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Abstract
Metabolic diseases, such as type 2 diabetes or obesity, are the consequence of the disruption of the organism’s metabolic 
pathways. The discovery of small non-coding RNAs—microRNAs (miRNAs)—as post-transcriptional gene regulators 
opened new doors for the development of novel strategies to combat said diseases. The two strands of miR-378a, miR-
378a-3p, and miR-378a-5p are encoded in the Ppargc1b gene and have an active role in the regulation of several metabolic 
pathways such as mitochondrial metabolism and autophagy. Recent studies recognized miR-378a as an important regulator 
of energy and glucose homeostasis, highlighting it as a potential target for the improvement of metabolic dysregulation. In 
the present review, the current knowledge on miR-378a will be discussed with a particular emphasis on its biological func-
tions and mechanisms of action in metabolism, mitochondria, and autophagy.
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Introduction

In recent years, microRNAs (miRNAs) have emerged as 
a new class of small non-coding RNAs and were revealed 
to be important players in gene regulation being involved 
in several biological processes. These small molecules are 
composed of about 22 nucleotides in length and mainly bind 
to the 3′ untranslated region (3′ UTR) of mRNAs to post-
transcriptionally inhibit gene expression through two differ-
ent mechanisms, either by degrading the targeted transcript 
or by inhibiting its translation. Our knowledge about gene 
expression regulation has greatly increased, since miRNAs 
were first discovered. Even so, new miRNAs are currently 
being found and their respective biological functions are 
being further explored. A growing body of evidence strongly 
supports the involvement of miRNAs in complex biological 
processes such as metabolism [1], cancer [2], programmed 
cell death [3], or cell differentiation [4].

miRNAs are synthesized in the cell nucleus and are 
subsequently translocated to the cytoplasm where they are 
matured and interfere with mRNAs. Although this has been 
well established, recent studies have found miRNAs in mito-
chondria, where they are likely to have a significant role 
[5–8]. However, the mechanisms supporting their translo-
cation to mitochondria are far from being fully understood. 
Nevertheless, a recently found miRNA belonging to the fam-
ily of miR-378 was found inside mitochondria and was able 
to interfere with mitochondrial DNA-encoded mRNAs [9]. 
miR-378a is an intronic miRNA located in the Ppargc1b 
gene and has been involved in a wide range of research 
fields. Recently, miR-378a has been extensively associated 
with metabolism. This miRNA favours tumour growth and 
angiogenesis by stimulating its glycolytic metabolism and 
by inhibiting tumour suppressors [10, 11], while it inter-
feres with metabolic and signalling pathways in the liver 
and skeletal muscle proving to be a key regulator of lipid 
metabolism, and glucose and energy metabolism [12, 13]. 
In addition, miRNAs roles in the regulation of programmed 
cell death are mostly unexplored, although miR-378a was 
recently shown to be important in the maintenance of apop-
tosis and autophagy in skeletal muscle [14]. Here, we review 
the main roles of miR-378a in the regulation of metabolism 
and autophagy and discuss it as a promising therapeutic 
strategy to use against metabolic diseases.
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Regulation of metabolism by miR‑378a

miR‑378a origin and structure

Peroxisome proliferator-activated receptor-γ (PPARγ) 
coactivator-1 beta (PGC-1β) is encoded by the gene 
Ppargc1b and embedded in its first intron are two mem-
bers of the miR-378 family (Fig. 1) [10]. miR-378a-3p 
(usually identified as miR-378 and previously named 
miR-422b [15]) and miR-378a-5p (usually identified as 
miR-378*) are considered to be the guide and passenger 
strands of miR-378a, respectively, and are highly con-
served between human (hsa-miR-378a) and mice (mmu-
miR-378a) (reviewed in [16]). Both strands are thought 
to be simultaneously transcribed with PGC-1β [10, 17, 
18], although it was recently found an exception to this 
rule. Liver receptor alpha (LXRα) reportedly activated 
miR-378a transcription, while at the same time inhibited 
Ppargc1b transcription [19]; therefore, hinting that the 
mechanisms ruling Ppargc1b and miR-378a transcription 
might be different. miR-378a-3p and miR-378a-5p were 
found to be expressed in mitochondria-enriched tissues, 
such as skeletal muscle, heart, liver, and brown adipose 
tissue (BAT) [14, 17] and it was suggested that it might be 
involved in metabolic pathways regulated by PGC-1β, such 
as in glucose and systemic energy homeostasis, fatty acid 
oxidation, and mitochondria metabolism. Furthermore, 
these miRNAs were also implicated in cancer metabolism 
and tissue differentiation, a topic that has been extensively 
reviewed in [16]. For example, miR-378a induced the 
differentiation of myoblasts by repressing the myogenic 
repressor MyoR [20], of bovine preadipocytes [21], and of 
3T3-L1 cells by leading to the downregulation of Mapk1 
[22]. Interestingly, miR-378a-3p levels were observed to 
increase throughout brown adipocytes differentiation [23] 
which is consistent with the previously observed PGC-1β 
increased mRNA levels during BAT differentiation [24] 
and during C2C12 myoblast cells’ differentiation [25].

miR‑378a role in tumour progression

Unlike normal cells, under aerobic conditions, cancer 
cells privilege glycolysis as their main energy metabolic 
pathway over oxidative phosphorylation. This metabolic 
shift was named Warburg effect and its main purpose is 
to favour cancer cells’ proliferation and growth by con-
ducting glycolytic intermediates into biosynthetic path-
ways. However, as in every biological process, cancer cell 
metabolism can be regulated by several factors, such as 
miRNAs. In fact, it was reported that miR-378a is involved 
in cancer metabolism, tumour growth and angiogenesis. 
For instance, the overexpression of miR-378a-5p in glio-
blastoma cells reduced the activity of caspase-3 (CASP3), 
therefore, impairing apoptosis and improving their sur-
vival. Moreover, the injection of miR-378a-5p-transfected 
cells into mice revealed that this miRNA promoted tumour 
growth and angiogenesis by suppressing the tumour sup-
pressors FUS-1 and suppressor of fused homolog (SUFU) 
[11]. This study motivated the employment of more 
efforts to explore the molecular mechanism behind miR-
378a’s action in cancer cells. Eichner et  al. suggested 
that miR-378a might be co-expressed with its host gene, 
PPARGC1B, being both regulated by the oncogene ERBB2 
in human breast cancer cells. Furthermore, the overexpres-
sion of miR-378a-5p led to the decrease of the mRNA 
levels of the estrogen-related receptor gamma (ERRγ) and 
of the transcription factor GA-binding protein α (GABPA), 
revealing the direct involvement of an intronic miRNA in 
the regulation of its host gene partners. miR-378a-5p was 
also found to be a major player in the Warburg effect in 
breast cancer cells. Its overexpression favoured the glyco-
lytic pathways by downregulating metabolic genes encod-
ing tricarboxylic acid (TCA) cycle’s metabolites targeted 
by ERRγ while reducing aerobic respiration [10].

miR‑378a role in metabolic dysregulation

Metabolism entails several pathways involved in the pro-
duction and consumption of energy to satisfy the organ-
ism’s needs, guaranteeing whole-body energetic homeo-
stasis. However, metabolism is far more complex, and its 
roles surpass energy levels’ regulation. Metabolic path-
ways are intertwined with important signalling pathways, 
as the ones related to cell growth and proliferation. That 
is the case of phosphoinositide 3-kinase (PI3K)/AKT/
mTOR and adenosine monophosphate-activated protein 
kinase (AMPK)-signalling pathways, two master players 
in metabolism [26, 27]. Indeed, PI3K/AKT/mTOR path-
way stimulates anabolic metabolism by increasing gly-
colytic enzymes’ expression and by promoting glucose 
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Fig. 1   Genomic localization of miR-378a in Ppargc1b. miR-378a is 
located in the first intron of Ppargc1b and the processing of its pre-
miRNA gives origin to two strands, miR-378a-5p and miR-378a-3p
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uptake [27]. In addition, metabolites are able to regulate 
elements of those signalling pathways through feedback 
mechanisms [27]. AMPK is a key enzyme in the regula-
tion of metabolism, being involved in processes such as 
cell growth, autophagy, and mitochondrial homeostasis 
(reviewed in [28]). This protein is activated accordingly 
with the metabolic state of the organism to restore energy 
homeostasis. During stressful conditions, AMPK favours 
energy production and suppresses energy consumption by 
inducing catabolic pathways, such as glucose uptake and 
glycolysis, and suppressing anabolic pathways, such as 
gluconeogenesis or de novo lipid synthesis, respectively 
[26]. Herein, perturbations at the metabolism level and at 
the signal transduction level constitute the core of meta-
bolic diseases, such as obesity, type 2 diabetes mellitus 

(T2DM), or non-alcoholic fatty liver disease (NAFLD). 
Currently, efforts are being employed to unravel new meth-
ods for the prevention or treatment of these diseases, and 
new possible therapeutic targets are being discovered. 
Recently, miR-378a-3p and miR-378a-5p were implicated 
in the regulation of metabolic disorders being found to 
interfere with a vast array of cellular processes (Table 1).

It was discovered that miR-378a-3p and PGC-1β levels 
were increased in subcutaneous white adipose tissue (sc 
WAT) in response to pioglitazone [18], a thiazolidinedi-
one that is an agonist of the adipogenesis inducer PPARγ. 
Moreover, sc WAT cells transfected with miR-378a-3p 
were revealed to have upregulated adipogenic genes (HSL 
and FASN). PPARγ is a nuclear receptor that is crucial 
for the regulation of lipid metabolism and adipose tissue 

Table 1   Metabolic and autophagy-related targets of miR-378a

ATP6 ATP synthase FO subunit 6, CASP9 caspase-9, CRAT​ carnitine-O-acetyltransferase, IGF1R insulin-like growth factor 1 receptor, LDHA 
lactate dehydrogenase A, MED13 mediator complex subunit 13, NRF-1 nuclear respiratory factor-1, P110α phosphatidylinositol-4,5-bispho-
sphate 3-kinase, catalytic subunit alpha, PDK1 phosphoinositide-dependent kinase-1, PDE1B phosphodiesterase 1B, PRKAG2 protein kinase 
AMP-activated non-catalytic subunit gamma 2, SCD1 stearoyl-CoA desaturase-1

miR-378a strand Target genes Model Function Mechanism of action References

Liver
 -3p Crat HFD, Mouse, KO Mitochondrial fatty acid 

metabolism
↓ Mitochondrial oxidative 

capacity
↓ Fatty acid oxidation

[17]

 -5p Med13 HFD, Mouse, KO Mitochondrial fatty acid 
metabolism

↓ Mitochondrial oxidative 
capacity

↓ Energy homeostasis

[17]

 -3p Prkag2 Chow Diet, HFD, Mouse; 
Human

Hepatic lipid metabolism ↓ AMPK-signalling pathway [40]

 -3p Gli3 CCl4-treated mice, HSC cells, 
LSEC cells; Human

Hepatic lipid metabolism ↓ Hedgehog-signalling 
pathway

[41]

 -3p p110α Mouse (ob/ob), KO Glucose and lipid metabolism, 
hepatic insulin signalling

↑ Hepatic gluconeogenesis
↓ PI3K/AKT-signalling 

pathway

[12]

 -3p Nrf1 HFD, Mouse, Hepa1-6 cells Mitochondrial metabolism, 
hepatic lipid metabolism

↓ Fatty acid oxidation [38, 39]

Skeletal muscle
 -3p Akt1 HFD, Mouse, C2C12 cells Energy and glucose metabo-

lism
↑ AKT1/FOXO1/PEPCK 

pathway
↑ Pyruvate-PEP futile cycle

[13]

 -3p Casp9 Mouse, KO, C2C12 cells Apoptosis ↓ Intrinsic pathway of apop-
tosis

[14]

 -3p Pdk1 Mouse, KO, C2C12 cells Autophagy ↓ AKT-signalling pathway [14]
Adipose tissue
 -3p Pde1b HFD, Mouse, Mouse (ob/ob) Adipogenesis ↑ Brown preadipocytes dif-

ferentiation
[22]

 -3p Scd1 HFD, Mouse, 3T3-L1 cells Lipogenesis ↑ Lipolysis [13]
Heart
 -3p Ldha Mouse, H9c2 cells Cell proliferation, energy 

metabolism
↓ Cell proliferation and 

survival
[32]

 -3p IGF1R Mouse, H9c2 cells Apoptosis ↓ AKT-signalling pathway [63]
 mitomiR-378a-3p ATP6 Mouse, Mouse (db/db), HL-1 

cells; Human
Mitochondrial metabolism ↓ ATP synthase activity [8, 9]
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differentiation, being mostly expressed in the adipose tissue 
[29]. Its activity can be regulated through many coactiva-
tors being PGC-1α and PGC-1β amongst them. Remark-
ably, PPARγ and PGC-1β appear to be involved in a positive 
feedback loop, where PPARγ can be coactivated by PGC-1β, 
and simultaneously, it was shown to induce the expression 
of PGC-1β [30]. Since miR-378a is included in Ppargc1b, it 
may also be implicated in the regulation of PPARγ. In fact, 
differentiated 3T3-L1 adipocytes treated with rosiglitazone 
had both Ppargc1b and miR-378a expression increased, 
being both identified as possible targets of PPARγ [31]. 
Hence, it is suggested that PPARγ, PGC-1β, and miR-378a 
are regulators of lipid metabolism and adipogenesis through 
a synergistic mechanism.

Furthermore, both strands of miR-378a were found to be 
upregulated in mice’s liver in response to a high-fat diet 
(HFD), alongside with its host gene Ppargc1b [17]. This 
finding hinted that miR-378a was possibly involved in oxi-
dative metabolism and suggested that it might be a possible 
therapeutic target against metabolic diseases. To clarify this 
hypothesis, the authors knocked out both miR-378a strands 
in mice and fed them an HFD, finding that these mice were 
resilient to HFD-induced obesity. Furthermore, it was found 
that both strands interact with different factors from a PGC-
1β-signalling pathway. miR-378a-3p and miR-378a-5p 
inhibit carnitine-O-acetyltransferase (CRAT), an enzyme 
that is involved in fatty acid metabolism, and the mediator 
complex subunit 13 (MED13), respectively, interfering with 
the systemic energy homeostasis. Finally, mice lacking both 
strands of miR-378a had an improvement on mitochondrial 
function, being characterized by having increased oxygen 
consumption and oxidative capacity, thus providing new 
evidences for a probable role of miR-378a in mitochondrial 
dysfunction.

More recently, transgenic mice overexpressing miR-
378a were generated and fed with an HFD [13, 23]. Sur-
prisingly, the phenotype observed in these transgenic mice 
was similar to HFD-fed mice with miR-378a knocked out 
[17]. Suggesting that mice globally overexpressing or lack-
ing miR-378a had decreased WAT mass and body weight in 
comparison with their controls. In fact, a study has reported 
that both decrease and increase of a serine/threonine pro-
tein kinase (SRPK1) leads to the same tumorigenic phe-
notype through activation of AKT [32]. Thus, it might be 
possible that a similar mechanism is also present on the 
regulation of metabolism by miR-378a. Nevertheless, in 
HFD-fed mice, the KO of miR-378a-3p/miR-378a-5p was 
reported to improve hepatic mitochondrial oxidative capac-
ity [17], whereas overexpression of both miR-378a strands 
was found to promote BAT expansion [23] and to improve 
systemic energy homeostasis [13]. In fact, the overexpres-
sion of miR-378a-3p in the adipose tissue of HFD-fed mice 
improved their obese phenotype by directly targeting and 

inhibiting Pde1b in BAT [23]. This gene encodes the protein 
phosphodiesterase 1B (PDE1B) that is responsible for the 
degradation of the signalling molecules cAMP and cGMP, 
both crucial in adipogenesis [33]. PDE1B inhibition resulted 
in increased levels of cAMP that further promoted the dif-
ferentiation of brown preadipocytes. Thus, the observed 
BAT expansion was responsible for the prevention of HFD-
induced obesity in mice.

Furthermore, Zhang and others reported that the over-
expression of miR-378a-3p in mice resulted in the activa-
tion of a skeletal muscle futile cycle while at the same time 
improved lipolysis in adipose tissue [13]. It is well estab-
lished that skeletal muscle has a key role in the maintenance 
of the organism’s glucose and energy homeostasis [34], not 
only because it is the most abundant tissue in the organism 
able to uptake most of the glucose in an insulin-dependent 
mechanism, but also because it is involved in a balanced 
crosstalk between liver and adipose tissues [34]. In cases of 
insulin resistance usually observed in metabolic diseases, 
insulin-stimulated glucose uptake in skeletal muscle is very 
reduced leading to hyperglycaemia and impaired glucose 
homeostasis [35]. Further experiments identified Akt1 as 
the main target of miR-378a-3p being found to activate 
pyruvate–phosphoenolpyruvate futile cycle through the 
AKT1/FOXO1/PEPCK pathway (Fig. 2a) [13]. The activa-
tion of this futile cycle in skeletal muscle prevents the entry 
of pyruvate in TCA cycle that is instead converted back to 
phosphoenolpyruvate in two reactions catalysed by pyruvate 
kinase and phosphoenolpyruvate carboxykinase (PEPCK) 
and involving the cost of ATP molecules. Pyruvate could 
be directly reduced to lactate instead of being used to fuel 
the futile cycle; however, the authors showed that miR-
378a-3p overexpression did not affect lactate levels or lactate 
dehydrogenase A (LDHA) transcript levels [13]. Consist-
ent with these results, it was reported in another study that 
miR-378a-3p targeted and was able to inhibit Ldha in H9c2 
cardiac cells [36]. Clearly, miR-378a-3p causes a disrup-
tion in glucose metabolism leading to an energy-deficient 
state in skeletal muscle that was proved to be independent 
of insulin signalling [13]. However, it was shown that this 
is counterbalanced in adipose tissue by targeting Scd1 that 
encodes stearoyl-CoA desaturase-1 (SCD1). This enzyme 
is known to catalyse the conversion of saturated fatty acids, 
such as stearate and palmitate, into monounsaturated fatty 
acids, such as oleate and palmitoleate. In adipocytes trans-
fected with miR-378a-3p, Scd1 expression levels were 
shown to be reduced alongside with increased levels of 
the lipolysis-related genes Hsl and Atgl. In addition, HFD-
treated mice overexpressing miR-378a-3p were shown to 
have reduced expression of Scd1 in BAT. Thus, by targeting 
both Akt1 and Scd1 in skeletal muscle and adipose tissue, 
respectively, miR-378a-3p was able to positively regulate 
whole-body energy homeostasis and prevent obesity in 
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mice. Furthermore, this study provided novel insights for 
the action of a miRNA in the regulation of metabolism by 
activating a futile cycle that proved to be essential in the 
maintenance of an energy balance mediated by inter-organ 
crosstalk.

In addition, miR-378a-3p/miR-378a-5p overexpression 
in obese mice improved hepatic steatosis without aggravat-
ing hyperglycaemia. Moreover, these miRNAs proved to be 
regulators of glucose and lipid homeostasis by targeting the 
p110α gene that encodes the hepatic PI3K p110α subunit 
[12]. In this study, fasted mice exhibited higher levels of 
miR-378a-3p and miR-378-5p in the liver than fed and refed 
mice, following the same expression pattern of PGC-1β 
and gluconeogenic genes. In fact, the overexpression of 
the miR-378a duplex in mice upregulated several hepatic 
gluconeogenic genes, such as Pck1, G6pd, and Ppargc1a, 
acting as an inducer of liver gluconeogenesis. Furthermore, 
miR-378a duplex overexpression resulted in the reduction 
of phosphorylated AKT and phosphorylated forkhead box 
O1 (FOXO1) levels, both implicated in insulin signalling. 
When phosphorylated by AKT1, FOXO1 is excluded from 
the cell nucleus. Thus, a decrease of FOXO1 phosphoryl-
ated form is associated with an increase of gluconeogenic 
genes expression [37]. Following this study, miR-378a-3p 
was again identified as an inhibitor of PI3K in diabetic mice 
[38]. In this study, miR-378a-3p was downregulated in pre-
osteoblast cells incubated with high glucose for 5 days. Nev-
ertheless, miR-378a-3p transfection in diabetic mice restored 

osteogenic differentiation that was shown to be suppressed 
by hyperglycaemia. This miRNA repressed Casp3 and acti-
vated the PI3K/AKT-signalling pathway. Previously, Akt1 
was also identified as a target of miR-378a-3p, thus reinforc-
ing the action of miR-378a-3p in the PI3K/AKT-signalling 
pathway [39].

Finally, miR-378a-3p was previously found to induce 
adipose tissue lipolysis in human cancer cachexia [40]. 
In this study, cancer cachexia-derived adipose tissue was 
reported to have increased expression levels of miR-378a-3p 
as well as increased catecholamine-stimulated lipolysis. Fur-
thermore, miR-378a-3p inhibition on adipocytes led to the 
downregulation of lipolysis regulator genes, such as LIPE, 
PLIN1, and PNPLA2 and to the reduction of their corre-
spondent encoded protein levels, hormone-sensitive lipase 
(HSL), perilipin, and adipose triglyceride lipase (ATGL), 
respectively. However, opposed to the aforementioned 
studies, Gerin et al. [41] reported that in adipocytes, miR-
378a-3p/miR-378a-5p promoted adipogenesis and lipogen-
esis. Their overexpression led to the upregulation of lipo-
genic genes encoding fatty acid synthase (FAS) and SCD1. 
However, the authors failed to demonstrate which miR-378a 
strand was responsible for this effect. Nevertheless, miR-
378a-3p/miR-378a-5p overexpression led to the activation of 
the glucose transporter type 4 (GLUT4) promoter mediated 
by CCAAT/enhancer-binding α (C/EBPα) and C/EBPβ. Fur-
thermore, a more recent study identified C/EBP to be part 
of an inflammatory pathway that promotes the expression 
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of miR-378a. Actually, in adipose tissue, adipokines and 
cytokines were able to increase miR-378a levels through 
the sterol regulatory element binding factor (SREBP) and 
C/EBP that were found to have binding sites in the promoter 
region of this miRNA [42].

An emerging role of miR‑378a in mitochondrial 
dysfunction

Some metabolic diseases are characterized by mitochondrial 
dysfunction. Mitochondria are important organelles involved 
in a series of processes, including regulation of cellular 
metabolism, apoptosis, or the maintenance of cellular redox 
state [43]. In fact, disturbances in mitochondrial quality can 
have serious effects in the whole organism. As mentioned 
above, miR-378a appears to be involved in the regulation of 
oxidative metabolism in mitochondria, having been shown 
that its inhibition improved oxidative capacity and increased 
oxygen consumption [17]. Furthermore, it was reported that 
miR-378a-3p targeted Nrf1 [44]. Nuclear respiratory factor-1 
(NRF-1) is an important mitochondrial factor that interacts 
with mitochondrial transcription factor (TFAM) regulating 
the expression of mitochondrial genes encoding for respira-
tory chain’s proteins and is also a regulator of fatty acid 
oxidation. Jeon et al. found miR-378a-3p to be upregulated 
in the liver of HFD-fed mice where it inhibited NRF-1, lead-
ing to the exacerbation of hepatosteatosis. The same was 
observed in HEPA1-6 cells, where the overexpression of 
miR-378a-3p repressed Nrf1 promoting lipid accumulation 
and impairing fatty acid oxidation, resulting in the exacerba-
tion of hepatosteatosis (Fig. 2a) [45]. In addition, NRF-1 and 
miR-378a-3p appear to be involved in a feedforward loop, 
where NRF-1 transcriptionally represses the miRNA.

miR-378a-3p was also reported to be an inhibitor of the 
subunit AMPKγ2 by targeting its encoding gene Prkag2 in 
HFD-treated mice liver [46]. In fact, miR-378a-3p trans-
fection in HFD-treated mice resulted in sirtuin 1 (SIRT1) 
decreased activity due to AMPKγ2 inhibition, which ulti-
mately led to the stimulation of the NF-kB/TNFα inflamma-
tory pathway. The elevated miR-378a-3p levels observed in 
NAFLD were shown to contribute for the development of 
hepatic inflammation and fibrosis that led to the exacerba-
tion of the disease. However, in another study, the targeted 
delivery of a miR-378a-3p mimic in liver fibrosis-induced 
mice ameliorated the damage caused on the liver [47]. It 
was identified that miR-378a-3p targeted and inhibited 
Gli3, that is responsible for the activation of the Hedgehog-
signalling pathway, known to induce liver fibrosis. Further-
more, miR-378a-3p was found to be repressed by NF-kB 
p65 subunit that is activated by Smoothened, a component 
of the Hedgehog-signalling pathway [47]. Hence, it seems 
that miR-378a-3p has a dual-role in fibrosis, where it favours 
liver fibrosis in obese mice, whereas when administered in 

animals with hepatic fibrosis has a therapeutic effect [46, 
47].

mitomiR‑378a‑3p, a regulator of mitochondrial genome

Although mature miRNAs are highly concentrated in cyto-
plasm their presence in cell organelles, such as nucleus or 
mitochondria, should not be ignored. In fact, it was reported 
that functional miRNAs are located inside mitochondria 
being designated mitochondria-located miRNAs (mitomiRs) 
and were shown to have an active role in the regulation of 
mitochondrial gene expression [5, 9, 48]. Indeed, mitochon-
dria can be internally regulated by mitomiRs that are able 
to interfere with mRNA transcribed from mitochondrial 
DNA. However, little is known regarding the molecular 
mechanisms underlying the translocation of nuclear-encoded 
miRNAs into the mitochondrial matrix. Currently, there are 
many hypothesis attempting to explain those mechanisms 
which are in serious need to be clarified and confirmed. 
Those hypothesis have been extensively reviewed elsewhere 
[49, 50] and, therefore, will only be mentioned here briefly. 
Some authors report that argonaute-2 (AGO2), a component 
of the miRNA biogenesis’ RNA-induced silencing complex 
(RISC), is also a key player of mitomiR function and trans-
port into mitochondria being imported alongside with miR-
NAs in the form of complexes [8, 9, 50–53]. In addition, 
polynucleotide phosphorylase (PNPase), that is located in 
the mitochondrial intermembrane space and is best known 
for the degradation of RNA molecules, has emerged as a 
potential player of mitochondrial RNA [54] and miRNA [8] 
import mechanisms. Furthermore, some studies also sug-
gest that components of mitochondrial transport machinery 
may also be accountable for the translocation of miRNAs 
(reviewed in [6, 51]). For example, the translocases of the 
outer and inner membranes (TOM and TIM) have been sug-
gested to mediate the transport of miRNA-AGO2 complexes 
[52]. Nonetheless, other potential miRNA–AGO2 transport 
mechanisms have also been taken into mind such as, translo-
cation through the voltage-dependent anion channel (VDAC) 
[51] or its facilitation through interaction with P-bodies and 
endoplasmic reticulum [55].

miR-378a-3p was identified as a mitomiR (mitomiR-
378a-3p) and it was found to interfere with mitochondrial 
ATP6 that encodes ATP synthase FO subunit 6 [9]. In this 
study, obese mice were reported to have higher expression 
levels of mitomiR-378a-3p in heart interfibrillar mitochon-
dria, and interestingly, the analysis of whole heart’s miR-
378a-3p expression did not show significant differences 
between non-diabetic and diabetic mice, meaning that most 
of miR-378a-3p induced by obesity was translocated into 
mitochondria. Furthermore, the overexpression of miR-
378a-3p decreased ATP6 protein levels and activity in mito-
chondria that were further restored upon treatment with a 
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miR-378a-3p inhibitor. Further studies began to establish 
miR-378a-3p translocation mechanism into mitochondria. 
It was reported that PNPase, in association with AGO2, is 
the importer of miR-378a [8] (Fig. 2b). In this study, the 
authors observed that in diabetic human and mouse models, 
miR-378a and PNPase levels are increased in mitochondria 
while compared with a non-diabetic condition. In addition, 
the ATP synthase activity is decreased due to miR-378a. 
Moreover, the overexpression of PNPase increased miR-
378a levels and decreased ATP6 protein and mRNA levels, 
whereas PNPase knockdown restored them.

Complex I inhibitors regulate miR‑378a expression

Mitochondrial complex I is one of the main complexes that 
composes the electron transport chain making it a suitable 
target to interfere with oxidative phosphorylation. Metformin 
is a common biguanide drug used for the treatment of T2DM 
being reported to inhibit hepatic gluconeogenesis followed 
by the decrease of glucose production in liver [56, 57]. Met-
formin exerts its action by specifically inhibiting respira-
tory chain’s complex I which causes a rise in the cellular 
AMP/ATP ratio, thus triggering the activation of AMPK and 
its related signalling pathways. The isoquinoline alkaloid 
berberine was also reported to improve T2DM condition 
either through the inhibition of complex I and activation of 
AMPK [58] or through the activation of SIRT1 and SIRT3 
in skeletal muscle and liver, respectively [59, 60]. Never-
theless, these two anti-diabetic compounds were shown to 
be involved in the regulation of miRNAs. miRNA profiling 
using locked nucleic acid (LNA) technology revealed that 
miR-378a expression appears to be induced upon berberine 
treatment in MIHA and HepG2 cells [61]. Moreover, it was 
reported that metformin was able to increase the expression 
levels of miR-378a-3p [62]. In this study, miR-378a-3p was 
shown to be an important player in the suppression of cell 
proliferation in hepatocellular carcinoma by targeting cyclin-
dependent kinase 1 (CDK1) and downregulating this impor-
tant cell division factor, further leading to the inhibition of 
tumour growth. This is a remarkable finding, since miR-
378a-3p stimulates hepatic gluconeogenic genes expression 
and metformin is known to inhibit hepatic gluconeogenesis. 
Therefore, this issue requires to be further elucidated to 
understand how miR-378a-3p can be upregulated by met-
formin and to what extent it participates in the mechanism 
of action of metformin.

miR‑378a as an endocrine regulator

In an organism, miRNAs are not strictly confined within 
its cells, but instead, they can be secreted and released into 
the bloodstream. Indeed, some extracellular miRNAs were 
reported to be present in blood plasma and serum, and were 

even found to be differently expressed in healthy and dis-
eased individuals [63–65]. These findings not only suggest 
the role of miRNAs as endocrine molecules able to regulate 
the gene expression of distant target cells, but also point 
towards their potential use as disease biomarkers.

Once outside the cells, it was expected that such as other 
RNA molecules, miRNAs would be degraded by ribonu-
cleases (RNases); however, there are mechanisms that pre-
vent their degradation. Some of these protector mechanisms 
consist in the enclosure of miRNAs in extracellular vesicles 
originated from the plasma membranes, such as exosomes 
and microvesicles [66]. In addition, there were also detected 
circulating miRNAs associated with AGO2 [64] and with 
high-density lipoprotein (HDL) particles [67]. Furthermore, 
they are internalized by their target cells and actively par-
ticipate in the genome regulation of these cells [1, 68]. Their 
internalization can be mediated by interaction with mem-
brane receptors [69]. However, the endocrine function of 
extracellular miRNAs is still a matter of debate [70], since 
for the development of a physiologically relevant response, a 
certain threshold is needed to be achieved and this is utterly 
dependent of the concentration of the miRNA in circula-
tion. Nevertheless, several studies have provided evidences 
supporting the biological function of extracellular miRNAs 
in cancer [71], cardiovascular diseases [63], or metabolic 
diseases [1].

Recent studies reported that miR-378a is found amongst 
several other miRNAs in biological fluids. For instance, 
Assmann and others reported that miR-378a-5p is upregu-
lated in the peripheral blood of severe diabetic kidney dis-
ease (DKD) patients, while compared with type 1 diabetes 
mellitus and moderate DKD patients [72]. Likewise, miR-
378a-3p and miR-378a-5p were reported to be upregulated 
in the plasma of obese and insulin-resistance patients [73, 
74]. In addition, it was shown that miR-378a expression was 
increased in the plasma of obese mice fed with a high-fat 
high-sugar diet [74]. In parallel, this miRNA was upregu-
lated in their pericardial adipose tissue and downregulated 
in their visceral adipose tissue [74]. As it was mentioned 
here before, other studies have also reported the differential 
expression of miR-378a in different tissues [14, 17]. Thus, in 
the future, it is essential to determine if these modifications 
are tissue specific or if they are the result of miRNA uptake 
from circulation and release from tissues. At the present, 
the existing studies are very focused in the evaluation of a 
large set of extracellular miRNAs in a certain disease, but 
do not explore the physiological function of extracellular 
miR-378a in detail. Thus, some important questions for the 
understanding of the endocrine function of miR-378a still 
need to be further accessed. For example, how miR-378a 
manage to be in organisms’ circulation? Is it by association 
with AGO2, or due to being incorporated into extracellu-
lar vesicles? In fact, recently, miR-378a-3p was found to 
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be inside exosomes secreted by H9c2 cells under hypoxia 
[75]. In addition, how is extracellular miR-378a released and 
incorporated into cells?

Regulation of programmed cell death 
by miR‑378a

Cells can perish through different mechanisms: apoptosis, 
autophagy, or necrosis. Cells that suffer apoptosis are char-
acterized by shrinkage, chromatin condensation, nuclear 
fragmentation, and plasma membrane blebbing. Apoptosis 
is dependent of caspase activation and can be regulated by 
an extrinsic pathway, activated due to extracellular signals, 
and an intrinsic pathway, that is initiated due to intracellular 
stress. On the other hand, autophagy involves three differ-
ent sets of pathways (macroautophagy, microautophagy and 
chaperone-mediated autophagy) that direct organelles and 
other cytoplasmic components to be degraded in lysosomes 
and subsequently recycled. In macroautophagy, the cellular 
components are incorporated on autophagosomes deliver-
ing them to lysosomes. Cellular and tissue homeostasis is 
guaranteed with the coordination between the two cell death 
programs and their regulation. For instance, dysregulated 
autophagy favours the development of pathogenesis such as 
metabolic disorders [76, 77]. Therefore, targeting those two 
mechanisms is an appealing strategy for the improvement 
of pathogenesis complications. In the last years, miRNAs 
have been associated with autophagy being found to inter-
fere with components from different phases of the macro-
autophagy pathway, such as in macroautophagy initiation 
where unc-51 like autophagy activating kinase (ULK1/2) 
was affected by miR-20a, miR-106b, and miR-26b [78, 79]; 
in macroautophagy nucleation by interfering with beclin 1 
(miR-30a, miR-376a, and miR-376b) [80–82]; in macroau-
tophagy elongation by regulating ATG7 (miR-375 and miR-
17) [83, 84] and LC3-II (miR-204) [85]; and in lysosome 
fusion, where RAB proteins were inhibited by miR-502 and 
miR-373 [86, 87].

Apoptosis and autophagy can also be regulated by miR-
378a. Some studies with the purpose of studying the effect 
of miR-378a in tumour growth and survival found that this 
miRNA inhibits CASP3 [11, 38]. CASP3 is the ultimate 
pro-apoptotic factor implicated in both extrinsic and intrin-
sic pathways of apoptosis. In addition, it was reported that 
the transfection of hypoxic H9c2 cells with miR-378a-3p 
inhibited apoptosis and improved cell survival by decreasing 
CASP3 protein levels, whereas miR-378a-3p inhibition exac-
erbated apoptosis [88]. Interestingly, unlike the above-men-
tioned studies, miR-378a-3p was found to induce apoptosis 
in postnatal mice cardiomyocytes [89]. Insulin-like growth 
factor 1 receptor (IGF1R) was identified to be a direct tar-
get of miR-378a-3p and through it the AKT signalling is 

inhibited, consequently leading to the upregulation of pro-
apoptotic proteins and the promotion of cell death.

Moreover, a role for miR-378a in macroautophagy was 
recently identified for the first time. It was shown that miR-
378a-3p was important for the maintenance of cell death 
programs such as apoptosis and autophagy in skeletal mus-
cle [14]. The authors reported that miR-378a was upregu-
lated upon fasting or starvation stresses and was inhibited 
by inflammation. Further experiments revealed that miR-
378a-3p repressed apoptosis through CASP9 inhibition, and 
it was able to enhance macroautophagy by targeting and 
inhibiting phosphoinositide-dependent kinase-1 (PDK1) 
that normally activates AKT. At that point, macroautophagy 
could be regulated by three distinct factors that interact with 
AKT: FOXO1, FOXO3, and mammalian target of rapamy-
cin complex 1 (mTORC1). On one hand, miR-378a-3p led 
to the activation of FOXO1 and FOXO3, positively regu-
lating macroautophagy. On the other hand, mTORC1 was 
consequently inhibited by the miRNA leading to the activa-
tion of the autophagy inducer ULK1 complex. In addition, 
mice lacking miR-378a-3p/miR-378a-5p were found to have 
accumulation of abnormal swollen mitochondria in gastroc-
nemius muscle. It would have been interesting to evaluate 
mitochondria functionality to further confirm that oxidative 
mitochondria metabolism was negatively affected by the 
absence of miR-378a. Regardless, this work established a 
dual role for miR-378a in the regulation of two important 
mechanisms that guarantee full organism homeostasis.

Conclusions

Present studies show miR-378a as a mediator of a wide range 
of biological processes involved in cancer and angiogenesis 
or hepatosteatosis and T2DM. miR-378a is differentially 
expressed in metabolic diseases such as during the progres-
sion of hepatosteatosis, thus being a potential biomarker. In 
fact, metabolic diseases’ prevalence is still increasing, and 
new efficient strategies are urged to control and treat them. 
The current reports on miR-378a point towards a possible 
new therapeutic target in the shape of this microRNA, and 
studies are already underway to assess this hypothesis. A 
bioengineered synthetic RNA was able to arrest miR-378a 
function by leading to its misprocessing [90], a strategy that 
could be useful against tumour growth and angiogenesis. 
Still, the challenge remains to develop an effective target-
ing system for the delivery of miRNAs mimics or inhibitors 
that is able to protect them from degradation. This could be 
surpassed with the incorporation of miRNAs in nanopar-
ticles. In the last years, this approach is growing with the 
incorporation of miRNAs in PEI-PLGA nanoparticles [91] 
or in PLGA nanoparticles [92] that were confirmed to have a 
functional role in vitro. In addition, in vivo studies positively 
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verified that LTU2a nanoparticles encapsulated with miR-
378a-3p mimics were able to efficiently deliver them to the 
liver leading to the amelioration of hepatic fibrosis [47].

Further studies are needed to clarify the mechanisms 
of action of miR-378a in mitochondrial dysfunction, since 
miR-378a-3p was reported to be involved in the regulation 
of mitochondrial function [17] and in the regulation of cell 
death programs in skeletal muscle, such as apoptosis and 
autophagy, contributing for the removal of abnormal mito-
chondria [14]. Thus, a more in-depth study of miR-378a 
action in mitochondria metabolism and in the selective 
removal of mitochondria through autophagy programmes 
will certainly provide more insights into this subject. Finally, 
besides the knowledge acquired, the clarification of miR-
378a roles in metabolism can lead to the development of 
attractive therapeutic strategies against metabolic diseases.
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