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Abstract 
The microbiome plays a critical role in the process of conception and the outcomes of pregnancy. Disruptions in microbiome homeostasis in 
women of reproductive age can lead to various pregnancy complications, which significantly impact maternal and fetal health. Recent studies 
have associated the microbiome in the female reproductive tract (FRT) with assisted reproductive technology (ART) outcomes, and restoring 
microbiome balance has been shown to improve fertility in infertile couples. This review provides an overview of the role of the microbiome in 
female reproductive health, including its implications for pregnancy outcomes and ARTs. Additionally, recent advances in the use of microbial 
biomarkers as indicators of pregnancy disorders are summarized. A comprehensive understanding of the characteristics of the microbiome 
before and during pregnancy and its impact on reproductive health will greatly promote maternal and fetal health. Such knowledge can also 
contribute to the development of ARTs and microbiome-based interventions.
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Introduction
With rapid social and economic development, female reproduc-
tive health has received increasing attention. There have been 
various proactive lifestyle recommendations to promote repro-
ductive health, such as engaging in regular exercise and main-
taining a balanced diet that includes high-fiber food [1,2]. 
Recent studies have indicated that the microbiome also plays a 
crucial role in successful pregnancy and favorable pregnancy 
outcomes [3,4]. Microbiome refers to the community of all 
commensal, symbiotic, and pathogenic microorganisms within 
a body or other environment, and their habitat [5]. Previous 
studies have shown that the microbiome plays an essential role 
in the healthy development of the human body and the onset of 
various diseases [6–8]. Microbiomes in different parts of the hu-
man body exhibit different dynamic patterns throughout differ-
ent life stages, with pregnancy being one of the most critical life 
stages [9–12]. Previous studies focusing on mothers and babies 
during the perinatal period have shown frequent microbial in-
teraction and transmission across various body sites, indicating 
the importance of microbial homeostasis, particularly in the gut 
and reproductive tract, for the health of both mothers and 
infants during this critical time window [9,13]. Emerging studies 
also suggest that the depletion of certain bacteria in early life 
may lead to significant health issues in childhood [14–16]. 
Therefore, investigating the characteristics of the microbiome 
before and during pregnancy, as well as understanding how the 
microbial variations impact pregnancy health and delivery out-
comes, not only contributes to the development of risk predic-
tion models, but also provides targets for microbiome-based 
interventions to improve reproductive health.

In modern times, unhealthy lifestyles have remarkably in-
creased the incidence of pregnancy complications. These ill-
nesses during pregnancy have a noticeable impact on healthy 
reproduction. Over the past few decades, the prevalence of 
infertility has led to the growth of assisted reproductive tech-
nologies (ARTs) [17], which provide hope to many couples 
facing reproductive difficulties. ART refers to any fertility- 
related treatment in which eggs or embryos are manipulated, 
with in vitro fertilization (IVF) being the main type [18]. The 
IVF process typically involves retrieving eggs and sperm, fer-
tilizing the eggs, culturing and screening the embryos, and fi-
nally transferring an appropriate embryo into the uterus [18]. 
Recently, a lot of studies have associated the microbiome in 
the female reproductive tract (FRT) with ART outcomes and 
provided some interesting observations [19–23]. However, 
due to inconsistent conclusions among different studies, the 
progress of ARTs remains limited. A comprehensive under-
standing of the role of the microbiome in the ART process is 
crucial and urgently needed.

Pregnancy is a complex process during which several criti-
cal changes occur in a woman’s body, including alterations in 
immune response, hormonal balance, microbial pattern, and 
metabolism, to support or adapt to the growth and develop-
ment of the fetus in the uterus [9,11,24]. If these dynamic 
patterns during pregnancy are disrupted, it can lead to a vari-
ety of pregnancy complications such as gestational diabetes 
mellitus (GDM), preeclampsia (PE), and adverse pregnancy 
outcomes including premature labor, low birth weight, and 
macrosomia [25–28]. For example, many studies have con-
firmed a close association between unfavorable maternal 
health and the perturbation of metabolites originating from 
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disrupted microbiota during pregnancy [29]. Other observa-
tions have linked increased microbial diversity in the repro-
ductive tract to preterm birth, highlighting the potential of 
the microbiome as an indicator of reproductive health 
[30,31]. These disorders not only have a significant impact 
on maternal health, but also have a detrimental effect on the 
fetus and future infant [32]. Using specific microbes as 
markers can predict the onset of diseases to a large extent 
and allow for early intervention [33–35]. At the same time, 
microbiome-targeted therapies [36], such as probiotic inter-
vention and vaginal microbiota transplantation (VMT), show 
promise for improving reproductive health and pregnancy 
outcomes [33,37–39]. Probiotics can enhance the microbial 
environment and may relieve complications, while VMT 
aims to restore a normal vaginal microbiome using donor 
samples, much like fecal microbiota transplantation (FMT) 
for the gut [39]. These interventions highlight the pressing 
need to better understand microbial balance in the FRT.

It is of great significance to restore the maternal gut and re-
productive tract microbiomes through appropriate interven-
tions to improve maternal health and pregnancy outcomes 
and promote the healthy development of newborns after de-
livery [39–42]. More importantly, it is crucial to understand 
the changes in the microbiome before and after conception 
and their potential associations and influences on maternal 
and fetal health. This review provides an overview of the im-
pact of gut and reproductive tract microbiota on female re-
productive health before and during pregnancy, and 
summarizes recent advancements in the microbial character-
istics in the FRT. In particular, we emphasize the significance 
of the microbiome in the IVF process and explore its predic-
tive role in pregnancy complications.

Impact of lifestyle on gut microbiome and 
reproductive health
The microbiome is believed to be involved throughout gesta-
tion and exerts persistent influences on both mothers and 
fetuses [9]. Although most host–microbe interactions be-
tween mother and offspring occur during pregnancy and de-
livery, the prepregnancy microbiome of females may also 
play a vital role in fertility and gestation maintenance 
[3,4,43]. A number of studies have indicated that maternal 
conditions before pregnancy persist into the pregnancy and 
have a tremendous effect on conception and the health of fu-
ture children [44–46]. Factors such as stress, drug use, smok-
ing, and alcohol consumption, which are known to affect 
human health, also affect the microbiome of different body 
sites [46–48].

The intestine is a delicate ecosystem housing trillions of 
microbes [7]. These microbes interact with each other and 
play an important role in maintaining gut homeostasis and 
normal neurodevelopment [6,49,50]. Dysbiosis of the gut 
microbiota before and during pregnancy is closely associated 
with some pregnancy complications and pediatric diseases, 
such as GDM, asthma, allergies, wheezing, and obesity [51– 
55]. Among these, obesity is one of the most common meta-
bolic disorders that can disturb the gut microbiome and lead 
to long-term impacts on both mothers and their offspring 
[56,57]. Obesity induces excessive accumulation of adipose 
tissue, which leads to chronic inflammation and disrupts met-
abolic homeostasis [58,59]. It is widely associated with GDM 
and other diseases [60]. Some studies have demonstrated that 

mothers with excessive weight gain have a higher chance of 
giving birth to obese offspring [55,61]. Other studies have 
also showed that the prepregnancy body mass index (BMI) of 
mothers is correlated with the healthy condition of their 
infants, suggesting that the relationship between gut micro-
biome and reproductive health may begin before conception 
[62,63]. Nevertheless, the underlying mechanism between the 
prepregnancy microbiome and postnatal health needs further 
explanation.

An active lifestyle is recommended for all women, whether 
currently pregnant or planning for conception [1,64,65]. 
Numerous studies have illustrated that regular exercise and a 
balanced diet are powerful contributors to overall health 
[1,64,66]. The abundance of Akkermansia and some 
butyrate-producing bacterial taxa, such as Faecalibacterium 
prausnitzii, Roseburia hominis, and Lachnospiraceae, is in-
creased in women with active lifestyles [67–69]. Such bacteria 
can produce short-chain fatty acids (SCFAs), which are a 
common type of bacterial metabolites including acetate, pro-
pionate, and butyrate. SCFAs provide more energy to the 
host and reduce the inflammatory responses in the colonic ep-
ithelium [67–69], thereby helping expectant mothers stay in 
good health (Figure 1A). In contrast, dysbiosis of the mater-
nal gut microbiota enhances the inflammatory responses, in-
creasing the risk of fetal rejection in early pregnancy [70]. 
Most SCFAs are produced by bacteria from the fermentation 
of dietary fiber and resistant starch [71]. High fiber can be 
found in most plant foods such as fruits, vegetables, and 
grains. A high-fiber diet is believed to increase SCFA levels 
and improve human health [66]. A recent study involving 
120 pairs of GDM women and matched controls from the 
first trimester to the third trimester indicated that the healthy 
status of women suffering from GDM was modified with the 
intake of a high-fiber diet [25]. Parallel changes in the gut 
microbiome, including Escherichia coli, Fusobacterium mor-
tiferum, Bacteroides massiliensis, and Bifidobacterium den-
tium, were also observed [25].

SCFAs are also one type of the most important bacterial 
metabolites related to the health of mothers and their off-
spring [72,73]. A high concentration of SCFAs in obese 
mother’s gut affects maternal weight gain and glucose metab-
olism, and is associated with some metabolic disorders such 
as hypertension and GDM, which may lead to persistent per-
turbation of the offspring’s microbiome and metabolome 
[72,74]. Moreover, a high level of SCFAs in the female vagina 
is associated with infertility, indicating the importance of 
metabolic balance in the preparation of pregnancy [75]. 
SCFAs directly or indirectly influence the production of vari-
ous T lymphocytes, producing a tolerogenic immune environ-
ment in infants [76]. One study found that acetic 
supplementation increased the production of CD4þ T cells 
and the expression of forkhead box P3 (Foxp3), promoting 
the formation of regulatory T (Treg) cells in early life [77] 
(Figure 1A). Other studies have also confirmed that SCFAs 
regulate the function of dendritic cells and Treg cells, reduc-
ing inflammatory responses and the development of asthma 
in offspring [78–81]. The microbiome and its metabolites are 
widely involved in human health. Apart from SCFAs, other 
bacterial metabolites such as bile acids (BAs), bioactive lipids 
or peptides, advanced glycation end products (AGEs), trime-
thylamine N-oxide (TMAO), and imidazole propionate 
(ImP), have been proven to play essential roles in immune ho-
meostasis. They are closely involved in the regulation of most 
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life activities, exerting either positive or negative influences 
on mothers and fetuses, the disturbance of which often 
induces inflammation and specific gastrointestinal disorders 
[82,83]. Such observations underscore the important role of 
microbiome homeostasis in women under reproductive age.

Since alteration of gut microbiome is associated with 
long-term changes in immune response, maintaining gut 
microbiome homeostasis before and during pregnancy is very 
important to reproductive health. Consequently, to maintain 
microbiome homeostasis and stay in good reproductive 
health, an active lifestyle is necessary for every mother-to-be. 
For example, bad habits such as being sedentary and a high- 

fat diet, which can disturb gut microbiome homeostasis and 
cause an increasing risk of gut inflammation, should be 
avoided [64]. A high-fat diet is linked to gut microbiota dys-
biosis and inflammatory responses [84,85]. Gut microbiome 
alteration may increase inflammation through microbe- 
associated molecular patterns (MAMPs) [86]. MAMPs are 
small molecular motifs conserved within a class of microbes 
that can be recognized by pattern recognition receptors 
(PRRs) such as Toll-like receptors (TLRs) in the epithelial 
cells [86–88]. The activation of TLRs leads to an up-regula-
tion of proinflammatory cytokines [82,87] (Figure 1B). Gut 
microbiota dysbiosis and inflammation in the colonic 
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Figure 1 Lifestyle influences gut microbiome and is associated with reproductive health 

A. The impact of healthy lifestyle on gut microbiome and immunity. Active lifestyles such as regular exercise and a high-fiber diet can balance the gut 
microbiome homeostasis, maintain the gut barrier integrity, and increase the production of SCFAs, which reduce the production of proinflammatory 
cytokines and down-regulate immune responses and thereby help maintain reproductive health. B. The impact of unhealthy lifestyle on the gut 
microbiome and immunity. Unhealthy lifestyles such as sedentariness and a high-fat diet disrupt the gut microbiome, which further impairs the gut 
barrier integrity. The evasion of pathogens stimulates immune cells to produce more proinflammatory cytokines, which subsequently activates the 
immune responses and potentially induces various diseases related to reproductive health. C. Persistent inflammation in the intestine at different 
gestational stages may induce adverse pregnancy outcomes such as fertility impairment, spontaneous abortion, and preterm labor. MAMP, microbe- 
associated molecular pattern; SCFA, short-chain fatty acid; Th1, T helper type 1; Treg, regulatory T; TLR, Toll-like receptor.
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epithelium are related to gut leak, which damages the integ-
rity of the intestinal barrier and leads to microbes and bacte-
rial metabolites entering host circulation, inducing infections 
and diseases [85] (Figure 1B). For example, several studies 
have indicated that the fertility of women may be impaired 
when they suffer from inflammatory bowel disease (IBD) 
[89]. Other studies have also observed a higher risk of preg-
nancy complications such as spontaneous abortion and pre-
term labor in women with gut inflammation [90], suggesting 
an immune interaction between gut and FRT (Figure 1C).

In addition, the microbiota dysbiosis caused by drug abuse 
before pregnancy also persists for a long time and is very 
likely to be transmitted to offspring through vertical trans-
mission [53,91]. Recent studies have demonstrated that the 
inheritance of resistance genes associated with the micro-
biome, either before or during pregnancy, can lead to antibi-
otic resistance in offspring and thus increase the risk of 
asthma and atopic diseases [52,91,92]. However, as there is a 
great difference in gut microbiome and immune modulation 
between early pregnancy and late pregnancy, the long-term 
influences of gut microbiota dysbiosis and the causal relation-
ship between gut microbiome and pregnancy outcomes re-
quire further investigation.

Reproductive tract microbiome of women of 
reproductive age
The microbiome in the FRT plays an important role in the 
initiation of conception and exerts influences on pregnancy 
outcomes, gynecological issues, and fetal development 
[11,22,31,93,94]. Different from the microbiome in the gut, 
which is influenced by lifestyle and daily diet, the microbiome 
in the FRT is more closely related to physiological state, hor-
mone secretion, sexual activities, and hygiene practices [95].

The vagina is the most widely studied site in the FRT. A 
healthy female vagina is predominantly colonized by 
Lactobacillus spp. from puberty onwards [31,96]. The nor-
mal menstrual cycle in healthy women of reproductive age 
comprises the follicular phase, ovulation, and the luteal 
phase, during which the level of hormones and the abundance 
of microbiome in the vagina fluctuate [38,97]. The cyclical 
change of hormones and microbiome provides a suitable en-
vironment for conception. Estrogen, one of the most impor-
tant hormones in women’s reproduction, rises during the 
follicular phase and increases to the highest level at ovulation 
[95,98] (Figure 2A). Previous studies have indicated that ex-
ercise and diet have a significant impact on the levels of estro-
gen in the body [99–102]. Regular physical activity, 
especially weight-bearing and resistance exercises, can help 
increase estrogen levels in females [101,103]. On the other 
hand, a diet high in processed foods and low in fruits, vegeta-
bles, and whole grains can lead to a decrease in estrogen lev-
els [99,100,102]. Maintaining a healthy diet and exercise 
routine can help regulate estrogen levels and provide numer-
ous health benefits. The rise of estrogen causes glycogen 
deposits in the vaginal epithelium and thus contributes to the 
expansion of Lactobacillus spp. in the vagina [104] 
(Figure 2A). In contrast, progesterone does not reach its peak 
until luteal phase [38]. The high levels of progesterone help 
thicken the lining of the uterus in preparation for fertilization 
[105,106]. If there is no fertilized egg, progesterone levels 
drop and women enter the next menstrual cycle [107].

During pregnancy, the proportion of Lactobacillus spp. 
further increases, reducing the microbial diversity in the va-
gina (Figure 2A). Lactobacillus spp. produce lactic acid [31], 
the accumulation of which results in a lower pH, creating an 
unfavorable environment for the proliferation of pathogenic 
bacteria and other less beneficial bacterial species [95,108]. 
The abundance of Lactobacillus spp. is also associated with 
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A. Changes in hormones and microbiome before and during pregnancy. As the follicular phase begins, the levels of estrogen and progesterone rise, 
though the peaks of the two important hormones occur at different stages. Fluctuations in the hormones lead to changes in the vaginal environment and 
microbiota: an increase in the abundance of Lactobacillus spp. and a decrease in the vaginal pH and microbial diversity, which gradually makes the vaginal 
context more favorable for conception. It should be noted that the correct order of a complete menstrual cycle is the follicular phase, ovulation, and the 
luteal phase. B. The role of Lactobacillus on fertility. The decrease of Lactobacillus is associated with lower lactic acid and H2O2 levels in the vagina, 
which further leads to the rise of environmental pH and overgrowth of pathogenic bacteria. The expansion of pathogenic bacteria in the vagina 
often induces BV and infertility. C. Five CSTs in the vagina. Each CST is dominated by different strains. Among them, four CSTs (CST I, CST II, CST III, 
and CST V) are dominated by Lactobacillus spp., while CST IV consists of a diverse microbial community. D. Ethnic variations of Lactobacillus proportions 
in the vagina based on limited studies. The vaginal microbiota of most healthy Caucasian women from North America is dominated by Lactobacillus spp. 
[111,117], while Asian and black women appear to have a lower proportion of Lactobacillus spp. [111,117]. Nevertheless, further confirmation of this 
observation is still needed. FRT, female reproductive tract; BV, bacterial vaginosis; CST, community state type.
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the levels of hydrogen peroxide (H2O2), which has the capa-
bility to inhibit the growth of anaerobic bacteria and enhance 
the competitiveness of Lactobacillus spp. [31,95] (Figure 2B). 
The perturbation of the vagina microbiome may disturb the 
homeostasis of the vaginal microenvironment. Previous stud-
ies have demonstrated that pregnant women with a higher 
microbial diversity in the vagina have an increased risk of 
miscarriage and preterm birth [109,110]. In contrast, women 
with a dominance of Lactobacillus spp. experience less infec-
tion and lower levels of inflammation [75]. Studies have also 
implied that infants acquire their initial microbiome from the 
maternal vagina and babies delivered via the vagina experi-
ence fewer diseases such as asthma and allergies [9,13–15], 
indicating the importance of inheriting a beneficial mater-
nal microbiome.

However, the populations of lactobacilli exhibit a high in-
traspecies diversity, and not all strains of Lactobacillus in the 
vagina provide equivalent protective effects on fertilization 
and pregnancy outcomes [31]. According to recent studies 
based on large populations, there are five microbial clusters, 
namely community state types (CSTs), in the healthy female 
vagina [30,111]. CST I, CST II, CST III, and CST V are domi-
nated by species Lactobacillus crispatus, Lactobacillus gas-
seri, Lactobacillus iners, and Lactobacillus jensenii, 
respectively [30,31,111] (Figure 2C). Among them, CST I 
with the dominance of L. crispatus provides the most protec-
tive benefits to the host health, while CST III dominated by 
L. iners offers the least [31]. The other two communities 
(CST II and CST V) are moderate and are much closer to the 
former [31]. The different effects among Lactobacillus strains 
may originate from their metabolic capabilities [31]. For ex-
ample, among the four bacteria, only L. iners has no capabil-
ity to produce D-lactic acid and H2O2, which are thought to 
have the ability to inhibit the overgrowth of anaerobic bacte-
ria and are involved in the modulation of the immune system 
[112–114]. Nevertheless, the deeper reasons behind the prob-
lem may need further exploration. Another reason why CST 
III (L. iners dominant community) is not favorable in the vag-
inal microenvironment is that this community is less stable 
and often transitioned to CST IV [30,31]. CST IV is a com-
munity that lacks lactobacilli and harbors a higher ratio of 
strictly anaerobic genera including Prevotella, Dialister, 
Atopobium, Gardnerella, and Sneathia [31] (Figure 2C). 
Such a community is characterized by a much higher vaginal 
pH (> 4.5) and is often associated with the occurrence of 
bacterial vaginosis (BV), which has associations with infertil-
ity and spontaneous abortion [31,95].

While multiple studies have confirmed the negative effects 
of CST IV on reproductive health, the relationship is not ab-
solute, as most published studies have primarily focused on 
Western populations. Limited literature focusing on black 
women and Asian populations has revealed that the propor-
tion of Lactobacillus spp. in a healthy vagina may vary 
depending on ethnicity [111,115–121]. For example, cross- 
population studies conducted by Zhou et al. and Ravel et al. 
demonstrated that healthy black women from North 
America harbor the highest proportion of non-Lactobacillus 
species in the vagina, followed by Asian and Caucasian 
women [111,117] (Figure 2D). Whether this observation on 
different populations is universal remains unknown. The un-
derlying mechanism of variation of microbial composition in 
the female vagina across different ethnic groups and its fur-
ther influences need more evaluation. Nonetheless, the 

divergence in the vaginal microbiome community in different 
races indicates that some gynecological disorders are associ-
ated with global microbiota dysbiosis rather than the emer-
gence or absence of a single microbe. There is still a long way 
to go to thoroughly understand the exact relationship be-
tween vaginal microbiome and reproductive health.

Reproductive tract microbiome and ARTs
The decline in fertility in both males and females and the trend 
of delaying pregnancy to a later age have promoted the develop-
ment of ARTs [17]. However, the moderate success rate of 
pregnancy and the unclear mechanisms behind it are hindering 
the wide use of ARTs [122]. In addition, some studies observe a 
higher risk of adverse outcomes in ART-conceived babies (and 
animals) than in naturally conceived ones [123–126], pushing 
us to update our understanding in this area.

The role of the microbiome in the FRT and its related modu-
lation of the immune system on the success of pregnancy have 
been highlighted in recent years, promoting advances in explor-
ing the impact of microbiome on ARTs [19,20,127]. The most 
abundant bacteria in the healthy FRT are Lactobacillus spp.; 
however, the proportion of Lactobacillus spp. varies between 
the lower genital tract (LGT; vagina and cervix) and the upper 
genital tract (UGT; uterus, fallopian tubes, and ovaries) 
[93,98,128]. For example, during a normal pregnancy, there are 
about 99% of bacteria belonging to Lactobacillus in the vagina, 
but the proportion of such lactic acid-producing bacteria is 
much lower in the cervix, endometrium, and fallopian tubes 
[93,128] (Figure 3A). Studies have also indicated that the micro-
bial biomass in the UGT largely decreases, but the microbial di-
versity slightly increases compared to that in the LGT 
[20,93,98,128] (Figure 3A). Although different locations of the 
FRT have distinct microbial compositions, the protective effect 
of Lactobacillus spp. on ART outcomes seems comparable. 
Previous studies have linked the vaginal microbiome to ART 
outcomes [129–137]. Vagina microbiota dysbiosis, which is 
mainly characterized by a shift in microbial community from 
other CSTs to CST IV, can induce BV [20,31]. In women receiv-
ing ART, BV is associated with implantation failure and sponta-
neous abortion [138]. In contrast, women with a high 
abundance of Lactobacillus spp. in the vagina are more likely to 
become pregnant during ART [19].

Like in the vagina, the most prevalent colonizer in the cer-
vix is Lactobacillus spp. (97%–99%). Apart from this, the 
cervix also harbors a small proportion of non-Lactobacillus 
bacteria [128], such as Gardnerella, Streptococcus, 
Prevotella, and Pseudomonas, while the total biomass in the 
cervix is much lower than that in the vagina [139,140] 
(Figure 3A). Different from the vagina and the cervix, the 
UGT, such as the uterine cavity and fallopian tubes, contains 
a much lower biomass of microbes [20,98,141] (Figure 3A). 
In addition, the more invasive and complicated sampling pro-
cess increases the risk of contamination, posing great chal-
lenges to exploring the role of the microbiome in such 
locations [38]. Despite its controversy, some studies have ex-
amined microbes in the UGT. For example, the endometrial 
microbiota is thought to consist of 30%–70% Lactobacillus 
and other bacteria such as Gardnerella, Bifidobacterium, 
Flavobacterium, Pseudomonas, Streptococcus, Prevotella, 
and Atopobium, which vary dependent on the populations 
[128,134,142,143]. Some studies have indicated that the cer-
vical and endometrial microbiomes might be involved in 
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A. Difference of microbiomes in FRT. The proportion of Lactobacillus spp. and microbial biomass sharply decrease from LGT to UGT, while the alpha 
diversity of microbiota and sampling difficulty increase. B. General flow of IVF and the impact of different microbial communities on ART outcomes. The 
IVF process typically involves retrieving eggs and sperm, fertilizing the eggs, culturing and screening the embryos, and finally transferring an appropriate 
embryo into the maternal uterus. Different microbial communities are associated with different outcomes. Specifically, an LD community is considered 
to be related to decreased inflammation and more favorable ART outcomes. C. Restoration of vagina microbiome using VMT. VMT is a novel treatment 
strategy aiming at modifying vaginal microbiota composition and treating vaginal dysbiosis and related conditions. It involves transferring vaginal fluid 
from a healthy donor to a recipient to reestablish a normal vaginal microbiome. D. Probiotic intervention and immune interaction between the gut and 
vagina. Probiotics, especially lactic acid-producing bacteria, can positively modulate immune responses in the gut and vagina. This includes stimulating 
Th2 cells and suppressing Th1 cells, altering cytokine profiles, and modulating tolerance to commensal bacteria, which helps create an optimal immune 
environment in the vagina that supports healthy microbiota. ART, assisted reproductive technology; IVF, in vitro fertilization; LD, Lactobacillus-dominated; 
LGT, lower genital tract; NLD, non-Lactobacillus-dominated; UGT, upper genital tract; Th2, T helper type 2; VMT, vagina microbiota transplantation.
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ART outcomes, influencing the implantation of embryo and 
fetal development [20,21].

Similar to that in the vagina, Lactobacillus spp. provide a 
protective effect on the cervix and endometrium as shown in 
most studies [22,23,137,142–152]. Decreased Lactobacillus 
abundance and increased microbial diversity in the cervical 
microbiota are positively associated with adverse ART out-
comes [22,23,137,143–150]. The increase of non-Lactobacillus 
bacteria such as Gardnerella may be associated with human 
papillomavirus (HPV) risk in women, inducing inflammation 
and cervical cancer [151]. Studies including hundreds of women 
undergoing ART have also demonstrated that compared with 
Lactobacillus-dominant (LD) microbiota, women with non- 
Lactobacillus-dominant (NLD) communities in endometrium 
exhibit lower rates of implantation, pregnancy, ongoing preg-
nancy, and live birth [22,146]. Increased endometrial blooms of 
non-Lactobacillus bacteria, such as Gardnerella, Streptococcus, 
Staphylococcus, and Enterobacteriaceae, are associated with 
chronic endometritis and endometriosis, which increases the 
risk of infertility and implantation failure [142,143,152].

Microbes in the fallopian tubes or ovaries exhibit much lower 
Lactobacillus abundance and much higher inter-individual vari-
ability, and their relationship to ART outcomes is controversial 
[20,93] (Figure 3A). For example, some studies claimed that ex-
tremely low or even no Lactobacillus spp. existed in the fallo-
pian tubes or ovaries [128,153], while other studies detected an 
LD community and associated the presence of 
Propionibacterium and Actinomyces in such locations with ad-
verse reproductive outcomes [154,155]. However, due to the 
lack of sufficient evidence, further studies should be conducted 
to investigate the causal relationship between ART outcomes 
and the microbiome in the fallopian tubes or ovaries.

Pregnancy is a very complicated process, during which 
women undergo great changes in hormones, microbiome, 
metabolites, and immune responses [9,20]. Therefore, to pro-
mote the success of IVF, many factors need to be considered. 
The success of conception is believed to be associated with 
the development of tolerance by the maternal immune system 
towards the fetus [156]. The beginning of pregnancy is ac-
companied by great changes in both innate immunity and 
adaptive immunity [127,157,158]. Changes in immune 
responses are synchronized with corresponding hormonal 
fluctuations and microbiome alterations, accepting or reject-
ing the implantation of the embryo during ART [157] 
(Figure 3B). For example, during normal pregnancy, the lev-
els of estrogen and progesterone increase, which leads to fur-
ther reduction of the production of proinflammatory 
mediators such as nitric oxide (NO), tumor necrosis factor-a 

(TNF-a), and interferon-c (IFN-c) [157]. The increase of pro-
gesterone forms an LD community in FRT, which not only 
increases the production of lactic acid, but also down-regu-
lates the expression of TLR4, suppressing inflammatory 
responses in cervicovaginal epithelial cells [75,156]. The LD 
community in FRT at early pregnancy can be a beneficial fac-
tor in preventing fetal rejection during ART [20,21]. In con-
trast, the NLD community is frequently associated with 
extensive inflammatory responses, leading to embryo transfer 
failure in many ART cases [20,21]. Despite such importance 
of microbiome in the FRT, the ART outcomes can be associ-
ated with extensive factors beyond microbiota, such as em-
bryo types (frozen or fresh) and quality, maternal age, 
hormonal level, and standardized approach [95]. Further 
studies are needed to enhance our current understanding of 

the underlying immune mechanism behind the associations 
between the microbiome and reproductive outcomes 
in ARTs.

Numerous diseases have been associated with the micro-
biome [35]. Considering the vital role of the FRT microbiome 
in reproductive health, some studies have tried to restore vag-
inal microbiota to alleviate the impact of gynecological disor-
ders on reproduction [37,39–42,159–162]. One solution is 
microbiota transplantation. Microbiota transplantation is a 
strategy to transfer microbiota from a healthy donor to the 
patient to change the recipient’s microbial composition and 
confer a health benefit. FMT has been used to treat many dis-
eases such as obesity, recurrent Clostridium difficile infec-
tion, and IBD, achieving favorable outcomes [163,164]. 
Recently, several studies have proposed using VMT, which is 
similar to FMT, to reconstruct the vaginal microbial commu-
nity [39,42,162] (Figure 3C). A full long-term remission has 
been reported in some women with FRT infection, indicating 
that the restoration of vaginal microenvironment is beneficial 
to the reproductive health.

Apart from VMT, some studies have suggested the existence 
of microbiome–gut–vagina axis, leading to the intervention us-
ing probiotics to rehabilitate gut microbiota homeostasis and 
thereby improve reproductive health [37,40,41,159–161]. 
Strains in most probiotic supplements such as Lactobacillus 
spp. are involved in balancing SCFA levels and regulating the 
balance of T helper type 1 (Th1) and Th2 cells [165–168] 
(Figure 3D). The elevated production of SCFAs and decreased 
Th1/Th2 cell ratio suppress the production of proinflammatory 
cytokines and enhance the integrity of the uterine barrier, fur-
ther reducing the risk of many reproductive disorders, including 
infertility, BV, endometrial diseases, polycystic ovary syndrome 
(PCOS), GDM, PE, and preterm labor both in IVF and natural 
conception [41,161,166,169,170]. Probiotic-derived MAMPs 
also have the ability to modulate the expression of TLRs and al-
leviate inflammatory responses in epithelial cells 
[159,160,171,172] (Figure 3D). Intervention with probiotics in 
females has been proven to restore the microbiome in both the 
gut and FRT, improving the health of mothers and offspring 
[41,173]. Nevertheless, there still are some failure cases in pro-
biotic intervention, suggesting the urgent need to evaluate the 
safety of probiotics for pregnant women and to explore the mo-
lecular mechanism underlying microbiome in reproductive 
health [40,174].

Microbial biomarkers and pregnant 
complications
A number of studies have highlighted the importance of micro-
biome in the health of pregnant women and their unborn chil-
dren [9,11,55,175,176]. Previous investigations have 
demonstrated the changes in the microbiome and immune 
responses at different body sites during normal pregnancy 
[9,177]. In early pregnancy, commencing from conception to 
the end of the 13th week of pregnancy, the microbiome and im-
munity in both the gut and vagina are similar to that in healthy 
unpregnant women [9,178]. While in the third trimester, which 
ranges from the 27th week to delivery, the microbial profiles 
and immune responses resemble those of women suffering from 
obesity [177]. Studies indicated that the increase of 
Enterobacteriaceae, Streptococcus, and Lactobacillus, as well as 
high levels of insulin insensitivity and blood glucose, helps 
mothers harvest more energy, thus supporting the growth of 
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fetuses [172,177]. Nevertheless, an unhealthy lifestyle during 
pregnancy disturbs the maternal microbiome, which is associ-
ated with poor maternal conditions and leads to the occurrence 
of pregnancy complications, further influencing the develop-
ment of infants [13,25,26,175].

With current knowledge and case-control studies, bacterial 
biomarkers can be identified to promote the prevention and 
early diagnosis of many pregnancy complications. Previous 
studies have associated the microbiomes in the female gut and 
reproductive tract with some obstetric and gynecological dis-
eases, such as recurrent miscarriage (RM) [179], repeat implan-
tation failure (RIF) [22,134,146,148,180], PCOS [29,181–192], 
GDM [25,175,193–199], gestational hypertension [200], PE 
[27,201–209], preterm labor, and preterm premature rupture of 
membrane (PPROM) [26,210–214]. While some studies 
reported consistent observations for certain diseases, other stud-
ies reached controversial conclusions. For example, GDM is 
one of the most common metabolic syndromes during the sec-
ond trimester, which is often associated with dysbiosis of the 
gut microbiota and metabolic alteration [175,215]. Crusell 
et al. demonstrated that mothers with GDM exhibited a higher 
abundance of Faecalibacterium and Anaerotruncus and a de-
creased abundance of Clostridium and Veillonella in the gut 
[193]. In contrast, Cortez et al. indicated that the gut microbial 
differences were insignificant between GDM and healthy preg-
nant women [194]. Differences in ethnicity and environments 
can be one of the reasons that result in such controversial obser-
vations, while further associations remain explored. A prospec-
tive study conducted by Sun et al. demonstrated significant 
differences in the gut microbiome, including Ruminococcus bro-
mii, Alistipes putredinis, and Bacteroides ovatus, between 
GDM women and their healthy controls [25]. Furthermore, 
they indicated that the microbial characteristics at early preg-
nancy can be used to predict the occurrence of GDM in the fu-
ture [25]. Nevertheless, regarding preterm labor, a more 
uniform relationship is observed. Most studies have confirmed 
the protective effect of L. crispatus in the vagina, while L. iners 
is one of the most common taxa associated with low gestational 
age [26,210–214].

Previous studies have indicated that persistent infections 
within the vagina or uterine cavity might increase the risk of 
pregnancy loss and lead to unfavorable outcomes [216,217]. 
In addition, communication of microbes between the vagina 
and uterine cavity is associated with reproductive health. A 
recent study has demonstrated that some bacteria in the va-
gina, such as Clostridium perfringens and Prevotella bivia, 
may ascend to the uterine cavity and induce inflammatory 
responses [94]. In contrast, other microbes such as 
Lactobacillus murinus can provide a protective effect during 
microbial translocation between the vagina and the uterus 
[94]. Such explicit bacterial biomarkers could largely reduce 
adverse outcomes during pregnancy in clinical settings. 
Recent studies have also implied that the microbiomes at dif-
ferent body sites might experience disturbance when mothers 
are under unfavorable conditions, highlighting the close rela-
tionship between the microbiome and reproductive health. 
Wang et al. showed that significant perturbance of micro-
biomes in the maternal gut, vagina, and oral cavity was ob-
served in GDM women, and the microbial interactions of key 
bacteria with others were closely associated with maternal 
health [175]. In addition, concordance of microbial dysbiosis 
was also found between mothers and their future babies 
[175], indicating the predictability of microbiome during 

pregnancy on the health of mothers and infants. Pregnant 
women with periodontal infections were also found to have a 
higher risk of hypertension or preterm labor during preg-
nancy [200,218,219]. Detection of a high proportion of 
pathogens, such as Porphyromonas gingivalis, in both sub-
gingival plaque and genital tract suggested that bacteria may 
enter maternal circulation and further influence maternal 
health and fetal development [200,218].

The human body is a balanced ecosystem, and alterations in 
the microbiome are associated with various changes in metabo-
lites and immune responses [11,50], making it a mirror of hu-
man health and predicting future health for both mothers and 
offspring. However, the use of microbial biomarkers to predict 
and prevent pregnancy complications has some limitations. 
Sampling the reproductive tract is considerably more challeng-
ing compared with other sites such as the oral cavity and stool, 
which introduces risks of contamination. In addition, various 
confounding factors, including hormone changes and diet influ-
ences during pregnancy, may also introduce bias into taxonomic 
profiling. Moreover, it is important to note that most previous 
studies on microbial biomarkers were observational, establish-
ing associations rather than causation. Consequently, caution 
must be taken to avoid unintended outcomes when using micro-
bial biomarkers. Confirming the causal relationships between 
the microbiome and various diseases is still necessary before 
adopting microbiome-based therapies for pregnancy complica-
tions and childhood disorders. To achieve this, the underlying 
mechanisms of specific probiotic strains and microbial commu-
nities should be further explored in animal models. Large clini-
cal cohorts focusing on major diseases are also needed to 
establish causal relationships in humans. In summary, although 
microbiome research presents promising possibilities for under-
standing, diagnosing, and treating disorders of the FRT, cau-
tious interpretation and understanding causal relationships are 
important to meaningful clinical translation. Robust basic, 
translational, and clinical research will be essential to fully real-
ize the potential benefits of microbiome-based therapies for ma-
ternal and infant health.

Conclusion and perspectives
This review summarizes the long-term impacts of various life-
styles on the microbiome and reproductive health. It high-
lights the association between healthy habits and the 
microbiome before and during pregnancy and emphasizes the 
important role of the FRT microbiome in predicting preg-
nancy outcomes. Further understanding of the microbiome 
during pregnancy will greatly advance biological and medical 
research, increase the success rate of ARTs, and reduce the 
risk of adverse pregnancy outcomes.
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