al., 2021). These findings have generally been 

derived from measurements using in vivo microdialysis in brain. However, microdialysis 

measures of this type must be interpreted carefully, as both synaptic and nonsynaptic 

sources of glutamate contribute to the extracellular pool of this amino acid. Indeed, there 

is mounting evidence that changes in the cystine/glutamate exchanger generate increases 

in extracellular glutamate produced by some drugs of abuse (Kalivas 2009). Evidence of 

increased synaptic glutamate release has been observed in amygdala and hippocampus 

following chronic EtOH treatment (Chefer et al., 2011; Christian et al., 2013; Lack et 

al. 2007, Zu and Pan 2007; Roberto et al., 2004b). Increased glutamatergic transmission 

onto MSNs involving presynaptic mechanisms has also been observed following chronic 

EtOH consumption. Amygdala inputs to dorsomedial striatum exhibit increases in glutamate 

release following chronic drinking (Ma et al., 2017). Presynaptic effects may be stronger 

at D1 receptor-expressing MSNs related to those that express D2 receptors (Cheng et 

al., 2017). Decreases in glutamate uptake have also been noted following chronic EtOH 

exposure (Melendez et al. 2005). Examination of effects of pharmacological treatments that 

alter extracellular glutamate levels indicate that increased glutamate in the NAc contributes 

to increased EtOH intake (Griffin et al., 2014), and glutamate uptake mechanisms may thus 

be a target for treatment of AUD (Rao et al. 2015). The mGlu2 metabotropic receptors 

provide feedback reduction of glutamate release, and dysfunction of these receptors appears 

to contribute to increased release following chronic EtOH exposure (Adermark et al., 2011a; 

Johnson et al., 2020; Meinhardt et al., 2013). Enhancing this feedback function may be 

useful in reducing excessive EtOH consumption (Griffin et al., 2014; Meinhardt et al., 

2013). However, mechanisms independent of glutamate transport and group II mGluRs have 

also been implicated in the increase in extracellular glutamate in the NAc (Pati et al. 2016). 

There may be multiple factors that contribute to increased extracellular glutamate levels and 

increased or decreased glutamatergic transmission following chronic EtOH exposure and 

withdrawal.
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Despite the evidence that NMDAR function and extracellular glutamate levels are increased 

following chronic EtOH exposure, studies of hippocampal LTP indicate that this form of 

synaptic plasticity is decreased under the same conditions (Drissi et al. 2018, Durand and 

Carlen 1984, Roberto et al. 2002, Talani et al. 2014, although see Fujii et al. 2008, Stragier 

et al. 2015). Altered function of NMDA receptors containing the 2A and 2B subunits, 

resulting from related from changes in histone acetylation has been implicated in impaired 

LTP (Drissi et al., 2018). Similar results have been obtained in the amygdala (Stephens 

et al., 2005). In the NAc, NMDAR-dependent LTP is also impaired by repeated EtOH 

exposure, and this alteration is associated with sensitization to the locomotor stimulating 

effects of the drug as well as increased EtOH intake (Abrahao et al., 2013). In a subsequent 

study, loss of LTP in NAc was only observed in D2 receptor expressing MSNs following 

binge drinking (Ji et al., 2017). It is not yet clear what factors underlie the decrease in 

LTP, but mechanisms occurring downstream of NMDAR activation in the LTP induction 

process may play a role. However, mice expressing ethanol-resistant NMDARs show 

enhanced sensitization and consumption (den Hartog et al., 2013, 2017), implicating this 

receptor in altered sensitization perhaps related to loss of LTP. In the NAc changes in 

dopaminergic transmission involving D1 receptors may play a role in LTP impairment (Ji et 

al., 2017). Loss of LTD in the hippocampal CA1 region has been observed in mice that are 

resistant to locomotor sensitization, suggesting that resilience to plasticity of glutamatergic 

transmission may contribute to lack of this increased response to EtOH (Coune et al., 2017). 

Hippocampal LTD is also impaired following two high-dose ethanol exposures, and this 

is associated with impaired novel object recognition (Silvestre de Feron et al., 2015). In a 

recent rat study, ethanol self-administration and chronic intermittent ethanol exposure (6–7 

weeks) did not alter the degree of LTP compared to naïve controls in mPFC of both females 

and males, and this form of LTP was dependent on both NMDA and AMPA receptors 

activation (Avchalumov et al., 2021b).

Disruption of mGluR-dependent hippocampal LTD has also been observed following 

chronic intermittent EtOH exposure (Wills et al., 2017). This change in plasticity is 

associated with altered expression of a number of proteins associated with the NR2B 

NMDAR subunit, including the ARC and Homer proteins that also interact with group I 

mGluRs. These proteins may thus mediate cross-talk between NMDA- and mGluR-based 

LTD mechanisms that are altered by EtOH and contribute to impaired plasticity.

It should be noted that LTP is enhanced following chronic EtOH exposure in some brain 

regions. For example, glutamatergic synapses in the prefrontal cortex show enhanced LTP in 

chronic EtOH-exposed mice (Kroener et al., 2012; Nimitvilai et al., 2016). Recent studies 

have shown that chronic ethanol drinking produces increased AMPAR function in the medial 

part of the dorsal striatum resembling that seen in LTP, particularly at medial PFC inputs to 

this striatal subregion, and synapses onto the striatal projection neurons that express D1-type 

dopamine receptors (Wang et al. 2012, 2015, Ma et al. 2017). A similar effect has been 

observed at glutamatergic synapses in the NAc and can appear after the first session of EtOH 

self-administration (Beckley et al. 2016). Inducing LTP and LTD in the dorsomedial striatum 

alters ethanol drinking (Ma et al., 2018). In the BNST, enhanced LTP of glutamatergic 

synapses is observed following chronic intermittent ethanol exposure (Wills et al., 2012).
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Chronic EtOH exposure also alters LTD in striatal brain regions. In the NAc, chronic EtOH-

induced changes in LTD vary according to neuronal subtype. In D1 receptor-expressing 

direct pathway MSNs, LTD appears after chronic exposure, while it is lost, and even 

converted to LTP in D2-expressing, indirect pathway MSNs (Jeanes et al. 2014, Renteria 

et al. 2017, 2018). In dorsal striatum, chronic EtOH exposure reduces or eliminates 

endocannabinoid-dependent LTD (Adermark et al., 2011b; Cui et al., 2011; DePoy et al., 

2013). Impairment of the dampening of cortical glutamatergic inputs may contribute to 

enhanced activation of dorsolateral striatum and altered decision making (DePoy et al., 

2013, 2015). Impairment of a form of LTD in the BNST driven by activation of alpha1 

adrenergic receptors is observed following chronic EtOH exposure (McElligott et al. 2010).

In recent years it has become apparent that chronic EtOH exposure or drinking reduces 

presynaptic modulation by a number of G protein-coupled receptors. The affected receptors 

are generally those that couple to Gi/o-type G proteins and reduce glutamate release (Ding 

et al. 2016, Johnson and Lovinger 2016, 2020, Muñoz et al. 2018; Roberto and Varodayan, 

2017). Activation of these receptors often results in a presynaptically-expressed form of 

LTD (Atwood et al. 2014). Activation of the presynaptic Gi/o-coupled mGlu2 receptor 

produces LTD, and mutations that lead to loss of receptor function in alcohol preferring rats 

contributes to their increased EtOH consumption (Zhou et al., 2013).

2.2. Chronic EtOH and GABAergic transmission: Postsynaptic effects

Chronic EtOH treatment is known to induce many neuroadaptative changes in the CNS. 

Over the past 20 years, it has been widely demonstrated that GABAergic transmission is 

sensitive to EtOH in distinct brain regions and is clearly involved in ethanol tolerance and 

dependence (Eckardt et al. 1998; Grobin et al. 1998). Chronic EtOH exposure often results 

in the development of tolerance to many GABAergic effects of the drug including the 

anxiolytic, sedative, ataxic, and positive reinforcing effects (Kumar et al. 2004; Kumar et 

al. 2009). Substantial evidence suggests that these behavioral and neural adaptations involve 

marked changes in the expression profile of specific GABAA receptor subunits (Grobin et 

al. 1998) and in the pharmacological properties of GABAA receptors (Kang et al. 1998b) 

(Figure 1).

Chronic EtOH administration differentially altered the expression of distinct GABAA 

receptor subunit mRNAs and peptide levels in various brain regions. In the cerebral 

cortex, both mRNA and peptide levels for GABAA receptor α1, α2 and α3 subunits 

were decreased (Devaud et al. 1997; Devaud et al. 1995). In contrast, both α4, β1, β2, 

β3, γ1 and γ2 subunit mRNA and peptide levels were increased (Devaud et al. 1997; 

Devaud et al. 1995). These alterations in the subunit expression affect the GABAA receptor 

assemblage and consequently, also affect receptor function and binding. It has been reported 

that recombinant GABAA receptors with α4β2γ2 subunits are less sensitive to GABA 

and benzodiazepines compared to α1β2γ2 receptors (Whittemore et al. 1996). Therefore, 

these alterations may account for the decreased sensitivity to GABA in cerebral cortical 

synaptoneurosomes (Morrow et al. 1988) and benzodiazepines in cortical membrane vesicles 

(microsacs) (Buck and Harris 1990). Following chronic EtOH exposure, acute ethanol 

did not facilitate the GABA or muscimol-stimulated Cl- uptake in cortex (Morrow et al. 
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1988) and in cerebellum (Allan and Harris 1987). Recently, Morrow and collaborators 

have reported in cultured rat cortical neurons two distinct populations of synaptic and 

extrasynaptic α4-containing GABAARs 1,2 that are altered after chronic EtOH treatment.

In the cerebellum, chronic EtOH exposure decreased GABAA receptor α1 subunit mRNA 

and increased α6 subunit mRNA (Mhatre and Ticku 1992; Morrow et al. 1992). Chronic 

EtOH administration also decreased the polypeptide levels of the δ subunit of GABAA 

receptors in the rat cerebellum and hippocampus, whereas there were no changes in 

the δ subunit polypeptide levels in the rat cerebral cortex (Marutha Ravindran et al. 

2007). Furthermore, chronic EtOH administration caused a down-regulation of native δ 
subunit-containing GABAA receptor assemblies in the rat cerebellum as determined by 

[(3)H]muscimol binding to the immunoprecipitated receptor assemblies (Marutha Ravindran 

et al. 2007).

The alterations in GABAA receptor gene expression are regionally and temporally 

dependent. For example, chronic EtOH consumption produced a significant increase in 

the level of GABAA receptor α4 subunit peptide in the hippocampus following 40 days 

but not 14 days exposure (Matthews et al. 1998). The relative expression of hippocampal 

GABAA receptor α1, α2, α3, β(2/3), or γ2 subunits was not altered by either period of 

chronic EtOH exposure (Charlton et al. 1997; Matthews et al. 1998). Hippocampal α1 

subunit immunoreactivity and mRNA content were also significantly reduced after 12 weeks 

of treatment, but not after 4 weeks of exposure. In contrast, α5 mRNA content was increased 

in this brain region. In marked contrast, chronic EtOH consumption for both 14 (Devaud 

et al. 1997) and 40 (Devaud et al. 1997; Matthews et al. 1998) days significantly increased 

the relative expression of cerebral cortical GABAA receptor α4 subunits and significantly 

decreased the relative expression of α1 subunits (Devaud et al. 1997; Matthews et al. 

1998). These findings indicate that chronic EtOH consumption alters GABAA receptor gene 

expression in the hippocampus but in a different manner from that in either the cerebral 

cortex or the cerebellum (Kaplan et al., 2016, for review see Valenzuela & Jotty (2015)). In 

addition, these alterations are dependent on the duration of EtOH exposure (Grobin et al. 

1998).

The Olsen and Spigelman groups have developed a chronic intermittent EtOH treatment 

paradigm in which rats are given a 5- to 6-g/kg dose of ethanol on alternate days for 

60 treatments (120 days). This chronic administration of EtOH to rats on an intermittent 

regimen, for 60 repeated intoxicating doses and repeated withdrawal episodes, increases 

levels of α4 subunit mRNA in hippocampus with no significant change in the mRNAs for 

the α5 subunit (Mahmoudi et al. 1997). Similarly, rats that were exposed to intermittent 

episodes of intoxicating EtOH and withdrawal showed increased hippocampal α4 subunit 

peptide expression (Cagetti et al. 2003) and alteration in the pharmacological responses of 

GABAA receptors to benzodiazepine agonists and inverse agonists (Cagetti et al. 2003). The 

mRNA levels for the γ2S and γ1 subunits were also elevated. In CA1 pyramidal slices 

from chronic intermittent EtOH exposed rats, the baseline decay time of GABAAR-mediated 

mIPSCs was decreased, and the positive GABA receptor modulation of mIPSCs was also 

reduced compared with control rats. However, mIPSC potentiation by the α−preferring 
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benzodiazepine ligand bretazenil was maintained, and mIPSC potentiation by Ro15–4513 

was increased (Cagetti et al. 2003; Liang et al. 2009).

In the VTA, levels of α1 subunit immunoreactivity were significantly decreased after 12 

weeks but not 1–4 weeks of treatment (Charlton et al. 1997). Papadeas et al., (Papadeas 

et al. 2001) found that in the amygdala, α1 and α4 subunit expression was significantly 

decreased after two weeks of chronic EtOH consumption. In the nucleus accumbens (NAC), 

α4 subunit expression was decreased, but α1 subunit expression was not altered. In the 

VTA, there were no changes in α1 and α4 subunit expression. Muscimol-stimulated Cl- 

uptake was enhanced in the extended amygdala, but not the NAC of EtOH-dependent rats. 

These results suggest that chronic EtOH exposure alters GABAA receptor expression in 

the amygdala and NAC and that decreased expression of α4 subunits is associated with 

increases in GABAA receptor function in the amygdala but not the NAC (Papadeas et al. 

2001).

Alterations in subunit assembly could induce alterations in the functional properties of 

GABAA receptors without alterations in the total number of receptors (Devaud et al. 1995; 

Kumar et al. 2009; Morrow et al. 1992). The expression of GABAA receptors involves a 

highly regulated process of synthesis, assembly, endocytosis, and recycling or degradation. 

Changes in the expression and composition of various GABAA receptors could result from 

selective endocytosis, recycling, and/or trafficking of newly synthesized receptors to the cell 

surface. GABAA receptor trafficking on the cell surface following EtOH consumption is 

thought to contribute to the development of EtOH dependence (Kumar et al. 2004). It has 

been reported by Kumar et al (Kumar et al. 2003) that chronic EtOH exposure selectively 

increases the internalization of α1 GABAA receptors with no change in the internalization 

of α4 GABAA receptors into clathrin coated vesicles of the cerebral cortex. There is also 

a decrease in α1 GABAA receptors and a significant increase in α4 subunit peptide in the 

synaptic fraction following chronic EtOH exposure. These results suggest that the regulation 

of intracellular trafficking following chronic EtOH administration may alter the subtypes of 

GABAA receptors on the cell surface and may account for changes in the pharmacological 

properties of GABAA receptors (Kumar et al. 2004) (Figure 1).

Clathrin and the adaptor complex (AP) play a crucial role in the internalization of GABAA 

receptors following chronic EtOH administration. Notably, in the intracellular fraction, the 

clathrin-α1-GABAA receptor complex is increased following chronic EtOH administration 

(Kumar et al. 2004). Specific GABAA receptor subunits (β2 and/or γ2) are required for 

recognition of the receptor by the AP-2 that precedes clathrin dependent endocytosis 

(Herring et al. 2003; Kittler et al. 2008). Chronic EtOH exposure induces an increase in 

the expression of α4-, β2-, and β3- GABAA receptor subunits in the cerebral cortex and 

all of these subunits contain consensus phosphorylation sites for PKC. In contrast, α1, 

α2, and α3 GABAA receptor subunits are decreased in the cortex and these subunits do 

not contain consensus phosphorylation sites for PKC. Hence, it has been hypothesized 

that PKC may phosphorylate the GABAA receptor subunits and/or AP-2 following chronic 

EtOH administration, altering the recognition and endocytosis of GABAA receptors by 

blocking AP-2 binding (Macdonald 1995; Mohler et al. 1996). A single dose of EtOH also 

increases the internalization of GABAA receptor α4 and δ subunits (Liang et al. 2007). 
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In rat hippocampus, chronic EtOH exposure induces a decrease in the tyrosine kinase 

phosphorylation of α1 subunits, an increase of β2 subunits and no alteration in γ2 subunits 

(Marutha Ravindran et al. 2007).

GABAA receptor trafficking is regulated by many protein kinases, including PKC, PKA 

and fyn. However, to date, the role of these protein kinases has not yet been studied in 

the trafficking of GABAA receptors, especially following EtOH exposure. Chronic EtOH 

consumption decreases association of PKCγ with α1 GABAA receptors and increases 

association of PKCγ with α4 GABAA receptors, accompanied by a decreased expression 

of the α1 subunit and an increased expression of α4 at the cell surface in cerebral cortex 

(Kumar et al. 2002). However, there were no alterations in the association of PKCγ with 

GABAA receptors in the α1 subunit expression following chronic EtOH administration 

in the hippocampus (Kumar et al. 2004). The increased association of PKCγ with α4 

GABAA receptors may phosphorylate GABAA receptor subunits and prevent recognition 

of the receptor by AP-2, thus preventing its internalization. Indeed, phosphorylation of 

GABAA receptor subunits reduced the binding of receptors with AP- 2 and subsequent 

internalization (Kittler et al. 2008). Moreover, reduced PKC-dependent GABAA receptor 

phosphorylation increases receptor binding to the AP-2 and promotes receptor endocytosis 

(Terunuma et al. 2008). Chronic activation of PKA in cerebellar granule cells increases cell 

surface expression of GABAA receptor α1 subunit (Ives et al. 2002). Ethanol exposure alters 

expression and translocation of PKA (Diamond and Gordon 1994; Newton and Messing 

2006) suggesting that PKA is likely also involved in the trafficking of GABAA receptors 

following EtOH exposure. Future studies will determine the specific role of various 

protein kinases in GABAA receptor trafficking following chronic EtOH administration. Post-

translational modifications such as phosphorylation and glycosylation of GABAA receptors 

may play a role in the development of EtOH dependence. In particular, phosphorylation of 

GABAA receptors has been demonstrated to modulate receptor function. In Xenopus oocytes 

and isolated mouse brain membrane vesicles (microsacs), PKC and PKA phosphorylation 

of GABAA receptors decreases receptor activation (Kellenberger et al. 1992; Krishek 

et al. 1994; Leidenheimer et al. 1992). Phosphorylation by CAM kinase II or tyrosine 

kinase enhances GABAA receptor function (Churn et al. 2002; Valenzuela et al. 1995). As 

discussed previously, acute EtOH induces changes in GABAA receptor function that may 

be dependent on phosphorylation of particular proteins. Chronic EtOH exposure might be 

expected to result in long term changes in second messenger systems, including kinase 

activity. However, the heterogeneity of GABAA receptors expressed in vivo has precluded 

definitively answering this question and none of these studies have directly demonstrated 

that phosphorylation is involved in EtOH modulation of GABAA receptor function. The 

exact mechanisms involved in the alteration of GABAA receptor function following chronic 

EtOH exposure still remain to be determined.

From the preceding review, it is clear that the majority of early studies characterizing 

chronic effects of EtOH on GABAergic transmission focused mainly on postsynaptic 

properties and the subunit composition of the GABAA receptors themselves. Some of the 

disparity in the findings across laboratories on postsynaptic sites of EtOH action may 

reflect the differences in the chronic EtOH treatment duration and protocol, brain region 

examined, and methods of assessing receptor function. Most of these studies were generally 
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in agreement that chronic EtOH exposure and withdrawal did not result in dramatic 

decreases in the number of GABAA receptors in most brain regions. However, many of these 

studies reported marked alterations in the expression of specific GABAA receptor subunits 

and hypothesized that those changes in the subunit composition of the GABAA receptors 

may account for the physiological and pharmacological alterations in GABAergic signaling 

associated with chronic EtOH administration (Grobin et al. 1998).

Of particular clinical importance is the development of tolerance and dependence to EtOH, 

and it is likely that adaptive changes in synaptic function in response to ethanol’s actions on 

GABAA receptors play a role in this process. Indeed, it is well known that chronic EtOH 

treatment can lead to tolerance and physical dependence (Chandler et al. 1998) and that 

withdrawal following long-term EtOH consumption is associated with increased neuronal 

excitability (Kliethermes 2005; Weiner and Valenzuela 2006). These alterations have been 

hypothesized to represent, in part, a compensatory adaptation to the in vitro acute facilitatory 

effects of EtOH on GABAergic synapses (Siggins et al. 2005; Weiner and Valenzuela 2006). 

Few studies have reported the effects of long-term EtOH exposure on GABAergic synaptic 

transmission looking at both postsynaptic and presynaptic mechanisms using in vitro brain 

slice methods.

As described above, the adaptive changes in GABAA receptor expression are thought to 

lead to a pronounced hypofunction of GABAergic neurotransmission and possibly the 

development of tolerance to the in vitro acute effects of EtOH on these synapses. In the 

hippocampus, there is a decrease in the threshold for seizure induction by the GABAA 

receptor antagonist pentylenetetrazole (Kokka et al. 1993) and a decrease in GABAA 

receptor activity in hippocampal slices that also lasts for at least 40 days after the last EtOH 

dose (Cagetti et al. 2003; Kang et al. 1996; Liang et al. 2004; Liang et al. 2009). Using 

analysis of tetrodotoxin (TTX)-resistant mIPSCs recorded from CA1 pyramidal neurons of 

chronic EtOH exposed and control rats, this group demonstrated a significant decrease in 

the amplitude and decay of these responses (Cagetti et al. 2003) possibly reflecting the 

observed alteration in the expression of α1 and α4 subunits. The mIPSC frequency is also 

slightly decreased, suggesting that chronic EtOH exposure may also be associated with a 

presynaptic decrease in GABA release at these synapses (see later section). Importantly, the 

pharmacological alterations in the properties of GABAergic synapses were consistent with 

the observed changes in subunit expression. For example, diazepam and the neurosteroid 

alphaxalone did not have any effect on mIPSCs in slices from chronic EtOH exposed rats 

(Cagetti et al. 2003), possibly reflecting the loss of α1 and γ-subunits, respectively.

On the other hand, drugs with some selectivity for α4-subunits (e.g., RO 15–4513 and 

DMCM) showed an increased modulation of mIPSCs possibly reflecting the increase in α4 

subunit expression (Kang et al. 1998a; Kang et al. 1996; Kang et al. 1998b). Interestingly, 

the evoked IPSCs were still sensitive to alphaxalone (Kang et al. 1998b) suggesting 

differences in the populations of GABAA receptors that underlie evoked and mIPSCs. In 

addition, the acute effect of EtOH on evoked IPSCs was significantly increased in slices 

from chronic ethanol exposed rats (Kang et al. 1998a; Kang et al. 1998b). Liang et al., 

(Liang et al. 2004) have also compared the effects of chronic EtOH exposure on synaptic 

and extrasynaptic receptor functions in CA1 neurons. These investigators found similar 

Lovinger and Roberto Page 22

Curr Top Behav Neurosci. Author manuscript; available in PMC 2024 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alterations in the synaptic mIPSCs and the tonic extrasynaptic GABAA receptor-mediated 

conductance associated with chronic EtOH exposure. Both mIPSCs and the tonic current 

show profound tolerance to α1-containing GABAA receptor selective doses of diazepam and 

zolpidem (Cagetti et al. 2003). As previously demonstrated (Grobin et al. 2000), chronic 

EtOH exposure results in a decrease in BZP-sensitive α1-subunits and an increase in 

BZP-insensitive α4-subunits at synaptic receptors. Thus, THIP (a high affinity and efficacy 

agonist of the α4-containing GABAA receptors and a partial agonist at most other GABAA 

receptor assemblies) activated the tonic GABA current in slices from control-untreated rats 

and had little effect in slices from chronic EtOH exposed rats (Liang et al. 2004). However, 

THIP depressed mIPSCs in control-untreated rats but strongly increased mIPSCs in chronic 

EtOH treated rats. In addition, the chronic EtOH treated rats show a modest tolerance to the 

soporific effects of THIP and no change in its anxiolytic effects (Liang et al. 2004). In the 

last decade, significant progress has been made in understanding tonic conductance in the 

CeA of rodents using electrophysiology and immunohistochemistry (Herman et al., 2013a; 

Herman et al., 2016a). Two types of tonic conductance expressed in a cell-type-specific 

manner were also observed in rat CeA (Herman and Roberto 2016). One type is mediated 

by the α1-GABAA receptor subunit and is insensitive to acute ethanol exposure and the 

other type is mediated by the δ-GABAA receptor subunit and can be activated by increasing 

the ambient GABA concentration or by acute ethanol exposure. Notably, chronic ethanol 

exposure produces a functional switch in ongoing tonic signaling in the CeA in the specific 

cell-populations, however there is no change in the ability of THIP and acute ethanol to 

further augment tonic conductance in these neurons, suggesting that these receptors are 

either not maximally activated or that THIP or ethanol is able to displace the ambient GABA 

to produce similar levels of activation as seen in naïve rats. Collectively, the presence of 

cell-type-specific tonic signaling in the CeA provide support for the complex mechanisms of 

actions of acute and chronic ethanol in inhibitory circuitry in this brain region (Herman and 

Roberto 2016; Herman et al., 2016a).

In the last decade, non-human primates (Cynomolgus macaques) have been a powerful 

model to study the effects of long-term EtOH consumption (Vivian et al. 2001). Ongoing 

research in the Weiner lab has provided the first evidence of neuroadaptations in the 

GABAergic synapses in monkey hippocampus (Weiner and Daunais 2005). In this paradigm 

of EtOH-self administration, cynomolgus macaques are trained to self-administer a 4% 

EtOH solution on an operant panel and then given 22 hr. daily access to the ethanol solution. 

Control subjects were age- and sex-matched animals that had free access to food and water 

but were not exposed to the operant panels. The preliminary in vitro electrophysiological 

findings revealed a significant increase in paired-pulse facilitation (PPF) of GABAA IPSCs 

in dentate granule cells in slices prepared immediately following the last day of 18 months 

of daily EtOH drinking. Their finding is consistent with a decrease in GABA release 

probability (see section 2.3 on presynaptic ethanol effects at GABAergic synapses) and 

agrees with the decrease in mIPSC frequency observed in rats following chronic intermittent 

EtOH exposure (Cagetti et al. 2003). Interestingly, there was lack of tolerance for both the 

acute facilitatory effect of EtOH and flunitrazepam on evoked GABAA IPSCs (Weiner 

and Daunais 2005). Using the same paradigm of EtOH self-administration, whole-cell 

patch clamp recordings on acutely dissociated amygdala neurons from ethanol-exposed 
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cynomolgus macaques showed a decrease in the effect of flunitrazepam on the currents 

gated by exogenous GABA application compared with amygdala neurons from control 

animals (Anderson et al. 2007; Floyd et al. 2004). However, the modest inhibition of 

GABA-gated currents induced by acute EtOH was not affected by the chronic ethanol 

consumption. In addition, mRNA expression levels for the β, γ, and δ subunits in total 

amygdala RNA isolated from control and EtOH-drinking animals were measured. Chronic 

EtOH significantly reduced amygdala β1 and γ2 subunit expression. Overall, these finding 

demonstrate that chronic EtOH self-administration reduces the benzodiazepine sensitivity of 

amygdala GABAA receptors and this reduced sensitivity may reflect decreased expression of 

the γ subunit.

Electrophysiological studies in the monkey striatum indicate that chronic alcohol 

consumption decreases GABAergic synaptic transmission onto projection neurons (Cuzon 

Carlson et al., 2011, 2018). This effect was especially prominent in the putamen striatal 

subregion, and the decrease was larger in putamen of monkeys that began EtOH drinking as 

adolescents compared to those who started later (Cuzon Carlson et al., 2018).

Early work by Roberto et al., (Roberto et al. 2004a) assessed whether GABAergic synaptic 

changes occur with EtOH-dependence in CeA slices. To obtain dependent rats, these 

investigators used an EtOH vapor inhalation method (Rogers et al. 1979). In this study, 

male Sprague–Dawley rats were exposed to a continuous EtOH vapor for 2–3 weeks with a 

targeted blood alcohol level of 150–200 mg/dL while control rats were maintained in similar 

chambers without EtOH vapor. On experiment days, the chronic EtOH-treated rats were 

maintained in the ethanol vapor chamber until preparation of the CeA slices, and recordings 

of GABAergic transmission were made in EtOH-free solution 2–8 hours after cutting the 

slices (Roberto et al. 2004a). In CeA neurons from EtOH-dependent rats, both evoked IPSCs 

and mean baseline amplitude of mIPSCs were significantly increased compared to naïve 

rats, suggesting a postsynaptic effect of chronic ethanol (Roberto et al. 2004a). However, 

possible changes in the expression of GABAA receptor subunits were not characterized. It 

was also found that the baseline PPF ratio of IPSCs was significantly decreased and the 

mIPSC frequency was higher in neurons of EtOH-dependent rats compared to naïve rats, 

suggesting that GABA release was augmented in chronic ethanol treated rats (Roberto et al. 

2004a) (see later section on presynaptic change). In addition, acute EtOH (44 mM) increased 

IPSCs, decreased the PPF ratio of IPSCs and increased the mIPSCs frequency to the same 

extent in ethanol-dependent rats and naïve rats, suggesting a lack of tolerance for the acute 

ethanol effects (Roberto et al. 2004a). These results have been replicated by several recent 

studies from the same group (Herman and Roberto 2016; Khom et al., 2020a,b; Varodayan 

et al., 2017c; Kirson et al., 2020; 2021; Tunstall et al., 2019) and one of the most consistent 

findings is the lack of tolerance for the acute potentiating effect of EtOH on GABAergic 

synapses in rodents after chronic ethanol exposure (up to 2 weeks of ethanol withdrawal). 

These studies suggest that GABAergic mechanisms may not be associated with the tolerance 

that is known to develop with some of the behavioral effects of EtOH (e.g., ataxia, sedation). 

Additional studies will be needed to determine the molecular mechanisms responsible more 

carefully for these adaptive changes in different brain regions and length/duration of EtOH 

exposure required to induce such neuroadaptations in GABAergic synapse. Moreover, these 

data also suggest that, as with the acute effects of EtOH, long-term exposure to ethanol 
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results in both pre- and postsynaptic alterations and these changes may differ between brain 

regions (Siggins et al. 2005; Weiner and Valenzuela 2006; Roberto and Varodayan, 2017).

In contrast to the rodents, in the monkey amygdala, acute ethanol application significantly 

increased the frequency of sIPSCs in controls, but not in abstinent drinkers, suggesting a 

tolerance to ethanol-enhanced GABA release in abstinent rhesus monkeys with a history of 

chronic ethanol self-administration and repeated abstinence drinkers (Jimenez et al., 2019). 

It is important to note that the loss of an acute effect of ethanol in the CeA in abstinent 

monkeys may be due to the extended (28-day) ethanol-abstinent protocol, which it has not 

tested in rodent models (for review see Roberto et al., 2020).

2.3. Chronic EtOH and GABAergic transmission: Presynaptic effects

There are only a few studies reporting that chronic EtOH exposure can alter GABAergic 

transmission by effects on GABA release. Short in vitro chronic EtOH exposure (one day) 

induced a transient decrease in mIPSC duration in cultured cortical neurons. Chronic EtOH 

exposure did not change mIPSC frequency nor did it produce a substantial cross-tolerance 

to a benzodiazepine in cortical neurons (Fleming et al. 2009). The results suggest that EtOH 

exposure in vitro has limited effects on synaptic GABAAR function and action potential–

independent GABA release in cultured neurons. This group also investigated the effect of 

chronic EtOH exposure on GABA release in cultured hippocampal neurons (Fleming et al. 

2009). These investigators found that chronic EtOH exposure did not alter mIPSC kinetics 

and frequencies in hippocampal neurons (Fleming et al. 2009). These results suggest that 

EtOH exposure in cultured cortical and hippocampal neurons may not reproduce all the 

effects that occur in vivo and in acute brain slices.

In fact, more results generated using in vitro brain slices show a stronger effect of EtOH on 

GABA release, as discussed earlier in this review (Figure 1). In vitro brain slice preparations 

provide a number of highly sensitive experimental strategies that can be employed to detect 

presynaptic changes in transmitter release (for reviews of these approaches, see Siggins et al. 

2005; Weiner and Valenzuela 2006; Roberto and Varodayan, 2017).

Studies in the hippocampus show that chronic EtOH exposure decreased long-term 

potentiation (LTP) by increasing the electrically-stimulated (but not basal) release of tritiated 

GABA pre-loaded in CA1 hippocampal slices (Tremwel et al. 1994). The GABA uptake 

or GABAAR function was not altered, and this effect may be due to alterations in the 

mAChR regulation of GABA release at presynaptic terminals (Hu et al. 1999). In addition, 

studies using the GABAB receptor agonist baclofen to reduce release of tritiated GABA 

suggest that a change in GABAB autoreceptors on GABAergic terminals may also contribute 

to this effect of chronic EtOH exposure on LTP (Peris et al. 1997) (see later GABAB 

paragraph). For a general review of brain-region specific EtOH actions on the GABA 

system see (Criswell and Breese 2005; Siggins et al. 2005; Weiner and Valenzuela 2006). 

More recent studies also reported that chronic EtOH consumption induces tolerance to the 

impairing effects of acute ethanol treatment on induction of LTP in rat CA1 slices (Fujii et 

al. 2008). In CA1 slices from control rats, stable LTP was induced by tetanic stimulation, 

and LTP induction was blocked if the tetanus was delivered in the presence of 8.6 mM 

EtOH or muscimol. A decrease in the stimulation threshold for inducing LTP was found 

Lovinger and Roberto Page 25

Curr Top Behav Neurosci. Author manuscript; available in PMC 2024 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in hippocampal slices from chronic EtOH treated rats. In addition, application of EtOH or 

muscimol did not affect LTP induction in these cells, suggesting that the effects of chronic 

ethanol exposure on LTP induction are mediated by a reduction in GABAergic inhibition in 

hippocampal CA1 neurons (Fujii et al. 2008).

Weiner et al. (Weiner 2004) have found that voluntary EtOH drinking is associated with 

a significant increase in paired-pulse plasticity at GABAergic synapses in dentate gyrus 

neurons from the hippocampal formation of monkeys (cynomolgus macaques), consistent 

with a reduction in GABA release probability. In addition, a lack of tolerance to the 

facilitating effects of both acute EtOH and flunitrazepam on the GABAA IPSCs was 

reported.

In contrast, Melis et al. (Melis et al. 2002) reported that a single EtOH exposure in vivo 
induces a long-lasting facilitation of GABA transmission in the VTA of ethanol-preferring 

C57BL/6 mice. These investigators observed that evoked GABAA IPSCs in dopaminergic 

neurons of EtOH-treated animals exhibited paired-pulse depression (PPD) compared with 

saline-treated animals, which exhibited PPF (Melis et al. 2002). An increase in frequency 

of mIPSCs was also observed in the EtOH-treated animals. Moreover, the GABAB receptor 

antagonist, CGP35348, shifted PPD to PPF, indicating that presynaptic GABAB receptor 

activation, likely attributable to GABA spillover, might play a role in mediating PPD in the 

EtOH-treated mice (see later GABAB paragraph). In a more recent study, the same group 

(Wanat et al. 2009) demonstrated that EtOH exposure also increased GABA release onto 

VTA dopamine neurons in ethanol non-preferring DBA/2 mice. However, a single EtOH 

exposure reduced glutamatergic transmission and LTP in VTA dopamine neurons from the 

ethanol non-preferring DBA strain but not ethanol-preferring C57BL/6 mice (Wanat et al. 

2009). In vivo recordings in VTA indicate that acute EtOH reduces the activity of putative 

GABAergic neurons, while increased firing of putative dopaminergic neurons occurs on a 

faster time scale (Burkhardt and Adermark, 2014). These findings indicate that both direct 

effects and indirect disinhibitory effects may contribute to EtOH-induced increases in DA 

release.

Additional data from Roberto and coworkers (Roberto et al. 2010a; Roberto et al. 2004a) 

further suggest that chronic EtOH exposure can affect CeA GABA release, perhaps via 

an action on GABAergic terminals. Baseline GABAA IPSCs were significantly higher, 

and baseline PPF of GABAA IPSCs was significantly smaller in CeA neurons from EtOH-

dependent rats compared to non-dependent rats, suggesting that evoked GABA release was 

augmented after chronic ethanol exposure. These investigators also reported an increase in 

the baseline frequency of mIPSCs in CeA neurons from EtOH dependent rats compared to 

that of naïve controls. Acute superfusion of EtOH significantly enhanced GABAA IPSCs, 

decreased the PPF ratio of IPSCs and increased the mIPSC frequency to the same extent 

in CeA slices from ethanol-dependent rats and naïve rats, suggesting a lack of tolerance to 

the presynaptic acute EtOH effects (Roberto et al. 2004a). In addition, these investigators 

estimated the interstitial GABA levels in CeA using microdialysis in freely moving rats. 

In agreement with the in vitro electrophysiological results, the in vivo data showed a 

4-fold increase of baseline dialysate GABA concentrations in CeA of EtOH-dependent 

rats compared to naïve rats. Moreover, local administration of EtOH by dialysis increased 
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the dialysate GABA levels in CET rats. These findings again indicate a lack of tolerance 

to presynaptic acute EtOH effects on GABA release in CeA of CET rats (Roberto et al. 

2004a). These studies strengthen the possibility that chronic as well as acute EtOH may 

alter the function of the GABAergic synapses acting at both the postsynaptic site and 

presynaptic terminals. As mentioned above, recent studies have also consistently replicated 

the increased GABA release in the CeA of rodents using the same and/or slightly different 

chronic ethanol exposure in rodents (Herman and Roberto 2016; Khom et al., 2020a,b; 

Varodayan et al., 2017c; Kirson et al., 2020; Tunstall et al., 2019). Interestingly, the data 

obtained in abstinent rhesus monkeys with a history of chronic ethanol self-administration 

and repeated abstinence agree with the rodent studies showing increased GABA release in 

the CeA following chronic ethanol exposure at early (2–10 h) withdrawal, and late [5–7 

days (Herman et al., 2016a) and 14 days (Khom et al., 2020a,b)] withdrawal. Furthermore, 

a recent study showing decreased GABA transporter (GAT-3) levels and impaired GABA 

clearance in the CeA of alcohol-preferring rodents and in humans (Augier et al., 2018) 

support an elevation of GABA level. . together, these data suggest that long-term exposure 

to EtOH causes changes at GABAergic synapses that may differ between brain regions and 

with the duration of chronic exposure. Further studies will be needed to more carefully 

determine the specific exposure durations required to elicit these changes in GABAergic 

synapses, the molecular mechanisms responsible for these adaptive changes, as well as their 

behavioral consequences with respect to withdrawal and dependence.

Evidence of decreased GABA release following chronic alcohol ingestion has also been 

observed in mouse striatum (Wilcox et al., 2014). In this study, mice drank alcohol in the 

drinking in the dark schedule that produces binge like consumption. The frequency of action 

potential-independent miniature IPSCs was decreased in both dorsolateral and dorsomedial 

striatum in the alcohol-drinking mice.

In summary, a growing area in which action of EtOH on GABA function has been 

implicated is withdrawal from chronic ethanol. Withdrawal results in an increased sensitivity 

to induction of seizures (Allan and Harris 1987; Frye et al. 1983). Several functional 

and behavioral studies on benzodiazepines and other drugs with GABAmimetic action 

reduced such withdrawal-related hyper-excitability (Breese et al. 2006; McCown et al. 1985; 

Roberto et al. 2008; Ticku and Burch 1980; Herman et al., 2016a; Khom et al., 2020a,b). 

Collectively, these results offer strong support for the hypothesis that at least a part of 

the action of EtOH was mediated by effects on neural functions associated with GABA 

transmission and that these effects play an important role in the maintenance of addictive 

drinking behavior.

The molecular basis of chronic EtOH effects on presynaptic function is just beginning to be 

explored, and early findings implicated changes vesicle-associated proteins (see Das 2020 

for review). In rhesus macaque monkeys, chronic alcohol consumptions alters expression 

of the vesicle-associated SNAP-25 protein (Alexander et al. 2018, Nimitvilai et al. 2017). 

and Das et al. 2013, Ghosh et al. 2017). Increased expression of Munc13–1, another vesicle 

associated protein has also been observed following chronic EtOH exposure in both mouse 

and monkeys (Alexander et al. 2018, Ghosh et al. 2017). These findings are particularly 

interesting as alcohol directly interacts with Munc13–1 (Das et al. 2013) and this protein has 
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been implicated in acute EtOH effects on synaptic transmission (Gioia et al. 2017). It will be 

interesting to determine if chronic EtOH effects on neurotransmitter release depend on these 

proteins and/or other proteins involved in vesicle fusion.

2.4. GABAB Receptors and chronic EtOH Actions

Several studies demonstrated GABAB receptor involvement in the effects of EtOH. For 

instance, GABAB receptor antagonists enhance the ability of acute EtOH to facilitate GABA 

transmission in the hippocampus (Ariwodola and Weiner 2004; Wan et al. 1996; Wu and 

Saggau 1994) and NAc (Nie et al. 2000). Ariwodola and Weiner (2004) suggested that 

the effect of EtOH to facilitate GABA transmission is limited because of GABA feedback 

on presynaptic GABAB receptors (Figure 1). The presence of GABAB receptors accounted 

for the difference in sensitivity to EtOH influences on GABA transmission in specific 

subfields of the hippocampus (Weiner et al. 1997). On the other hand, GABAB receptors 

did not influence GABA release from neurons in the CeA (Roberto et al. 2003). Thus, the 

involvement of GABAB receptors on GABA release in various brain regions may not be 

universal, suggesting that the presence or absence of presynaptic GABAB receptors may be 

an important determinant for the regional specificity of ethanol to affect GABA transmission 

(Ariwodola and Weiner 2004).

As mentioned above, Peris et al., (Peris et al. 1997) showed that chronic EtOH treatment, 

sufficient for decreasing LTP in rats, also increased 3H-GABA release from hippocampal 

slices in these same animals. These investigators characterized presynaptic autoreceptor 

modulation of 3H-GABA release in hippocampal slices from control and EtOH-dependent 

rats. Effects of a GABAB receptor agonist (baclofen) and antagonist [2-hydroxy (OH)-

saclofen] on electrically stimulated 3H-GABA release from superfused hippocampal slices 

were examined. Baclofen decreased stimulated release in a dose-dependent manner and 

the antagonist 2-OH-saclofen increased release consistent with the presence of presynaptic 

GABAB autoreceptors in hippocampus. The GABAA antagonist bicuculline did not 

significantly modulate basal or stimulated release. Presynaptic modulation of release by 

baclofen and 2-OH-saclofen was decreased in animals 48 hr. after withdrawal from EtOH. 

Using quantitative autoradiographic techniques, the density of 3H-baclofen binding sites 

in the hippocampus was not affected by chronic EtOH exposure, whereas the density of 

3H-bicuculline binding sites was increased by 28% in EtOH-treated rats. These data may 

explain how chronic EtOH treatment increases presynaptic regulation of GABA release from 

hippocampus that may contribute to the decrease in LTP seen in rats after chronic ethanol 

exposure (Peris et al. 1997).

Another study assessed the impact of EtOH on postsynaptic GABAB receptors via baclofen-

induced hyperpolarization of hippocampal CA1 and CA3 pyramidal neurons. These 

receptors activate outward K+ currents via a pertussis toxin-sensitive G protein cascade 

to reduce membrane potential during the slow inhibitory postsynaptic potential and may play 

a role in EtOH intoxication and withdrawal excitability. In both types of pyramidal neurons, 

baclofen applied consecutively in increasing concentrations caused concentration dependent 

hyperpolarization. There were no significant differences in resting membrane potential, 

input resistance, maximum baclofen-induced hyperpolarization or EC50 between CA1 and 
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CA3 neurons, although slope values were significantly smaller in the former neurons. These 

parameters were not significantly changed in the presence of EtOH 10–100 mM. Chronic 

EtOH treatment (12 days) did not shift sensitivity or maximum response to baclofen in 

CA1 neurons. These results suggest that GABAB receptors in this model were essentially 

insensitive to ethanol (Frye and Fincher 1996).

Melis et al. (Melis et al. 2002) linked the long-lasting potentiation of GABAergic synapses 

on dopaminergic neurons in the VTA by systemic EtOH to an effect on presynaptic GABAB 

receptors. Moreover, the frequency (but not the amplitude) of mIPSCs was also significantly 

higher in VTA neurons of EtOH-treated animals compared to controls, further supporting 

an increased probability of presynaptic GABA release independent of neuronal discharge 

in VTA neurons treated with ethanol. Interestingly, the GABAB receptor antagonist, 

CGP35348, shifted PPD to PPF in EtOH-treated animals by increasing the amplitude of 

the second evoked GABAA IPSC and without affecting GABAA IPSC in the saline-treated 

animals. In addition, both the frequency and the amplitude of mIPSCs were unaffected 

by CGP35348 in both groups of mice. Thus, the PPD observed in the EtOH treated mice 

could result from an increased probability of GABA release, which might in turn lead to 

activation of presynaptic GABAB receptors and decrease the second IPSC. These results 

further support the hypothesis that GABA levels are increased after EtOH exposure, leading 

to spillover onto presynaptic GABAB receptors, whose activation leads to inhibition of 

release (Hausser and Yung 1994; Melis et al. 2002).

In a recent study, Roberto et al., (Roberto et al. 2008) reported neuroadaptations in 

GABAB receptors in CeA after chronic EtOH exposure. The sensitivity of GABA IPSCs 

to the GABAB receptor antagonist CGP 55845A and agonist baclofen was decreased after 

chronic EtOH, suggesting downregulation of this system. Specifically, the GABAB receptor 

antagonist, CGP 55845A significantly increased the mean amplitude of evoked IPSCs in 

CeA from naïve rats. This increase in the IPSC amplitude was associated with a significant 

decrease in PPF, suggesting a tonic activation of presynaptic GABAB receptors in naïve rats. 

In contrast, in CeA from EtOH-dependent rats, CGP 55845A did not alter the mean evoked 

IPSCs and did not affect mean PPF. Baclofen markedly depressed evoked GABA IPSC 

amplitudes in neurons of naïve rats, with recovery during washout. The baclofen-induced 

inhibition of GABA IPSCs was significantly reduced in neurons of EtOH-dependent rats. 

In addition, in CeA neurons from EtOH-dependent rats, baclofen-induced depression was 

associated with a smaller increase of the PPF ratio of GABA IPSCs compared to that in 

neurons of naïve rats. These data suggest that the downregulation of the GABAB system 

associated with EtOH-dependence may explain in part the increased GABAergic tone 

reported in dependent rats (Roberto et al. 2008).

2.5. Glycine Receptor Roles in Chronic Alcohol Actions

In comparison to GABAergic transmission, much less is known about chronic EtOH 

effects on glycinergic synapses. However, there is increasing information about how glycine 

receptors in the CNS contribute to alcohol-related behaviors. Using mice in which an 

EtOH-insensitive mutated GlyR alpha1 subunit is substituted for the wildtype receptor, 

investigators have shown reduced sedative responses to acute EtOH (Aguayo et al., 2014). 
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These mice also show greater conditioned place preference for EtOH and greater EtOH 

intake upon first exposure to the drug (Muñoz et al., 2020). Mice carrying a similar 

mutation that renders the alpha2 GlyR subunit EtOH-insensitive show a similar pattern of 

shorter-duration of EtOH-induced sedation and increased EtOH consumption (Gallegos et 

al., 2021). Mice lacking alpha2 GlyR subunits show reduced EtOH intake and preference, 

and increased aversive responses to the drug while mice lacking the alpha3 subunit show 

increased intake and preference but a decrease in conditioned EtOH taste aversion (Blednov 

et al., 2015). Thus, glycinergic synaptic effects appear to have roles in acute EtOH actions 

and regulation of EtOH drinking. As mentioned above, agonism of the glycine receptor 

impacts GABAergic transmission in CeA of naïve rats, without affecting the acute alcohol-

induced facilitation of GABAergic responses, and this effect is lost in neurons from alcohol-

dependent rats (Kirson et al., 2020). Glycine transport in the prefrontal cortex appears to 

play a role in impulsivity during abstinence following chronic EtOH exposure (Irimia et 

al., 2017). This may involve GlyRs or glycine-sensitive NMDARs. It will be interesting to 

determine how chronic alcohol affects glycine release and glycine receptors.

Chronic alcohol drinking also alters the expression of a number of genes related to 

glycinergic transmission (Vengeliene et al., 2010). Some of these changes can be reversed by 

treatment with a glycine transporter antagonist that also reduced compulsive-like drinking in 

rat (Vengeliene et al., 2010).

2.6 Changes in Dopaminergic Transmission Induced by Chronic Alcohol

There are conflicting reports of chronic alcohol effects on DA release and extracellular 

DA. Several studies indicate that increases in extracellular DA concentrations persist 

throughout chronic EtOH exposure and intake in self-administration paradigms and also 

become associated with conditions that predict drug availability (Bassareo et al., 2017, 

Doyon et al. 2003, Hirth et al., 2016) (Figure 2A). Sensitization to the dopamine-increasing 

effects in NAc of EtOH microinjection into the VTA has also been observed following 

chronic EtOH consumption (Ding et al., 2016). Examination of striatal tissue from AUD 

patients indicates decreased DAT expression, possibly indicating a hyperdopaminergic state 

in these individuals (Hirth et al., 2016) (Figure 2A). A combined analysis of extracellular 

tortuosity and modeling suggested the changes dopamine diffusion could contribute to 

increased availability of the neurotransmitter after chronic ethanol exposure (De Santis et 

al., 2020). Altogether These findings suggest that the ability of EtOH to enhance accumbal 

NAc either does not show tolerance with repeated exposure or undergoes adaptations that 

maintaince high dopamine levels, and some mechanisms may even be enhanced under these 

circumstances.

However, other studies indicate that dopamine release is reduced following chronic EtOH 

consumption or forced exposure. For example, Karkhanis et al. (2016) found that acute 

EtOH stimulation of DA release switched to inhibition in NAc following chronic exposure. 

Decreased DA release in the NAc core subregion was observed in adult rats following 

adolescent EtOH exposure (Zandy et al., 2015). Enhanced function of kappa opiate receptors 

and D2 dopamine autoreceptors may contribute to the decreased DA release both in mice 

and monkeys (Rose et al., 2016, Siciliano et al., 2015, 2016), although decreased D2 
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autoreceptor function has also been observed, a change that varies across sexes (Salinas et 

al., 2021) (Figure 2A).

Expression of D2 dopamine receptors is reduced in striatum in humans with AUD, as 

assessed with positron emission tomography imaging (Volkow et al., 2017) (Figure 2A). 

This decrease most likely reflects loss of the receptors expressed by MSNs, and may lead to 

a loss of one brake on striatal output. It remains to be determined if this receptor loss reflects 

a pre-existing state or an effect of long-term ethanol consumption.

2.6. Chronic Alcohol Effects on Cholinergic Systems

Decreases in the number of basal forebrain cholinergic neurons have been observed 

following chronic EtOH exposure in adult rat (Arendt et al. 1988, 1989; Smiley et al., 2021). 

However, Vetreno and coworkers did not observe a similar loss of neurons following EtOH 

exposure (Vetreno et al., 2014). Evidence for decreases in the number of axon terminals 

made by these neurons in the dentate gyrus and hippocampal gyri was also observed 

(Cadete-Leite et al., 1995; Pereira et al. 2016). These losses were reversed by treatment 

with nerve growth factor that is known to be trophic for these cells (Lukoyanov et al., 

2003; Pereira et al., 2016). The numbers of cholinergic neurons in the pedunculopontine and 

laterodorsal tegmental areas was also decreased following chronic EtOH consumption and 

withdrawal (Pereira et al., 2020).

Mixed effects of chronic EtOH on ACh levels and release have been reported (Figure 2B). 

Decreased ACh levels following chronic EtOH exposure were originally reported in several 

brain regions (Hunt and Dalton, 1976). However, subsequent studies reported increased ACh 

concentration in the rat striatum 1–3 days after the cessation of a four day EtOH treatment 

(Hunt et al., 1979), and mixed results were observed in other studies examining a variety of 

brain regions (Parker et al., 1978; Smyth and Beck, 1969). The activity of enzymes involved 

in ACh synthesis as well as the high-affinity choline uptake system have also been examined 

following chronic EtOH exposure (Norberg and Wahlstrom, 1992). Activity of the synthetic 

enzyme choline acetyltransferase (ChAT) is increased after a few days of EtOH exposure 

(Ebel et al., 1979), but decreased after weeks of exposure (Smyth and Beck, 1969; Pelham 

et al., 1980). High affinity choline uptake is increased a few days after withdrawal from a 

relatively short exposure to EtOH (Hunt et al., 1979, Hunt and Majchrowitz, 1979). It must 

be noted that the subject of ACh levels and enzyme expression/function has not be revisited 

with newer research approaches, and thus additional study is warranted.

Reduced preparations have also been used to examine effects of chronic EtOH exposure on 

ACh release. Using slices of Nucleus accumbens and dorsal striatum, Nestby et al. (1997) 

found that 15 days of exposure to a moderate ethanol treatment enhanced electrically-evoked 

ACh release. No changes in ACh release from cortical or hippocampal synaptosomes were 

observed following chronic EtOH consumption (Sabriá et al., 2003).

Subsequent studies examined changes in ACh release in vivo following chronic ethanol 

exposure using microdialysis. As is the case for acute EtOH exposure, chronic EtOH in 

rat also generally decreases hippocampal ACh levels (Casamenti et al., 1993; Imperato et 

al., 1998). Decreased ChAT activity appears to be associated with the decreased release 
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(Casamenti et al., 1993). Recovery of release was observed following four weeks of 

abstinence subsequent to three months of EtOH drinking, but less recovery was observed 

with abstinence after six months of drinking (Casamenti et al., 1993). In anesthetized rat, 

increased hippocampal ACh was observed following a 4-day EtOH exposure and subsequent 

withdrawal (Imperato et al., 1998). In another set of studies, mixed results were obtained 

within the same laboratory. Decreased hippocampal ACh was observed following nine 

months of drinking in Sprague-Dawley rats, and this was correlated with impaired passive 

avoidance performance (Melis et al., 1996). However, these effects were not observed in the 

Sardinian alcohol-preferring rat (Fadda et al., 1999). Chronic exposure to EtOH can alter 

the initial acute drug effects. Increased ACh in the VTA during EtOH intake appears to 

subside with continued drinking (Larsson et al., 2005). Acute ethanol-induced increases in 

ACh levels in hypothalamus changed to decreases following several days of administration 

(Kaneyuki et al., 1995).

As is the case for acute EtOH actions on ACh and cholinergic synapses, effects of chronic 

EtOH exposure are mixed and depend on ACh receptor subtype and anatomical region 

(Figure 2B). Radioligand binding studies were initially employed to identify changes in 

receptor numbers and affinity. The most direct measures of changes in nAChRs were 

conducted in cell lines in which binding can be examined independent of changes in cell 

type or circuitry. In the PC12 neuroblastoma cell line, exposure to EtOH in the medium for 

48–96 hours increased the binding of epibatidine, a ligand for the α4β2 subunit-containing 

nAChR subtype (Dohrman and Reiter 2003). Nicotine stimulation of binding was also 

increased by this treatment. In an M10 cell line engineered to express α4β2-containing 

receptors, exposure to EtOH for 12–48 hours had the opposite effect, decreasing epibatidine 

binding, but a slight increase was observed after 96 hours of exposure (Dohrman and Reiter 

2003). It is not clear why different effects were observed in these different cell lines, but 

differences in intracellular signaling are likely to be involved. The decrease in binding in the 

M10 cells was blocked by a protein kinase C inhibitor, but this was not tested in PC12 cells.

Mixed effects on nAChR radioligand binding have also been observed in brain tissue from 

animals chronically treated with EtOH in vivo. In the rat hippocampus, hypothalamus and 

thalamus decreased binding of nicotine was observed (Yoshida et al., 1982). However, 

hippocampal nicotine binding was decreased just after voluntary EtOH drinking in rat 

(Robles and Sabriá 2006), but increased after withdrawal from drinking (Robles and 

Sabriá 2008). Examination of binding of αBungarotoxin, a ligand for α7-type nAChRs, 

revealed differential effects of chronic EtOH drinking in the inbred Long-sleep (decreased 

hippocampal and increased thalamic binding) and Short-sleep mice (increased binding in 

cerebellum and superior colliculus) (Booker and Collins 1997). Evidence for decreased 

binding to α4β2-containing receptors was also observed in rhesus monkey cortex after 

chronic alcohol drinking (Hillmer et al. 2014).

Radioligand binding and molecular biological approaches have been used to examine 

chronic alcohol effects on mAChR expression. Exposing human neuroblastoma cells for 

several days led to an increase in mAChR-induced inositol phosphate production (Larsson 

et al., 1996). This effect was accompanied by increased radioligand binding that implicated 

M1-type mAChRs in the potentiation. A similar increase in mAChR binding was also 
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observed following 2 days of EtOH exposure in NG108-15 neuroblastoma x glioma cells 

(Hu et al., 1993). In general, in vivo chronic EtOH exposure has been shown to increase 

mAChR binding sites in cerebral cortex, hippocampus, mammillary body, and striatum, 

although mixed effects have been observed in different studies (reviewed in Nordberg and 

Wahlstrom, 1992, Pick et al., 1993; Pietzak et al., 1988; Rothberg et al., 1996; Tabakoff et 

al., 1979). In general, the increases were largest after exposure periods of a few days and 

during withdrawal following longer exposure periods. The M1 mAChR is one subtype that 

appears to be upregulated after chronic EtOH exposure (Pietzak et al., 1988; Hoffman et 

al., 1986; Muller et al., 1980). Expression of the five different mAChR subtype proteins in 

hippocampus was also examined with immunoprecipitation, but no effect of chronic EtOH 

exposure was observed (Rothberg et al., 1993).

Effects of chronic EtOH exposure on the functional consequences of mAChR activation 

have also been examined, using both receptor-mediated inositol phosphate generation and 

electrophysiological changes as the functional readouts. A reduction in the ability of EtOH 

to inhibit mAChR-mediated stimulation of inositol triphosphate formation in mouse brain 

tissue and synaptosomes was observed following chronic EtOH consumption (Hoffman 

et al., 1986; Smith, 1983). It is unclear if this tolerance is due to decreased mAChR 

expression or downstream signaling mechanisms, but given the general finding of increased 

receptor binding it is probable that decreased downstream signaling is involved. Activation 

of mAChRs enhances the population spike (PS) and inhibits the field excitatory postsynaptic 

potential (fEPSP) during extracellular field potential recordings in the hippocampal CA1 

subregion. Chronic EtOH exposure reduces the population spike facilitation but does 

not alter fEPSP inhibition (Rothberg and Hunter, 1991; Rothberg et al., 1993). Frye 

and coworkers also found no chronic EtOH-induced change in mAChR inhibition of 

hippocampal fEPSPs, as well as no change in inhibition of the afterhyperpolarization by 

mAChRs (Frye et al., 1995). The differential EtOH effects on these responses likely result 

from the fact that different mAChRs mediate the different physiological effects, with those 

coupled to Gi/o-type G-proteins in involved in fEPSP inhibition and G-q G-protein coupled 

receptors mediating the other responses.

Cholinergic neuron numbers and mAChR binding have also been examined in postmortem 

samples from humans with Alcohol Use Disorder. Decreased basal forebrain cholinergic 

neuron numbers were observed in humans diagnosed with Korsakoff syndrome, as a 

consequence of prolonged alcohol drinking (Arendt et al., 1983). Redioligand binding 

revealed evidence of decreases in mAChRs in older AUD patients (Freund and Ballinger, 

1989a,b; Hellstrom-Lindahl et al., 1993; Nordberg et al., 1983; Nordberg and Wahlstrom, 

1992). It is unclear if the receptor loss is a result of the decrease in cholinergic neuron 

number mentioned previously, although Freund and Ballinger (1991) did not observe 

evidence of neurodegeneration in the brains in which they observed decreased mAChR 

binding sites. Activity of the ChAT enzyme is also reduced in postmortem brain samples 

from individuals with AUD (Antuono et al., 1980).
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3. Neuropeptide Roles in Acute and Chronic Alcohol Actions

Neuropeptides are potent neuromodulators in the CNS whose actions are mediated via 

GPCRs. In contrast to classical neurotransmitters, neuropeptides are released in a frequency-

dependent fashion and often have a longer half-life of activity after release. These factors, 

among others, enable neuropeptides to produce long-lasting effects on cellular functions 

such as excitatory and inhibitory synaptic transmission, neuronal excitability and gene 

transcription (Gallagher et al. 2008). Thus, a long-lasting dysregulation of neuropeptides 

could have significant effects on the activity of neurons and consequently, behavior. Thus, 

several neuropeptideric system in different brain circuits have received a lot of attention 

particularly in the development of AUD (Koob and Volkow, 2016).

3.1. Corticotropin-Releasing Factor

Corticotropin-releasing factor (CRF) is a 41-amino acid polypeptide that has a major role 

in coordinating the stress response of the body by mediating hormonal, autonomic, and 

behavioral responses to stressors. CRF (originally called corticotropin-releasing hormone, 

although the International Union of Pharmacology designation is CRF) was identified 

through classic techniques of peptide sequencing (Vale et al. 1981). Subsequently, genes 

encoding three paralogs of CRF – urocortins 1, 2, and 3 (Ucn 1, Ucn 2, Ucn 3), were 

identified by modern molecular biological approaches. Ucn 2 and Ucn 3 are also referred 

to as stresscopin-related peptide and stresscopin, respectively. CRF and the urocortins have 

been implicated in the modulation of multiple neurobiological systems, including those 

that regulate feeding, anxiety and depression, hypothalamic–pituitary–adrenal (HPA) axis 

signaling, and EtOH consumption (Hauger et al. 2006; Heilig and Koob 2007; Ryabinin and 

Weitemier 2006; Smith and Vale 2006). CRF and the Ucn peptides produce their effects by 

binding to the G-protein-coupled CRF type 1 (CRF1R) and CRF type 2 (CRF2R) receptors. 

CRF binds to both receptors, but has greater affinity for the CRF1R (Bale and Vale 2004; 

Fekete and Zorrilla 2007; Hauger et al. 2006; Pioszak et al. 2008).

CRF1R and CRF2R are GPCRs that are predominantly positively linked to the activation 

of AC (Figure 1), and recent reports also implicate other second messenger systems such 

as inositol triphosphate and PKC (Blank et al. 2003; Grammatopoulos et al. 2001). Using 

corticotrophins, Antoni and coworkers (Antoni et al. 2003) demonstrated a coupling of 

CRF1R to AC9 and AC7. The switch in coupling from AC9 to AC7 results in a more 

robust cAMP signal when CRF binds to the CRF1R (Antoni 2000; Antoni et al. 2003). It 

should be emphasized that AC7 is localized both postsynaptically (striatum, hippocampus) 

and presynaptically (nucleus accumbens, amygdala) (Mons et al. 1998a; Mons et al. 1998b), 

and is anatomically positioned to receive signals from GPCRs on both dendrites and axon 

terminals.

Pharmacological and transgenic studies show that brain and pituitary CRF1Rs mediate many 

of the functional stress-like effects of the CRF system (Heinrichs and Koob 2004). CRF and 

the Ucn peptides have a wide distribution throughout the brain, but there are particularly 

high concentrations of cell bodies in the paraventricular nucleus of the hypothalamus, the 

basal forebrain (notably the extended amygdala), and the brainstem (Swanson et al. 1983). 

Ucn1 binds with equal affinity to CRF1R and CRF2R, and Ucn2 and Ucn3 are CRF2R 
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agonists (Hauger et al. 2006; Pioszak et al. 2008). CRF and the Ucn peptides exert their 

behavioral and neuroendocrine actions through central hypothalamic and extrahypothalamic 

pathways (Hauger et al. 2006; Heilig and Koob 2007; Heinrichs and Koob 2004; Koob and 

Le Moal 2008).

Increasing evidence implicates CRF and its receptors in the synaptic effects of EtOH. 

Ethanol induces release of CRF from the hypothalamus that initiates the activation of 

the HPA axis (Ogilvie et al. 1998). Ethanol also modulates the extra-neuroendocrine 

CRF system involved in behavioral stress responses, particularly in the amygdala. Ethanol 

withdrawal induces an increase in CRF levels in the amygdala (Merlo Pich et al. 1995) and 

in the BNST (Olive et al. 2002).

The central administration of a CRF antagonist attenuates both EtOH self-administration 

and the anxiety-like response to stress observed during alcohol abstinence, (Valdez et al. 

2002) and administration of a CRFR antagonist into the CeA reverses the anxiogenic-like 

effect of alcohol (Rassnick et al. 1993). Rats tested 3–5 weeks post alcohol withdrawal 

showed an anxiogenic-like response provoked by a mild restraint stress only in rats with a 

history of alcohol dependence. This stress-induced anxiogenic-like response was reversed by 

a competitive CRF1R antagonist (Valdez et al. 2003). The increased self-administration of 

alcohol observed during protracted abstinence also was blocked by a competitive CRF1R 

antagonist (Valdez et al. 2003). Gehlert et al., (2007) also described that a novel CRF1R 

antagonist, the 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-

imidazo[1,2-b]pyridazine (MTIP) has advantageous properties for both clinical development 

and in preclinical models of Alcohol Use Disorder (AUD). MTIP dose-dependently reversed 

anxiogenic effects of ethanol withdrawal, and blocked excessive alcohol self-administration 

in Wistar rats with a history of dependence (Gehlert et al. 2007). CRF also contributes 

to increased alcohol consumption in dependent animals, because increased EtOH self-

administration is reduced by CRF1R antagonists in dependent animals but not in non-

dependent animals (Funk et al. 2007, Overstreet et al. 2004) and by CRF1R deletion 

(Chu et al. 2007; Sillaber et al. 2002). More recently, it has been reported that chronic 

CRF1R antagonist treatment blocked withdrawal-induced increases in alcohol drinking by 

dependent rats, and tempered moderate increases in alcohol consumption (Roberto et al. 

2010a). In addition, inactivation of the CeA CRF+ neurons prevents recruitment of this 

neuronal ensemble, decreases the escalation of alcohol drinking, and decreases the intensity 

of somatic signs of withdrawal (de Guglielmo et al., 2019). These results have led to the 

hypothesis that negative emotional states (including anxiety-like states) contribute to the 

compulsive alcohol intake associated with AUD via negative reinforcement mechanisms 

(Koob 2008; Zorrilla et al., 2013; Zorrilla and Koob, 2010; Zorrilla et al., 2014; Gilpin and 

Roberto, 2012).

Several recent reviews (Lowery and Thiele 2010; Zorrilla et al., 2013; Zorrilla and Koob, 

2010; Zorrilla et al., 2014; Spierling and Zorrilla, 2017; Quadros et al. 2016) provide 

a comprehensive overview of preclinical evidence from rodent studies that suggest a 

promising role for CRFR antagonists in the treatment of alcohol abuse disorders. In contrast, 

few other reviews emphasize the preclinical results that hinder the translational of CRF 

pharmacology to the clinic (Pomrenze et al., 2017; Cannella et al., 2019, Agoglia et al., 
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2020; Roberto et al., 2017). These reviews point to the lack of preclinical studies performed 

in female rodents (as most the studies have been performed in male rodents) and that 

would strongly suggest sex differences in the ability of CRF/CRF1-directed therapies to 

functionally regulate alcohol drinking in the clinical setting.

CRFR antagonists protect against excessive EtOH intake resulting from ethanol dependence 

without influencing ethanol intake in non-dependent animals. Similarly, CRFR antagonists 

block excessive binge-like ethanol drinking in non-dependent mice but do not alter 

ethanol intake in mice drinking moderate amounts of ethanol (Lowery and Thiele 2010). 

CRFR antagonists also protect against increased EtOH intake and relapse-like behaviors 

precipitated by exposure to a stressful event. Additionally, CRFR antagonists attenuate 

the negative emotional responses associated with EtOH withdrawal. The protective effects 

of CRFR antagonists are modulated by CRF1R. Finally, recent evidence has emerged 

suggesting that CRF2R agonists may also be useful for treating alcohol abuse disorders 

for review see (Lowery and Thiele 2010; Spierling and Zorrilla, 2017; Roberto et al., 2017).

Low CRF concentrations can influence neuronal properties in the CNS (see (Aldenhoff et 

al. 1983; Siggins et al. 1985). CRF decreases the slow afterhyperpolarizing potential in 

hippocampus (Aldenhoff et al. 1983) and CeA (Rainnie et al. 1992), and enhances R-type 

voltage-gated calcium channels in rat CeA neurons (Yu and Shinnick-Gallagher 1998). 

These and other data (Liu et al. 2004; Nie et al. 2004; Nie et al. 2009; Roberto et al. 

2010a; Ungless et al. 2003) also suggest that CRF plays an important role in regulating 

synaptic transmission in CNS. For example, in VTA dopamine neurons, CRF potentiates 

NMDA-mediated synaptic transmission via CRF2 activation (Ungless et al. 2003), and 

we recently found that CRF augments GABAergic inhibitory transmission in mouse CeA 

neurons via CRF1 activation (Figure 1).

3.1.1. CRF Actions in the VTA.—The VTA receives CRF inputs from a number of 

sources including the limbic forebrain and the paraventricular nucleus of the hypothalamus 

(Rodaros et al. 2007). These CRF inputs form symmetric and asymmetric synapses, mostly 

onto dendrites, that co-release either GABA or glutamate, respectively (Tagliaferro and 

Morales 2008). VTA dopamine neurons express both types of CRF receptors, CRF1R and 

CRF2R (Ungless et al. 2003), and approximately 25% of VTA dopamine neurons, express 

the CRF binding protein (CRF-BP);(Wang et al. 2005; Wang and Morales 2008). CRF 

regulates dopamine neurons through a subtle interplay of effects at CRF1R, CRF2R and 

CRF-BP. CRF increases action potential firing rate in VTA dopamine neurons via CRF1R 

and involves a PKC-dependent enhancement of Ih (a hyperpolarization-activated inward 

current) (Wanat et al. 2008). CRF enhanced the amplitude and slowed the kinetics of IPSCs 

following activation of D2-dopamine and GABAB receptors. This action is postsynaptic and 

dependent on the CRF1R. The enhancement induced by CRF was attenuated by repeated in 
vivo exposures to psychostimulants or restraint stress (Beckstead et al. 2009).

CRF can induce a slowly developing, but transient, potentiation of NMDAR-mediated 

synaptic transmission (Ungless et al. 2003). This effect involves the CRF2R and activation 

of the protein kinase C pathway and the requirement of CRF-BP. However, the effect of 

Lovinger and Roberto Page 36

Curr Top Behav Neurosci. Author manuscript; available in PMC 2024 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CRF is restricted to a subset of dopamine neurons expressing large Ih currents (Ungless et al. 

2003).

In addition to fast, excitatory glutamate-mediated synaptic transmission, dopamine neurons 

also express metabotropic glutamate receptors (mGluRs) which mediate slower, inhibitory 

synaptic transmission (Fiorillo and Williams 1998). The rapid rise and brief duration of 

synaptically released glutamate in the extracellular space mediates a rapid excitation through 

activation of ionotropic receptors, followed by inhibition through the mGluR1 receptor 

(Fiorillo and Williams 1998). CRF can enhance these mGluRs via a CRF2R-PKA pathway 

that stimulates release of calcium from intracellular stores (Riegel and Williams 2008). 

The CRF modulation of VTA synaptic activity is very complex because CRF has diverse 

actions on dopamine neurons that are excitatory and inhibitory. Furthermore, desensitization 

of D2 receptors induced by dopamine or CRF on DAergic VTA neurons is associated 

with increased glutamatergic signaling in the VTA (Nimitvilai et al., 2014). In summary, 

the excitatory effects of CRF on dopamine neurons appear to affect fast events (e.g., 

action potential firing rate and NMDAR-mediated synaptic transmission), whereas the 

inhibitory effects involve slow forms of synaptic transmission. Another important aspect 

is that CRF1R-mediated effects do not involve interactions with the CRF-BP, whereas 

CRF2R-mediated effects do. Recently, the CRF-BP has been considered a potential target 

for its role in AUD (Haass-Koffler et al. 2016; Ketchesin et al. 2016), and its role in the 

escalation of alcohol drinking may involve its interaction with CRF2 (Albrechet-Souza et al. 

2015; Quadros et al. 2016).

It is speculated that these effects on short-term plasticity phenomena may modulate longer-

lasting forms of plasticity. For example, NMDAR activation is required for the induction of 

long-term potentiation in VTA dopamine neurons (Bonci and Malenka 1999; Borgland et al. 

2010).

3.1.2. CRF Actions in the Central Amygdala.—The CeA contains CRF receptors 

and abundant CRF-containing fibers (De Souza et al. 1984; Uryu et al. 1992); CRF itself 

is generally co-localized in CeA neurons together with GABA (Eliava et al. 2003; Asan et 

al. 2005). Acute EtOH augments evoked GABAA receptor-mediated inhibitory postsynaptic 

currents (IPSCs) by increasing GABA release in both mouse (Bajo et al. 2008; Nie et al. 

2004) and rat CeA neurons (Roberto et al. 2003; Roberto et al. 2004).

CRF1Rs mediate the EtOH-induced augmentation of IPSCs in mouse CeA (Nie et al. 2004; 

Nie et al. 2009) via the PKCε signaling pathway (Bajo et al. 2008; Nie et al. 2004). Both 

CRF and EtOH augment evoked IPSCs in mice CeA neurons, and CRF1R (but not CRFR2) 

antagonists blocked both CRF and ethanol effects. In addition, CRF and EtOH augment 

IPSCs in wild-type and CRF2R knockout mice, but not in CRF1R knockout mice (Nie et al. 

2004) or with CRF1 antagonism (Nie et al., 2009).

Electrophysiological data showed that CRF, like EtOH, also enhances GABAergic 

transmission in the rat CeA (Roberto et al. 2010a). As in mice, CRF and EtOH actions 

involve presynaptic CRF1R activation at the CeA GABAergic synapses. Interestingly, the 

interactions between the CRF and GABAergic systems in the CeA may play an important 

Lovinger and Roberto Page 37

Curr Top Behav Neurosci. Author manuscript; available in PMC 2024 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



role in alcohol reward and dependence (Roberto et al. 2010a). These results suggest that the 

presynaptic effect of EtOH on GABA release in rodent CeA involves CRF1R and perhaps 

release of CRF itself. Furthermore, both CRF and EtOH decreased PPF of IPSCs in mouse 

and rat neurons, and the effects of both were selectively blocked by CRF1R antagonists. 

In addition, both EtOH and CRF increase the frequency of GABAR-mediated mIPSCs, and 

this effect is blocked by CRF1R antagonists (Nie et al. 2004; Nie et al. 2009; Roberto 

et al. 2010). Thus, EtOH probably enhances the release of GABA by activating CRF1R 

on GABAergic terminals (Nie et al. 2009; Roberto et al. 2010a). Conversely, CRF1R 

antagonists directly increased PPF of IPSCs and decreased mIPSC frequencies, consistent 

with decreased GABA release, thus opposing EtOH effects. Because GABA and CRF are 

often co-localized in CeA neurons, the EtOH-elicited GABA release may involve release of 

the CRF peptide itself, perhaps even from the terminals synapsing on autoreceptors on the 

same cell bodies or on collaterals from other GABAergic interneurons. Thus, this example 

raises the possibility of involvement of other, secondary messengers in EtOH effects on 

GABAergic terminals.

Chronic EtOH exposure produces functional adaptation of the CRF system in CeA (Hansson 

et al. 2006; Hansson et al. 2007; Sommer et al. 2008; Weiss et al. 2001). Interestingly, 

in CeA of dependent rats, the ability of maximal (200 nM) and a submaximal (100 nM) 

concentrations of CRF to augment evoked IPSCs was significantly enhanced compared 

to naïve CeA. A greater effect of CRF1R antagonists on basal IPSCs of dependent 

rats was also reported. The greater effect of CRF and CRF1R antagonists may reflect 

increased tonic release of endogenous CRF, constitutive CRF1R activation, increased 

receptor number, and/or sensitization of CRF1R in CeA of dependent rats This is supported 

by increased CRF and CRF1 mRNA levels seen in the CeA of alcohol-dependent rats, and 

by reversal of dependence–induced elevations in amygdalar GABA dialysate by a CRF1 

antagonist (Roberto et al. 2010a). Thus, these combined findings suggest an important 

EtOH-CRF interaction on GABAergic transmission in the CeA that markedly increases 

during development of ethanol dependence (Roberto et al. 2010a).

In other studies using adult mice, one and six cycles of the drinking in the dark paradigm 

(DID) increases CeA CRF immunoreactivity, suggesting that the CRF system is recruited 

during early binge-like drinking episodes (Lowery-Gionta et al. 2012). Notably, the synaptic 

effects of CRF on CeA GABAergic transmission are reduced after repeated bouts of binge-

like drinking (Lowery-Gionta et al. 2012).

Given the critical role of the CRF/CRF1 system and the cellular heterogeneity in the CeA, 

several recent studies have used a transgenic mouse line expressing the green fluorescent 

protein (GFP) under the Crhr1 promoter (CRF1:GFP) to readily identify neurons expressing 

CRF1 (CRF1+) (Justice et al. 2008; Herman et al. 2013a; Herman et al. 2016a) to unveil 

unique molecular, morphological and functional properties that distinguish CeA CRF1+ 

neurons from their CRF1 non-expressing (CRF1−) neighbors. CRF1+ neurons are mainly 

located in the medial subdivision of the CeA and exhibit an ongoing tonic GABAergic 

conductance driven by action potential-dependent GABA release. In contrast, CRF1− 

neurons do not display tonic inhibition (Herman et al. 2013a). As described above, chronic 

ethanol induced functional adaptations on phasic and tonic inhibition and cell firing in 
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CRF1+ and CRF1− CeA neurons (Herman et al. 2016a). In particular, a loss of tonic 

currents and a significantly higher basal firing rate was observed in CRF1+ CeA neurons 

projecting to the BNST of CIE vs. control mice (Herman et al. 2016a). Recent work from 

the Herman laboratory has shown that CRF1+ CeA neurons exhibit sex differences in 

sensitivity to the effects of acute alcohol, as well as CRF1 agonists and antagonists (Agoglia 

et al., 2020; 2021). Furthermore, chronic alcohol drinking produced neuroadaptations in 

CRF1+ neurons that increased the sensitivity of GABAA receptor-mediated sIPSCs to the 

acute effects of alcohol, CRF and the CRF1 antagonist R121919, but these adaptations were 

more pronounced in male versus female mice. The CRF1 antagonism reduced voluntary 

alcohol drinking in both sexes and abolished sex differences in alcohol drinking. The 

minimal alcohol-induced changes in the female CRF1 system may be related to the elevated 

alcohol intake displayed by female mice and could contribute to the ineffectiveness of CRF1 

antagonists in female AUD patients (Agoglia et al., 2020; 2021).

Retson and colleagues (2016) have reported similar results supporting clear sex differences 

in CeA CRF in rats. They found that alcohol drinking activated CeA CRF neurons and 

enhanced the response of these neurons to stress selectively in male but not female rats 

(Retson et al., 2016). Further investigation of these sex differences is necessary to clarify the 

contributions of CRF activity to alcohol use in both males and females.

Overall those studies have yielded significant insight into cell type-specific effects of acute 

and chronic alcohol in local and downstream CRF-CeA circuits. In parallel molecular 

studies have also assessed expression of subpopulation markers and neuropeptides, dendritic 

spine density and morphology, and glutamatergic transmission in CeA CRF1+ vs. CRF1− 

neurons (Wolfe et al. 2019). In brief, CeA CRF1+ neurons are GABAergic, but do 

not segregate with calbindin, calretinin, or PKCδ. Co-expression analysis using in situ 

hybridization revealed Crhr1 had highest co-expression with Penk and Sst and least with 

neuropeptide Y (NPY). Additionally, CeA CRF1+ neurons do not display differences in 

mature spines and accordingly no difference in basal CeA glutamate transmission. CRF 

application enhances overall glutamate release onto both CRF1+ and CRF1− neurons but 

increases postsynaptic glutamate receptor functions selectively in CRF1+ neurons (Wolfe et 

al. 2019).

CRF-related peptides serve as hormones and neuromodulators of the stress response 

and play a role in affective disorders. It has been shown that excitatory glutamatergic 

transmission is modulated by two endogenous CRF-related peptide ligands, CRF rat/human 

(r/h) and Ucn I, within the CeA and the lateral septum mediolateral nucleus (LSMLN) 

(Liu et al. 2004). Activation of these receptors exerts diametrically opposing actions on 

glutamatergic transmission in these nuclei. In the CeA, CRF(r/h) depressed excitatory 

glutamatergic transmission through a CRF1R-mediated postsynaptic action, whereas Ucn 

I facilitated synaptic responses through presynaptic and postsynaptic CRF2R-mediated 

mechanisms. Conversely, in the lateral septum mediolateral nucleus (LSMLN), CRF induced 

a CRF1R-mediated facilitation of glutamatergic transmission via postsynaptic mechanisms, 

whereas Ucn I depressed EPSCs by postsynaptic and presynaptic CRF2R-mediated actions. 

Furthermore, antagonists of these receptors also affected glutamatergic neurotransmission, 

indicating a tonic endogenous modulation at these synapses (Liu et al. 2004). These data 
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show that CRF receptors in CeA and LSMLN synapses exert and maintain a significant 

synaptic tone and thereby regulate excitatory glutamatergic transmission. In fact, studies on 

CIE-induced changes in the modulation of rat glutamatergic synapses by CRF (Varodayan 

et al. 2017a) reveleaed that CRF also decreased rat CeA locally- or basolateral amygdala 

(BLA)-evoked glutamatergic responses. In contrast to the evoked data CRF increased 

mEPSC frequency similarly in naive and CIE neurons, suggesting increased vesicular 

glutamate release (Varodayan et al. 2017a; Herman et al., 2016b). Those studies also 

revealed that CRF-induced facilitation of glutamate release is mediated by CRF1 receptors, 

but the mechanisms are complex and may involve both CRF1 and CRF2 receptors with 

opposite receptor subtype effects on glutamate release (Varodayan et al. 2017a). These rat 

studies agree with mouse studies showing that, acute bath application of EtOH significantly 

increased sEPSC frequency in a concentration-dependent manner in CeA neurons, and 

this effect was blocked by pretreatment of co-applied CRFR1 and CRFR2 antagonists 

(Silberman et al., 2015).

3.1.3. CRF Actions in the Bed Nucleus of the Stria Terminalis.—The BNST, a 

brain region associated with anxiety, has enriched expression of CRF (Ju and Han 1989) 

and CRFRs (Van Pett et al. 2000). A component of the extended amygdala, the BNST 

is anatomically well-situated to integrate stress and reward-related processing in the CNS, 

regulating activation of the hypothalamic-pituitary-adrenal (HPA) axis and reward circuits. 

The oval nucleus is a rich source of CRF neurons and terminals which may originate from 

local CRF neurons or from CRF neurons projecting from the CeA (Morin et al., 1999; 

Sakanaka et al., 1986; see also Kash et al., 2015 for review). Much evidence supports the 

role of CRF signaling in the BNST in general anxiety (Gafford et al., 2012; Sink et al., 

2013 see also Kash et al., 2015 for review), and anxiety-like behaviors induced by ethanol 

withdrawal (Huang et al., 2010).

Pharmacological studies suggest that CRF signaling in the BNST is involved in anxiety 

(Lee and Davis 1997) and stress-induced relapse to cocaine self-administration (Erb and 

Stewart 1999). Moreover, a stimulus that promotes anxiogenic responses, the withdrawal 

of rodents from chronic EtOH exposure, produces rises in extracellular levels of CRF in 

the BNST (Olive et al. 2002). However, in another study, following 2 weeks of binge-like 

alcohol intake, adolescent rats display decreases in CRF cell number in the CeA and no 

changes in BNST (Karanikas et al., 2013). Interactions between CRF and GABAergic 

transmission in BNST were reported to play a role in regulating stress and anxiety (Kash 

and Winder 2006). In this study the actions of CRF on GABAergic transmission in the 

ventrolateral region of the BNST were examined. This region projects to both the VTA 

(Georges and Aston-Jones 2002) and the PVN of the hypothalamus (Cullinan et al. 1993), 

thus providing a point of access to both reward and stress pathways. Using whole-cell 

recordings in a BNST slice preparation, Kash and Winder (2006) found that CRF enhances 

GABAergic transmission. Their pharmacological and genetic experiments suggest that CRF 

and urocortin CRF enhance postsynaptic responses to GABA through activation of the 

CRF1R. CRF1-R signaling in the BNST also enhances glutamatergic drive on neurons 

projecting to the VTA in a presynaptic fashion (Silberman et al., 2013). Thus, CRF can 
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enhance both inhibitory and excitatory transmission in the BNST, albeit through distinct 

signaling mechanisms.

Kash and coworker (Kash et al. 2008) also showed the action of dopamine on cellular 

and synaptic function in the BNST using an ex vivo slice preparation. These investigators 

demonstrated a rapid and robust dopamine-induced enhancement of excitatory transmission 

in the BNST. This enhancement is activity-dependent and requires the downstream action of 

CRF1R, suggesting that dopamine induces CRF release through a local network mechanism. 

Furthermore, it was found that both in vivo and ex vivo cocaine induced a dopamine 

receptor and CRF1R-dependent enhancement of a form of NMDA receptor-dependent 

short-term potentiation in the BNST. These data highlight a direct and rapid interaction 

between dopamine and CRF systems that regulates excitatory transmission and plasticity 

in a brain region key to reinforcement and reinstatement. Because a rise in extracellular 

dopamine levels in the BNST is a shared consequence of multiple classes of drugs of abuse, 

this suggests that the CRF1R-dependent enhancement of glutamatergic transmission in this 

region may be a common key action of substances of abuse (Kash et al. 2008). Subsequent 

studies from the Kash laboratory revealed a complex interaction between CRF and NPY in 

the BNST in the regulation of binge alcohol drinking in both mice and monkeys (see section 

below and Pleil et al., 2015a).

Francesconi et al., (Francesconi et al. 2009a; Francesconi et al. 2009b) investigated the 

effects of protracted withdrawal from alcohol in the juxtacapsular nucleus of the anterior 

division of the BNST (jcBNST). The jcBNST receives robust glutamatergic projections 

from the BLA, the postpiriform transition area, and the insular cortex as well as dopamine 

inputs from the midbrain. In turn, the jcBNST sends GABAergic projections to the 

medial division of the central CeA as well as other brain regions. These investigators 

described a form of long-term potentiation of the intrinsic excitability (LTP-IE) of neurons 

of the jcBNST in response to high-frequency stimulation (HFS) of the stria terminalis 

that was impaired during protracted withdrawal from alcohol (Francesconi et al. 2009b). 

Administration of the selective CRF1R antagonist (R121919), but not of the CRF2R 

antagonist (astressin 2B), normalized jcBNST LTP-IE in animals with a history of alcohol 

dependence (Francesconi et al. 2009b). In addition, repeated, but not acute, administration 

of CRF itself produced a decreased jcBNST LTP-IE. These investigators also showed 

that dopaminergic neurotransmission is required for the induction of LTP-IE of jcBNST 

neurons through dopamine D1 receptors (Francesconi et al. 2009b). Thus, activation of the 

central CRF stress system and altered dopaminergic neurotransmission during protracted 

withdrawal from alcohol and drugs of abuse may contribute to the disruption of LTP-IE 

in the jcBNST. Furthermore, the jcBNST also shows marked reductions in excitability 

after protracted withdrawal from CIE (Szücs et al., 2012). Overall, the impairment of this 

form of intrinsic neuronal plasticity in the jcBNST could result in inadequate neuronal 

integration and reduced inhibition of the CeA, contributing to the negative affective state that 

characterizes protracted abstinence in post-dependent individuals (Francesconi et al. 2009a; 

Francesconi et al. 2009b).

It is important to mention that NE is another key interface in the BNST-CRF with stress and 

chronic ethanol. Studies have examined the effects of NE on BNST CRF neuron activity 
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and determine if these effects may be modulated by CIE exposure or a single restraint stress 

(Snyder et al., 2019). Stress and CIE enhance BNST CRF neuron activity via similar β-AR 

dependent mechanisms. Surprisingly, stress and CIE do not appear to alter NE-induced 

inhibition of glutamatergic inputs onto BNST CRF neurons, an effect previously shown to 

be α-AR dependent 2 (Fetterly et al., 2019). Together, these results indicate that stress and 

chronic EtOH target the activity of β-ARs on BNST CRF neurons without altering α-AR 

modulation of these neurons, thereby altering the α/β-AR balance within this circuitry. 

Thus, maintaining α/β-AR balance in BNST CRF circuits may be an important target for 

novel treatments for stress-related disorders and stress-induced reinstatement to alcohol 

seeking behaviors (Snyder et al., 2019).

3.1.4. CRF Actions in the Basolateral Amygdala.—Liu et al., (Liu et al. 2004) 

demonstrated that CRF and its related family of peptides act differentially at CRF1 vs. 

CRF2 synaptic receptors to facilitate or depress excitatory transmission in CeA and lateral 

septum mediolateral nucleus. Notably, the effects of CRF and its ligands occurred without 

any apparent direct action on membrane potential or membrane excitability, suggesting that 

the role of CRF at these limbic synapses is that of a ‘neuroregulator’. The investigators 

suggested pre- and post-synaptic loci for CRF1 and CRF2 receptors within the glutamatergic 

CeA and LSMN synapses. Although both synapses exhibit a comparable pre- and post-

synaptic location of CRF1 and CRF2 receptors, their functions (facilitation vs. depression 

of glutamatergic transmission) are opposite within each synapse (Gallagher et al. 2008). 

Liu et al., (Liu et al. 2004) also demonstrated that endogenous CRF ligands induce a tonic 

effect on excitatory glutamatergic transmission at synapses within both of these nuclei since 

application of competitive, selective CRF1 or CRF2 receptor antagonists resulted in an 

enhancement or depression of glutamatergic EPCS. A similar tonic endogenous action of 

CRF ligands was not observed under control conditions in the medial prefrontal cortex 

(Orozco-Cabal et al. 2006). This latter result further emphasizes that CRF effects are 

different depending upon the CNS synapse being investigated. Most of these studies in 

the Gallagher group aimed to investigate the action of CRF on glutamatergic synapses 

in relation to cocaine administration. There is very poor data on EtOH-CRF-glutamate 

interaction.

Taken together these data suggest that a dysregulation of the extrahypothalamic CRF 

function is a major determinant of vulnerability to high alcohol intake and maintenance 

of alcohol and drug dependence and other aspects of AUD.

3.2. Neuropeptide Y

The inhibitory NPY peptide is produced in abundance in the hypothalamus, and 

phylogenetically conserved across species (Allen et al. 1986). NPY is involved in regulation 

of food and water intake. It has recently been ascribed its prominent role in the aversive 

aspects of alcohol withdrawal and relapse via their actions in the CeA. Endogenous NPY 

reduces anxiety via actions in the amygdala (Heilig et al. 1993; Sajdyk et al. 2002) and 

suppresses alcohol drinking in rats (Gilpin et al. 2003) via its actions in CeA (Gilpin et al. 

2008a; Gilpin et al. 2008b; Thorsell 2008). More specifically, NPY microinjection into the 
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CeA exhibits an enhanced ability to suppress alcohol drinking in certain subpopulations of 

drinkers, including rats that are made dependent on alcohol via vapor inhalation.

NPY is generally co-localized with GABA in inhibitory interneurons. NPY mediates its 

actions by interacting with a family of G-protein coupled receptors (GPCRs), at least 5 of 

which have been cloned and designated Y1, Y2, Y4, Y5, and Y6. These receptors are widely 

distributed throughout the brain. NPY also has been shown to be a regulator of neuronal 

excitability in hippocampus, where its cellular actions have been most extensively studied 

(Colmers et al. 1991). In the amygdala, NPY has anxiolytic effects that are mediated via 

activation of Y1 receptors (Heilig et al. 1993). NPY neurons in the amygdala project to 

the BNST (Allen et al. 1984), which also contains Y1 receptors and Y1 and Y2 receptor 

mRNA. Further, the CeA receives NPYergic input from the nucleus of the solitary tract, 

arcuate nucleus, and the lateral septum (see (Kask et al. 2002) for a review). Y1, Y2 and 

Y5 receptors, and receptor mRNA are found in the amygdala, and each of these receptor 

subtypes has been implicated in anxiety (Kask et al. 2002). Y2 receptors are thought to act 

presynaptically as autoreceptors providing negative feedback to NPYergic nerve terminals, 

whereas Y1 receptors appear to act postsynaptically (Kask et al. 2002; Wolak et al. 2003).

Many in vivo studies point to the involvement of NPY in mediating some of the behavioral 

effects of EtOH (Caberlotto et al. 2001; Cippitelli et al. 2010; Rimondini et al. 2005). NPY 

KO mice show increased EtOH preference but blunted behavioral responses to ethanol, 

while NPY overexpressors show a lower preference and increased sensitivity to ethanol 

(Thiele et al. 1998). Likewise, increased NPY expression in the CeA was noted in two 

independent strains of alcohol-preferring rats (Hwang et al. 1999). There were increased 

levels of NPY in the paraventricular nucleus of the hypothalamus (PVN) and arcuate nucleus 

of EtOH-preferring rats and decreased NPY levels in the CeA of ethanol-preferring rats, 

suggesting an inverse relationship between NPY levels in the CeA and EtOH consumption. 

Additionally, alcohol-preferring rats show significant decreases in both cAMP-responsive 

element-binding protein (CREB) and NPY levels in the CeA and medial amygdala, but not 

the basolateral amygdala (Pandey et al. 2005). Further, virally-mediated alterations in NPY 

levels in the CeA differentially affect EtOH consumption in rats with low and high basal 

levels of anxiety (Primeaux et al. 2006). Also, recent genetic and pharmacological evidence 

indicates that C57BL/6J mice have low NPY levels in CeA compared to DBA/2 mice, 

suggesting that NPY contributes to the high EtOH consumption characteristic of C57BL/6J 

mice (Hayes et al. 2005).

Electrophysiological findings suggest that NPY and EtOH have a similar profile of actions 

(Ehlers et al. 1998a; Ehlers et al. 1998b; Ehlers et al. 1999). Increased sensitivity to 

NPY and CRF was observed in cortex and amygdala after chronic EtOH exposure, as 

measured by EEG activity and event-related potentials (Slawecki et al. 1999). Modulation 

of amygdala EEGs by NPY differs in naïve P and NP rats, suggesting that NPY has 

different neuromodulatory effects in these two strains (Ehlers et al. 1998a). Furthermore, 

NPY antagonizes the effects of CRF in the amygdala (Ehlers et al. 1998a).

At the cellular level NPY interactions with EtOH have been characterized in the CeA and 

other brain regions (for review see (Gilpin et al., 2015; Robinson & Thiele, 2017). Gilpin 
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and colleagues (Gilpin et al., 2011) found that NPY in rat CeA prevents acute alcohol-

induced increases in evoked and spontaneous GABA release. Pharmacological manipulation 

with antagonists confirm the presynaptic site of action and suggest that NPY blocks alcohol 

effects via presynaptic Y2Rs. NPY also normalizes alcohol dependence-induced increases 

in GABA release in CeA, suggesting that chronic exposure causes neuroadaptations in NPY 

systems that affect inhibitory transmission. Notably, in mice, central infusion of NPY, a NPY 

Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol 

drinking in C57BL/6J mice (Sparrow et al., 2012). Binge-like ethanol drinking reduced NPY 

and Y1R immunoreactivity in the CeA, and 24 h of ethanol withdrawal increased Y1R 

and Y2R immunoreactivity. Binge-like ethanol drinking also increased the ability of NPY 

to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice 

promoted alterations of NPY signaling in the CeA (Sparrow et al., 2012), and administration 

of exogenous NPY compounds protected against binge-like drinking. Overall, these results 

in the CeA of rats and mice align with findings on NPY modulation of GABA transmission 

in BNST (Kash and Winder 2006) and suggest that Y2Rs function as autoreceptors 

regulating NPY release. NPY and CRF have opposing effects on stress and anxiety as 

well as on synaptic activity in BNST (Heilig et al. 1994; Kash and Winder 2006). Kash and 

Winder (2006) found that NPY and CRF inhibit and enhance GABAergic transmission, 

respectively: NPY depresses GABAergic transmission through activation of the Y2 

receptors, whereas CRF and urocortin enhance GABAergic transmission through activation 

of CRF1 receptors. Further, NPY appears to reduce GABA release, whereas CRF enhances 

postsynaptic responses to GABA, suggesting potential anatomical and cellular substrates 

for the robust behavioral interactions between NPY and CRF in the extended amygdala. 

A recent study employed physiological, pharmacological and chemogenetic approaches to 

identify a precise neural mechanism in the BNST underlying the interactions between NPY 

and CRF in the regulation of binge alcohol drinking in both mice and monkeys (Pleil et 

al., 2015a). The results showed that Y1R activation in the BNST suppressed binge alcohol 

drinking by enhancing inhibitory synaptic transmission specifically in CRF neurons via 

a previously unknown Gi-mediated, PKA-dependent postsynaptic mechanism. In addition, 

chronic alcohol drinking altered Y1R function in the BNST of both mice and monkeys, 

highlighting the enduring, conserved nature of this effect across mammalian species (Pleil et 

al., 2015a).

Chronic restraint stress also alters the NPY system (Pleil et al., 2012). Specifically, increases 

NPY and Y2R expression in the BNST and reduces the Y2R-mediated effect of NPY on 

inhibitory synaptic transmission in a stress-susceptible mouse strain (DBA/2J), but not a 

stress-resilient strain (C57BL/6J) (Pleil et al., 2012). Notably, deletion of neuropeptide Y2 

receptors from GABAergic neurons in the extended amygdala differently affected affective 

and alcohol drinking behaviors in male and female mice (McCall et al., 2013). Specifically, 

females displayed greater basal anxiety, higher levels of ethanol consumption, and faster 

fear conditioning than males, and that knockout mice exhibited enhanced depressive-like 

behavior in the forced swim test. Together, these finding support higher expression of 

negative affective and alcohol drinking behaviors in females than males, and they highlight 

the importance of Y2R function in GABAergic systems in the expression of depressive-like 

behavior (McCall et al., 2013).
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3.3. Orphanin FQ/nociceptin (OFQ/N)

Nociceptin (known also as orphanin FQ) is the most recently discovered member of 

the endogenous opioid peptide family, albeit nearly 15 years ago. Nociceptin mediates 

or influences many behavioral, psychological and neurobiological processes, including 

memory, anxiety, stress and reward (Economidou et al. 2008; Martin-Fardon et al. 2010; 

Murphy 2010). The heptadecapeptide nociceptin is the endogenous ligand of the nociceptin 

opioid receptor (NOR), previously referred to as opiate receptor-like1 (ORL1). NOR is a 

GPCR that belongs to the opioid receptor family (Mogil et al. 1996; Mogil and Pasternak 

2001). In rodents, moderate to high levels of NOR mRNA are detected in cerebral cortex, 

nucleus accumbens, amygdala, dorsal raphe nucleus and hippocampus (Harrison and Grandy 

2000). Nociceptin has a high structural homology with opioid peptides, especially dynorphin 

A (Meunier et al. 1995; Reinscheid et al. 1995), but nociceptin does not bind to MOR, DOR 

or KOR (μ, δ and κ-opioid receptors) and opioid peptides do not bind NOR (Lachowicz et 

al. 1995; Reinscheid et al. 1995). Nociceptin inhibits forskolin-stimulated cAMP formation 

(see (Harrison and Grandy 2000; Hawes et al. 2000), and protein kinase C (PKC), MAP 

kinases and phospholipase A2 have been linked to NOR (Fukuda et al. 1998; Hawes et al. 

2000; Lou et al. 1998).

At the cellular level, nociceptin acts at NOR to augment K+ conductances in amygdalar 

(Meis and Pape 1998, 2001), hippocampal (Amano et al. 2000; Ikeda et al. 1997; Madamba 

et al. 1999; Tallent et al. 2001; Yu and Xie 1998) and thalamic neurons (Meis 2003; 

Meis et al. 2002), thus depressing cell excitability. Nociceptin has also been shown to 

decrease Ca2+ currents (Abdulla and Smith 1997; Calo et al. 2000; Connor et al. 1999; 

Henderson and McKnight 1997; Larsson et al. 2000) and to reduce the amplitude of both 

non-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) and IPSCs in rat 

lateral amygdala (Meis et al. 2002).

Roberto and Siggins (2006) found that nociceptin did not significantly alter resting 

membrane potential, input resistance or spike amplitude, in accord with results reported 

by others in CeA (Meis and Pape 1998) and for other brain regions (Ikeda et al. 1997; 

Madamba et al. 1999; Tallent et al. 2001). However, nociceptin dose-dependently reduced 

GABAA-IPSCs. This inhibition of GABAergic transmission was reversible on washout 

(Roberto and Siggins 2006). Nociceptin also concomitantly increased the PPF of IPSCs, 

and decreased the frequency of mIPSCs, suggesting decreased GABA release. Thus, 

nociceptin decreases GABAergic transmission by reducing GABA release at CeA synapses 

(Roberto and Siggins 2006). Interestingly, nociceptin applied before EtOH completely 

prevented the ethanol-induced enhancement of GABAergic transmission in CeA opposing 

the enhancing action of ethanol on GABA release (Roberto and Siggins 2006). These 

investigators also found that the nociceptin-induced decrease of GABAergic transmission 

was larger in EtOH-dependent rats and might reflect neuroadaptations associated with 

ethanol-dependence. Notably, nociceptin completely blocked the CRF-induced increase of 

GABA release (Cruz et al., 2012), suggesting that nociceptin antagonized the effect of 

CRF. Moreover, the NOP receptor antagonist [Nphe1]nociceptin(1–13)NH2 blocked the 

nociceptin-induced diminution of GABA but not the CRF-induced augmentation of GABA 

release, indicating that nociceptin modulates both ethanol and CRF effects through the 
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NOP receptors. Nociceptin also blocked CRF-induced increases in GABAergic responses in 

CeA from ethanol-dependent rats (Cruz et al., 2012). Using a multidisciplinary approach, 

Ciccocioppo and collaborators (2014) found a selective upregulation of the nociceptin and 

downregulation of the CRF1 receptor transcripts in the CeA and BLA after stress restraint 

(Ciccocioppo et al., 2014a). Notably, intra-CeA injections of nociceptin reduced anxiety-like 

behavior in restrained rats in the elevated plus maze. Finally, in restraint stressed rats, 

baseline CeA GABAergic responses were elevated and nociceptin exerted a larger inhibition 

of GABA responses compared with non-restrained rats (Ciccocioppo et al., 2014a).

Nociceptin interaction on glutamatergic transmission and ethanol effects were also 

investigated (Kallupi et al., 2014a). Acute and chronic ethanol exposures significantly 

decrease glutamate transmission by both pre- and postsynaptic actions (Roberto et al., 

2004b). Nociceptin diminished basal-evoked compound glutamatergic and spontaneous 

glutamate transmission by mainly decreasing glutamate release in the CeA of naive 

rats (Kallupi et al., 2014a). Nociceptin blocked the inhibition induced by acute ethanol 

and ethanol blocked the nociceptin-induced inhibition of glutamatergic responses in CeA 

neurons of naive rats. Like the GABAergic synapses, nociceptin antagonism revealed tonic 

inhibitory activity of NOP on CeA glutamatergic transmission only in alcohol-dependent 

rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic responses 

but did not affect ethanol-induced decreases in evoked glutamate responses. Taken together, 

these studies implicate a potential role for the nociceptin system in regulating CeA 

glutamatergic and GABAergic synapses in both acute stress and alcohol dependence 

providing translational support for nociceptin as a “druggable” candidate system for 

medication development for the treatment of AUD. In support of this concept, it is important 

to continue to identify novel soluble non-peptidergic molecules, such as nociceptin agonists 

(Ciccocioppo et al., 2014b; Kallupi et al., 2014b) that decrease excessive drinking and act 

at the cellular level in brain regions such as the amygdala that are associated with ethanol 

dependence.

The functional interactions of neuropeptides (CRF, NPY, nociceptin) with inhibitory and 

excitatory systems in the brain may play major roles in the acute reinforcement effects 

of EtOH. Understanding the underlying mechanisms of these interactions may offer a 

possible avenue for restoring “normal” function following chronic drug exposure. The 

neuroadaptations induced by chronic EtOH on GABAergic and glutamatergic systems may 

represent homeostatic or compensatory mechanisms in response to the acute ethanol actions 

on these systems.

4. New Approaches to Determine In Vivo Roles of Ethanol Effects on 

Synaptic Transmission

From the foregoing discussion it should be clear that we now know a great deal about how 

acute and chronic EtOH exposure alters synaptic function. However, less is known about 

the roles played by these synaptic effects in the in vivo physiological and behavioral effects 

of the drug. New genetic, optical, pharmacological and physiological techniques allow for 

faster advancement in this research area.
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Assessing alcohol effects on in vivo neural function has moved beyond traditional single- 

and multi-unit electrophysiological recordings. New systems such as the “Neuropixels” 

recording system allow investigators to measure the firing of 1000s of neurons in a 

single recording with excellent signal/noise ratios and discrimination of single neurons 

(Steinmetz et al., 2021). When combined with the proper analysis tools this approach 

has the potential to enhance our understanding of the alcohol impact of neurophysiology. 

Combining such recordings with genetic and pharmacological manipulations of synaptic 

proteins and synaptic function will allow investigators to determine how particular synapses 

contribute to EtOH-induced changes in neuron/circuit function and behavior.

An explosion of techniques for measurement of neuronal activity and neurotransmitter 

levels has taken place over the last decade. With the development of genetically-encoded 

fluorescent sensors for intracellular calcium, other second messengers and extracellular 

neurotransmitters, real-time in vivo measurements can now be made with imaging and 

optical fiber-based photometry (Jing et al., 2019; Liang et al., 2015; Labouesse and 

Patriarchi, 2021; Meng et al., 2018; Siciliano and Tye, 2019). Combining these approaches 

with behavioral analysis in awake animals is providing unprecedented analyses of how a 

variety of neuronal/synaptic functions are related to behavior. These techniques are already 

being applied to examine effects of EtOH on the function of specific afferent projections 

in the brain (Siciliano and Tye, 2019). Studies in the coming years are sure to reveal much 

more detailed evidence of EtOH effects on neurotransmitter levels that can be related to 

drinking or other behaviors.

As mentioned earlier in this chapter, optogenetic activation of specific afferent projections 

has now gained widespread usage in neuroscience and alcohol research. By expressing 

a light-activatable opsin that induces depolarization or hyperpolarization in a specific 

cell type, investigators can now interrogate how EtOH and other drugs alter synaptic 

transmission at a given synapse. Studies investigating EtOH effects on optogenetically-

activated synaptic transmission in brain slices have already been discussed. This technique 

is also being used to examine how altered function of specific neurons affects EtOH-related 

behaviors (Juarez et al., 2019). Combining optogenetic approaches with other techniques 

outlined in this chapter should allow investigators to determine how EtOH exposure alters 

afferent and synaptic function in vivo.

The development of techniques for activation of non-native LGICs and GPCRs with ligands 

that are normally biologically inactive has revolutionized techniques for altering neuronal 

and synaptic function (Campbell et al., 2018; Vardy et al., 2015). These approaches allow 

investigators to examine how activation, inhibition and modulation of different neural cells 

contribute to circuit function and behavior. With regard to synaptic function, the Designer 

Receptor Exclusively Activated by Designer Drug (DREADD) technique is especially 

attractive. This technique uses genetically engineered GPCRs that can be inserted into 

neurons of interest and affect neuronal/synaptic function in numerous ways. For example, 

the DREADD variants that couple to Gi/o G-proteins inhibit neurotransmitter release (e.g. 

hM4Di) (Armbruster et al., 2007), as expected from other GPCRs with similar coupling. 

It is now possible to alter transmitter release at an identified synaptic terminal in vivo, 

especially when DREADD expression is combined with local injection of the designer drug 

Lovinger and Roberto Page 47

Curr Top Behav Neurosci. Author manuscript; available in PMC 2024 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receptor agonist (Gremel et al., 2016; Mahler et al., 2014). This will allow investigators 

to interrogate how a particular presynaptic manipulation alters EtOH-related behaviors, and 

mimic effects of EtOH at identified synapses. Additional uses of this technique to alter 

pre- and postsynaptic function and interactions with EtOH will undoubtedly be used in the 

coming years.

5. Conclusions

In this review we have focused on acute and chronic EtOH actions on synaptic transmission. 

It is not possible to cover all aspects of this topic, and thus we have focused on describing 

the best established EtOH actions. As the review attests, EtOH affects numerous aspects of 

synaptic transmission both directly and indirectly, to alter brain function and behavior. Acute 

exposure to EtOH generally increases the function of cys-loop ligand-gated ion channels, 

with prominent effects of GABAA and glycine receptors. These actions increase synaptic 

and extrasynaptic inhibition and are thought to contribute to sedation and other aspects 

of intoxication. Ionotropic glutamate and P2X receptors are generally inhibited by acute 

EtOH exposure, with some noted exceptions. The inhibitory effect on ionotropic glutamate 

receptors is most prominent at NMDARs and on NMDAR-mediated synaptic responses, and 

this inhibitory action is thought to contribute to cognitive impairment produced by EtOH. At 

present the postsynaptic EtOH effects on neurotransmitter receptors appear to occur within 

the receptor molecules themselves, although more work is needed to elucidate the roles 

of posttranslation modification. On the presynaptic side, acute EtOH generally potentiates 

GABA release, contributing to the enhanced neuronal inhibition produced by the drug. The 

molecular mechanisms involved in EtOH potentiation of GABA release remain to be fully 

explored. Ethanol also alters other aspects of synaptic transmission involving amino acid 

transmitters and monoamines. The net result of the EtOH effects of transmission seems to 

be to dampen synaptic excitation in many brain regions and reduce most forms of synaptic 

plasticity (with noted exceptions).

Chronic exposure to EtOH, whether by forced administration or ingestion, generally 

enhances the function of NMDARs, most often those containing the NR2B subunit. 

Increases in glutamate release and responses to some other glutamate receptors are also 

observed following chronic exposure. The net effect of these increases in glutamatergic 

transmission appears to be a hyperexcitable CNS state during withdrawal that contributes 

to withdrawal symptoms and relapse. Excitotoxicity might be another result of this hyper-

glutamatergic state. In general, acute EtOH effects on glutamate receptor function and 

glutamatergic transmission are intact even after subchronic or chronic ethanol exposure, 

suggesting that behavioral tolerance is not a simple function of loss of pharmacological 

effects at these synapses. At GABAergic synapses, chronic EtOH generally alters either 

the efficacy of inhibitory synaptic transmission or the types of receptors involved in 

transmission. Extrasynaptic GABAA receptor-mediated synaptic responses are also altered, 

leading to changes in tonic current in the postsynaptic neuron. The pattern of chronic 

EtOH effects on GABAergic transmission varies considerably across brain regions, making 

this subject a rich and important area for future investigation. The resultant alterations in 

patterns of GABAergic transmission in key brain regions may contribute to aspects of AUD 

including EtOH tolerance, dependence and drug intake. More work is needed to determine 
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the exact pattern of changes in GABAergic inhibition across brain regions, and how these 

changes contribute to aspects of alcohol use disorders including tolerance, dependence, and 

escalating intake.

The modulatory effects of neuropeptides have become subjects of intense investigation 

in the alcohol research field. Neuropeptides implicated in stress responses, such as CRF, 

appear to contribute to stress-EtOH interactions as well as drinking and relapse. Acute EtOH 

exposure alters the release of some neuropeptides, while others alter synaptic transmission 

in ways that interfere with the actions of ethanol. Chronic EtOH exposure also appears to 

alter neuropeptide modulatory actions. In addition to providing tools for investigation of 

mechanisms involved in ethanol actions, the neuropeptides may also provide new avenues 

for pharmacotherapies that could be used in the treatment of alcohol use disorders. Despite 

the great progress done and the promising results in understanding the mechanisms of 

action of numerous neuropeptides in well-established preclinical models of AUD, translating 

this knowledge to the clinical side has been ineffective. Similar issues hamper preclinical 

models of antidepressant activity and psychiatric domains in which neuropeptide-targeting 

compounds have yet to show clinical efficacy. Researchers have just begun to explore the 

alcohol-related actions of a few of the many neuropeptides found in brain. Thus, more work 

remains to fully define how peptides participate in alcohol the neural actions of alcohol.
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Figure 1. 
Acute and chronic EtOH effects on GABAergic and glutamatergic synaptic transmission. 

A) Schematic diagram of an inhibitory CNS synapse, including presynaptic GPCRs that 

modulate neurotransmitter release, and postsynaptic ionotropic receptors (located both at 

synapses and extrasynaptically) that mediate fast synaptic transmission. The predominant 

presynaptic effect of acute EtOH is potentiation of GABA release (most likely by 

increasing the probability of vesicle fusion). This presynaptic potentiation may involve 

neuromodulators such as CRF, and activation of presynaptic GPCRs and downstream 

signaling pathways. Postsynaptically, EtOH potentiates ionotropic GABAA and glycine 

receptor function. Increases in synaptic GABAAR function prolong synaptic responses, 

while potentiation of extrasynaptic receptors increases tonic current that affects neuronal 

excitability. B) Changes in GABAergic synapses following chronic EtOH exposure. 

Presynaptically, the release of GABA is decreased. Alterations in levels of neuromodulators 

that act on GPCRs, as well as altered function of presynaptic GPCRs may contribute to 

these changes. Postsynaptically, the subunit composition of GABAARs is altered, often 

including increased synaptic α4-containing receptors, and fewer α1-containing synaptic 

receptors. Synaptic α4–containing receptors may be less sensitive to acute EtOH, promoting 

tolerance to synaptic effect of the drug. C) Schematic diagram of a glutamatergic synapse 

on a dendritic spine, including postsynaptic ionotropic receptors that mediate fast synaptic 

transmission. The predominant effect of acute EtOH is to inhibit ionotropic glutamate 

receptor function, and all subclasses of these receptors are sensitive to EtOH inhibition. 

The most potent effects have been observed at kainate and NMDA receptor subtypes. D) 

Changes in glutamatergic synapses following chronic EtOH exposure. Presynaptically, the 
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release of glutamate is enhanced. Postsynaptically, NMDAR function is increased, most 

likely due to increased receptor density at the synapse. There is also evidence for increased 

numbers of NR2B-containing NMDARs, as well as evidence of increased dendritic spine 

volume.
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Figure 2. 
Chronic EtOH effects on dopaminergic and cholinergic transmission. A) Chronic EtOH 

exposure generally enhances DA release, although decreases have also been observed. 

Decreased DAT expression may contribute to hyperdopaminergic conditions following 

chronic exposure. Enhanced potency of kappa opiate receptor agonist inhibition of DA 

release indicates either greater numbers or increased sensitivity of these presynaptic 

receptors. The number of D2 receptors is decreased in humans with AUD, while chronic 

EtOH-induced changes in D2 autoreceptor function vary in different species and sexes. 

B) Chronic EtOH exposure has mixed effects on ACh release, increasing release at some 

synapses, while decreasing it at others. Likewise, chronic EtOH effects on nAChR number 

and function are a mix of enhancement and reduction depending on receptor subtypes 

and cellular locus of the receptor. In contrast, chronic EtOH exposure generally increases 

mAChR function in the different preparations in which this has been examined.
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