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Abstract

Objective: Identification of robust biomarkers that predict individualized response to 

antipsychotic treatment at the early stage of psychotic disorders remains a challenge in precision 

psychiatry. The aim of this study was to investigate whether any functional connectome-based 

neural traits could serve as such a biomarker.

Methods: In a discovery sample, 49 patients with first-episode psychosis received multi-

paradigm fMRI scans at baseline and were clinically followed up for 12 weeks under antipsychotic 

monotherapies. Treatment response was evaluated at the individual level based on the psychosis 

score of the Brief Psychiatric Rating Scale. Cross-paradigm connectivity and connectome-based 

predictive modeling were employed to train a predictive model that uses baseline connectomic 

measures to predict individualized change rates of psychosis scores, with model performance 

evaluated as the Pearson correlations between the predicted change rates and the observed 

change rates, based on cross-validation. The model generalizability was further examined in an 

independent validation sample of 24 patients in a similar design.
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Results: The results revealed a paradigm-independent connectomic trait that significantly 

predicted individualized treatment outcome in both the discovery sample (predicted-versus-

observed r=0.41) and the validation sample (predicted-versus-observed r=0.47, mean squared 

error=0.019). Features that positively predicted psychosis change rates primarily involved 

connections related to the cerebellar-cortical circuitry, and features that negatively predicted 

psychosis change rates were chiefly connections within the cortical cognitive systems.

Conclusions: This study discovers and validates a connectome-based functional signature as a 

promising early predictor for individualized response to antipsychotic treatment in first-episode 

psychosis, thus highlighting the potential clinical value of this biomarker in precision psychiatry.

Treatment response to antipsychotic medication in patients with first-episode psychosis is 

highly heterogeneous and hard to predict, making the exploration of prognostic predictors 

critically important for precision psychiatry. Such exploration is particularly challenging 

during early treatment, when no prior treatment history is available. Since early response 

to antipsychotics is highly relevant to patients’ long-term clinical and functional outcome 

(1–3), the identification of predictors at an early stage of illness would help physicians make 

optimal individualized treatment plans and benefit long-term quality of life for patients.

Antipsychotic medications are essentially dopamine receptor antagonists, which may 

exert their effects via changes in brain circuitry. Therefore, neurobiological measures 

evaluating the function of brain circuitry would theoretically be potential candidates for 

such predictors. In line with this hypothesis, previous studies have shown that baseline brain 

activity and connectivity during certain functional MRI (fMRI) paradigms may relate to 

patients’ response status after antipsychotic treatment. Specifically, using resting-state fMRI, 

our own work has revealed that individualized calculators of striatal-cortical connectivity (4) 

and cerebellar-cortical connectivity (5) may be potential predictors for treatment outcome 

in first-episode psychosis. Similar findings have been reported in studies from independent 

laboratories with different treatment profiles (6–8), suggesting relative robustness of these 

results. In addition, functional connectivity measures regarding the default mode network 

areas (9, 10), frontoparietal regions (10), and sensorimotor cortices (11, 12) were also 

found to be significantly correlated with symptom changes after medication, suggesting 

their potential clinical value as prognostic biomarkers. Beyond resting-state measures, task-

based fMRI has also been demonstrated to be a useful tool for investigating potential 

predictors in patients. For instance, a recent study used a cognitive task to evaluate 

the function of performance monitoring in psychotic patients receiving treatment (13). 

The investigators found that task-related activity in the frontoparietal regions at baseline 

significantly predicted the degree of symptom reduction after 1-year follow-up, which 

provides initial evidence for task-based imaging predictors. Nevertheless, most studies to 

date have used a hypothesis-driven approach that focuses on selected regions of interest with 

a specific fMRI paradigm. Since dopamine receptors are widely distributed across the whole 

brain and dopamine functions are widely involved in a variety of human behaviors (14–16), 

it is unlikely that neural predictors are located in highly circumscribed brain areas that can 

be detected during only one functional state. However, whether any trait-like functional 

biomarkers at the whole-brain connectome level would predict treatment outcome with 

antipsychotics is unknown.
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We previously proposed “cross-paradigm connectivity” (CPC) (17) as a valid approach to 

evaluate “trait” organizations of the individual functional connectomes, which essentially 

extracts shared components across functional connectivity matrices constructed from 

different imaging paradigms (for a review, see reference 18). Compared with connectome 

measures constructed from a single paradigm (or “state”), the CPC matrices quantify 

individualized connectomic traits independent of brain functional state and show 

significantly higher test-retest reliability and individual predictability (17). Implementing 

this approach in psychosis studies, we have successfully identified state-independent 

biomarkers for the prediction of illness onset among individuals at clinical high risk (19) 

and state-independent neural mechanisms underlying schizophrenia polygenic risk (20), 

implying its feasibility and utility in search of predictive biomarkers. Moreover, these past 

findings also suggest that psychotic disorders are associated with trait-like abnormalities at 

the connectome level, which encourages the exploration of such signatures for treatment 

prediction.

Here, by combining CPC and machine learning, we investigated whether any trait-like 

functional connectomic measures prior to medication would predict individualized treatment 

response after antipsychotic monotherapies in patients with first-episode psychosis. To 

this end, two independent clinical samples were collected, where patients underwent 

multi-paradigm fMRI scans at baseline and were clinically followed up for 12 weeks. In 

the discovery sample, we trained a predictive model using connectome-based predictive 

modeling (CPM) (21) and examined the prediction performance with cross-validation. The 

generalizability of the derived predictive model was further tested in a validation sample. We 

expected to see a common connectomic trait predictive of treatment outcome across different 

brain functional states, and the prediction performance of such a trait would show good 

generalizability to an independent data set.

METHODS

Study Subjects

This study included two independent clinical samples with a similar study design, both 

recruited from the Zucker Hillside Hospital. The discovery sample comprised 49 patients 

with first-episode psychosis (30 males; mean age, 24.1 years), and the validation sample 

consisted of 24 patients with first-episode psychosis (20 males; mean age, 21.9 years); the 

age range in both samples was 15–40 years. For both samples, patients were diagnosed as 

having a psychosis spectrum disorder based on the Structured Clinical Interview for DSM-

IV (i.e., schizophrenia, schizophreniform disorder, schizoaffective disorder, brief psychotic 

disorder, psychotic disorder not otherwise specified, bipolar disorder with psychosis 

features, and major depressive disorder with psychotic features). All patients were in an 

early phase of illness, as defined by having taken antipsychotic medications for a cumulative 

lifetime period of less than 2 weeks. Written informed consent was provided by all 

participants, following protocols approved by the Institutional Review Board of Northwell 

Health. The demographic and clinical characteristics of the samples are detailed in Table 1 

and in the online supplement.
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Patients in both samples underwent baseline clinical assessment (evaluated with the Brief 

Psychiatric Rating Scale–Anchored version [BPRS-A] [22]) and baseline scans with four 

fMRI paradigms (of which two paradigms were the same for both samples). The patients 

were then randomized to receive a single antipsychotic treatment with either risperidone 

or aripiprazole for 12 weeks. Follow-up visits were performed weekly during the first 4 

weeks and biweekly for the next 8 weeks, and the BPRS-A was readministered during 

each visit. Thirty-six of the 49 participants in the discovery sample and 18 of the 24 

patients in the validation sample completed 12-week follow-ups, with the rest having at 

least one follow-up assessment. As psychosis symptoms are the major target of antipsychotic 

drugs, our prediction was focused on this symptom domain. Here, psychosis symptoms 

were calculated as a “psychosis score” that sums five psychosis items in the BPRS-A 

scale: conceptual disorganization (item 4), grandiosity (item 8), suspiciousness (item 11), 

hallucinatory behavior (item 12), and unusual thought content (item 15).

Evaluation of Treatment Response

The treatment response for each subject was evaluated as the individualized change rates of 

psychosis scores over the follow-up period. We treated response as a continuous variable 

without arbitrarily classifying patients into responder or nonresponder groups, in order to 

better tailor individualized treatment for precision psychiatry. Intuitively, patients with a 

larger negative change rate in psychosis scores have a larger degree of symptom reduction 

over time and thus better treatment response. Similar to the approach in our prior work (5), 

a linear mixed model was employed in which psychosis scores were included as dependent 

variable and time points as fixed independent variable, with random slopes and intercepts 

estimated for each individual. Here, the subject-specific slope coefficients were indicative of 

individualized mean change rates in psychotic symptoms through the follow-up period and 

were used for the CPM analysis.

Cross-Paradigm Connectivity

Details on imaging acquisition and preprocessing are provided in the online supplement. 

The overall processing pipeline is presented in Figure 1. We used the Seitzman atlas (23) 

to parcellate the whole brain into 300 nodes, which generated 300×300 connectivity matrix 

for each subject during each fMRI paradigm. These connectivity matrices were further 

submitted to the CPC analysis, which followed the procedures used in our prior work (17, 

19, 20, 24). Here, the four paradigm-specific matrices for each individual were vectorized, 

mean centered, and then decomposed into a set of principal components (PCs) using 

singular value decomposition. As shown in our prior work, the first PC scores generated 

from the analysis captured the vast majority of shared variance across all paradigms in a 

subject and therefore were reflective of individualized “trait” organizations of the functional 

connectome. These first PC scores were termed “CPC matrices” and were used for the CPM 

analysis.

Connectome-Based Predictive Modeling

To examine whether the individualized CPC matrices would predict individualized change 

rates of psychotic symptoms, the CPM was used in the discovery sample to train a 

supervised machine learning model. On an iterative basis, nine folds of the discovery sample 
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were used as the training set and one fold as the testing set. Within the training set, the value 

of each connection (N = 300×299/2 = 44,850) in the CPC matrices was first adjusted for 

age, sex, and framewise displacement and associated by Pearson correlation with the slope 

coefficients across patients. Connections with significant correlations with slope coefficients 

at p<0.0005 were subsequently selected as features. These selected features were further 

summed for each individual to generate a single subject score, separately for positive 

features (i.e., features positively correlated with slope coefficients) and negative features 

(i.e., features negatively correlated with slope coefficients). These single subject scores were 

then entered as predictors into a linear regression model where slope coefficients were 

included as dependent variable. The fitted model parameters were subsequently applied 

to the testing set to estimate the predicted slope coefficients. After cross-validation, the 

prediction performance was calculated as the Pearson correlation coefficient between the 

predicted and observed slopes across all subjects in the discovery sample. To reduce noise 

and increase the accuracy of the predictive model, we repeated the entire CPM analysis 100 

times, and the performance for the discovery sample was reported as the median of the 100 

repetitions. Significance was subsequently determined by 5,000 permutations, with subjects 

randomly shuffled during each permutation. The p value was calculated as the proportion 

of correlation coefficients in the permutation distribution that were larger than the observed 

one.

Validation of Prediction Performance

The generalizability of the predictive model was tested in the validation sample. The final 

features were determined as the connections that were consistently selected from at least 

90% of the 100 CPM repetitions. These connections were further condensed into single 

subject scores and were used to fit the aforementioned model on the entire discovery 

sample. The derived model parameters were subsequently applied to the validation sample 

without modification, thereby generating predicted slope coefficients for each subject in 

the validation sample using the same features and parameters from the discovery sample. 

Similarly, the prediction performance for the validation sample was computed as the Pearson 

correlation coefficient between the predicted and observed slopes, and significance was 

estimated by 5,000 permutations, with subjects randomly shuffled during each permutation.

RESULTS

Treatment Response in Both Samples

At the group level, the mixed models revealed significant reductions of psychosis scores 

after treatment (discovery sample: slope = −0.69, p<0.001; validation sample: slope = −0.68, 

p<0.001) (Figure 2), suggesting that on average the psychosis scores decreased by 0.69 and 

0.68 per week in the two patient samples.

Prediction of Treatment Response

In the discovery sample, the prediction performance for 100 repetitions of CPM analysis 

ranged between 0.26 and 0.51 (see Figure S1 in the online supplement), with a median 

predicted-versus-observed performance r of 0.41 (mean squared error = 0.007), which was 

significant with permutations (p = 0.01) (Figure 3B). Specifically, a total of 14 connections 
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in the CPC matrices were consistently selected from at least 90% of CPM repetitions 

and thus were considered as final features for the prediction model (five positive features 

and nine negative features) (Figure 3A; see also Table S1 in the online supplement). Node-

wise, the positive features predominantly consisted of connections between the cerebellum 

and the cerebral cortex. Lower connectivity in these connections at baseline predicted 

larger negative slope coefficients and thus better treatment response. By contrast, the 

negative features largely comprised connections between different cerebral cortical areas, 

where higher connectivity at baseline predicted better treatment response. System-wise, 

the majority of the positive features mapped to connections between the visual cortex and 

the higher-order cognitive systems (default mode and frontoparietal networks), while the 

negative features were chiefly connections within the higher-order cognitive systems (default 

mode, frontoparietal, cingulo-opercular, salience, and ventral attention networks).

Specificity of the Identified Features

To test the specificity of the identified features, we deliberately removed these 14 

connections from the CPC matrices and reran the entire CPM analysis. We found that 

the prediction performance significantly dropped after feature removal (median predicted-

versus-observed r = 0.28, with no single r above 0.41 from 100 repetitions; see Figure S1 in 

the online supplement). This indicates high specificity of the observed features in prediction 

of treatment response.

Validation of Results in an Independent Sample

When the same model was applied, the same 14 features significantly predicted 

individualized slope coefficients in the independent data set (predicted-versus-observed r = 

0.47, mean squared error = 0.019, p = 0.01) (Figure 3C). This indicates good generalizability 

of our predictive model to clinical studies with a similar design. Additional results to support 

the validity and robustness of the predictive model are presented in the online supplement.

DISCUSSION

By combining cross-paradigm connectivity and connectome-based predictive modeling in 

a clinical sample, we identified a functional connectome-based neural signature for the 

prediction of individualized treatment outcome in patients with first-episode psychosis. This 

signature consisted of positive predictors predominantly related to the cerebellar-cortical 

circuitry and negative predictors chiefly within the cognitive systems in the cerebral cortex. 

We further demonstrated good generalizability of these predictors in an independent data 

set. Together, these findings highlight a promising trait-like functional biomarker that has 

potential to be leveraged as a prognostic predictor of treatment outcome in precision 

psychiatry.

While an increasing number of studies in the literature have aimed to investigate functional 

imaging predictors for treatment outcome in psychosis (4–12, 25, 26), they have so far 

focused on a single fMRI paradigm. Therefore, findings reported from past studies may 

reflect, at least in part, a state-related measure, making it difficult to distinguish whether the 

discovered biomarkers are related to an individualized trait that is predictive of treatment or 
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a state-dependent change evoked by a specific paradigm that covaries with medication (18). 

Our study overcame this limitation by using a completely data-driven approach combining 

multiple fMRI paradigms to identify neural traits most predictive of treatment response 

across the whole brain connectome regardless of the brain’s functional state. Our findings 

thus may point to a rudimentary neural mechanism tuning individualized responses to 

antipsychotic therapies in patients. One notable advantage of such an approach is that the 

findings would by nature facilitate clinical translation because they are not affected by 

experiment- or state-related factors and are generalizable between fMRI paradigms and data 

sets. As a proof of concept, our results indeed showed good generalizability across samples 

with different scan protocols, imaging paradigms, and preprocessing pipelines, suggesting 

that the detected predictors are robust and may show relatively high clinical value.

It is noteworthy that treatment prediction in this study was conducted at the individual 

level, which is different from the majority of studies in the literature dichotomizing 

patients into responders and nonresponders. Clearly, the degree of individualized response 

to antipsychotic drugs is a continuous variable, and binarized classification of treatment 

response is not only arbitrary but also statistically inefficient (27, 28). In addition, such 

dichotomization completely ignores individual variabilities within each assigned group, as 

response heterogeneities are still evident among patients, even when they are uniformly 

assigned to a “responder” or “nonresponder” group. Our research therefore has the 

advantage of predicting the degree of symptom reduction for each individual. According to 

the mean squared error in the validation sample, it can be estimated that the mean deviation 

between the predicted and observed psychosis scores at week 12 is rather small (~1.6) at the 

individual level, suggesting its potential to assist clinical judgment for individual patients.

The predictors identified here are broadly consistent with the psychosis literature, 

encompassing nodes in several key sensory processing systems (sensorimotor, auditory, 

visual) and higher-order cognitive systems (default mode, cingulo-opercular, frontoparietal, 

salience) that have repeatedly been reported in previous studies (4–12). Notably, two 

recent review articles suggested that connectivity in the default mode network and sensory 

networks were the most consistent predictors of treatment response (29, 30). This conclusion 

generally aligns with the present results, as nodes in these systems were among those most 

frequently observed (see Table S1 in the online supplement). Features negatively predictive 

of response were predominantly connections within the cognitive systems, in particular 

the default mode network, where patients with higher connectivity had better treatment 

response. Tentatively, since dopamine plays a key role in maintaining the normal function 

of cognitive processing, which gates the information input and output in order to balance 

goal-directed signals and background noise (31, 32), stronger connectivity may reflect a 

result of dopamine dysregulation in the cortical cognitive systems. In this case, stronger 

connectivity may imply higher dopamine sensitivity (33), rendering those individuals more 

responsive to antipsychotic treatment. Alternatively, it may also reflect a better cognitive 

capacity in the brain that facilitates the function of dopamine antagonists in rectification of 

a psychosis state (34). It should be noted that the identified nodes may not be sufficient to 

represent these predefined networks, and therefore more comprehensive research is needed 

to further illustrate the function of these networks in treatment response. In addition, these 

nodes may also reflect a spatial shift of the network organization, as previously identified in 
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patients (35), and therefore individual variation in the topology of these networks needs to 

be further studied.

Intriguingly, the positive predictors are predominantly connections between the cerebellum 

and the cerebral cortex, where lower connectivity at baseline predicts better response 

to treatment. This is remarkably consistent with our previous findings that increased 

connectivity in the cerebellar-cortical circuitry is a trait abnormality for psychotic disorders 

(19, 24). Such change can be robustly detected across different brain functional states and 

disease stages (5, 19, 24, 36) and is predictive of illness onset in individuals at clinical high 

risk (19). Moreover, higher connectivity in the cerebellar-cortical circuitry also significantly 

predicts worse clinical outcome after 2 years of continuous antipsychotic medication (5). 

These lines of evidence converge to show that cerebellar-cortical hyperconnectivity is a 

highly robust pathological finding in psychosis, which has potential to be clinically utilized 

as a predictor of illness development and prognosis. While speculative, such abnormality 

has been suggested as a downstream effect of N-methyl-D-aspartate (NMDA) receptor 

hypofunction (37, 38), which leads to the overactivity of pyramidal glutamatergic neurons 

and in turn disrupts the error processing signals conveyed between the cerebral cortex 

and the cerebellum (39), thereby generating a series of aberrant thoughts and behaviors 

collectively theorized as “cognitive dysmetria” (40, 41). Since the function of dopamine 

neurons is downstream modulated by glutamate signaling (42–44), it is plausible that such a 

trait would also affect antipsychotic treatment outcome in patients.

Beyond the glutamate hypothesis, it has increasingly been recognized that the bidirectional 

interactions between the cerebellum and the midbrain is a key and indispensable regulator of 

the brain’s dopaminergic system. In particular, it has been shown that the direct projection 

from the cerebellum to the midbrain powerfully modulates the firing rate of midbrain 

dopaminergic neurons and serves as a required mechanism for activating the reward circuitry 

and further contributing to social and cognitive behaviors (45, 46). In addition, enriched 

dopamine D2 receptors on the cerebellar Purkinje cells directly receive dopaminergic input 

from the midbrain, whose dysfunction has been shown to be sufficient to alter social 

functioning (46, 47). As a result, cerebellar connectivity may be a pivotal factor in regulating 

dopamine function and in turn the antipsychotic effect on the brain. It remains to be 

determined, however, whether the functional modulation of cerebellar-cortical circuitry 

would boost individualized capacity for antipsychotic response.

We note that this study has some limitations. First, our study design did not include a 

placebo group, and therefore it is difficult to determine whether the detected predictors 

would relate to the placebo effect. This limitation may be common to psychosis medication 

studies in the literature, given that the inclusion of a placebo group is ethically difficult. 

Second, while we observed and validated the findings in two independent clinical samples, 

both samples were relatively small. Therefore, the generalizability of the results still merits 

further investigation in larger cohorts. For the same reason, we did not train predictive 

models for each drug (risperidone and aripiprazole) separately, and the reported findings 

may reflect a mixed effect of both drugs. However, in an exploratory analysis shown 

in the online supplement, we found that the predictive model applied to both drugs, 

suggesting potentially similar effects underlying the studied drugs. Third, our treatment 
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response measure was primarily based on positive symptoms, which is the major target of 

antipsychotic drugs. Outcomes of other symptom domains, such as negative symptoms and 

social functioning, are also clinically important and should be investigated in the future. 

Fourth, while collecting multiple task–based fMRI data is demanding in clinical populations, 

further research is certainly warranted to optimize data acquisition strategy for better clinical 

translation. One possible solution, based on the state-independent nature of our findings, 

is to implement a similar approach in paradigms with much less cognitive demand, such 

as naturalistic stimuli. Finally, because of small sample sizes, we did not calculate slopes 

separately for the training and testing samples in the discovery data set, and therefore the 

estimated slopes may not be independent due to the partial pooling effect in the linear mixed 

model. However, since our findings were validated in an independent data set in which the 

slopes were calculated separately, the prediction performance is unlikely to be driven simply 

by data leakage.

In summary, using multi-paradigm fMRI data from two clinical samples, we discovered 

and validated a trait-like connectomic signature as individualized predictors of antipsychotic 

response in first-episode psychosis. The identified predictors highlight the potential roles 

of the cerebellar-cortical circuitry and cortical cognitive systems in prediction of psychosis 

outcome. Additional studies are encouraged to further test the translational value of this 

neural signature in clinical settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Flowchart of the data processing pipelinea

aBy combining cross-paradigm connectivity and connectome-based predictive modeling, the 

predictive model was trained and tested in the discovery sample. The generalizability of the 

model was further examined in the validation sample.
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FIGURE 2. Trajectories of psychosis scores across treatmenta
aThe slopes for both samples were highly significant. The black lines and red lines indicate 

individual trajectories and group trajectories, respectively.
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FIGURE 3. The connectome-based features and their prediction performance in the studied 
samplesa

aPanel A shows the final features (five positive and nine negative) selected from the 

100 repetitions of cross-validated connectome-based predictive modeling in the discovery 

sample. The positive and negative features are marked in red and blue, respectively. In 

panel B, the upper graphs show associations between the selected features and symptom 

changes in the discovery sample, and the lower graphs show median prediction performance 

(correlations between the predicted and observed slopes) in the discovery sample, which 

was significant with permutations. In panel C, the upper graphs show associations between 
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the selected features and symptom changes in the validation sample, and the lower graphs 

show prediction performance in the validation sample, which remained significant with 

permutations. The green dashed lines in the histograms in panels B and C indicate the 

position of the observed slopes.
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