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Abstract

Hematopoietic stem cells (HSCs) are multipotent stem cells that give rise to all cells of the 

blood and most immune cells. Due to their capacity for unlimited self-renewal, long-term HSCs 

replenish the blood and immune cells of an organism throughout its life. HSC development, 

maintenance, and differentiation are all tightly regulated by cell signaling pathways, including 

the Wnt pathway. Wnt signaling is initiated extracellularly by secreted ligands which bind to 

cell surface receptors and give rise to several different downstream signaling cascades. These 

are classically categorized either β-catenin dependent (BCD) or β-catenin independent (BCI) 

signaling, depending on their reliance on the β-catenin transcriptional activator. HSC development, 

homeostasis, and differentiation is influenced by both BCD and BCI, with a high degree of 

sensitivity to the timing and dosage of Wnt signaling. Importantly, dysregulated Wnt signals can 

result in hematological malignancies such as leukemia, lymphoma, and myeloma. Here, we review 

how Wnt signaling impacts HSCs during development and in disease.
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Hematopoietic stem cells - the source of our blood and immune cell pool

Hematopoietic development, or the process of making blood, occurs in two waves, referred 

to as primitive and definitive (Galloway & Zon, 2003). During primitive hematopoiesis, 

blood and immune cells needed during early embryogenesis arise; these are essential 

for oxygenation and fighting infection in the developing conceptus. These blood cells 

are temporary and will not sustain the organism later in life. It is not until definitive 

hematopoiesis, during later development, that hematopoietic stem cells (HSCs) are born (see 

Figure 1). As blood cells turn over during the lifespan of an organism, these HSCs are 

capable of unlimited self-renewal and give rise to the blood system that will sustain the 

organism throughout its life. The remainder of this review will primarily focus on definitive 

hematopoiesis and Wnt regulation of this process, but we point our readers to reviews of 

primitive hematopoiesis (Bigas et al., 2013; Boyd & Bolon, 2022; Yamane, 2020).
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Long-term (LT−)HSCs, which are at the apex of the blood differentiation tree (Figure 1), 

have unlimited HSC repopulation potential, yet remain quiescent until they are needed. 

LT-HSCs give rise to short-term HSCs (ST-HSCs), which have a limited capacity for self-

renewal, and these are thought to differentiate to either the common myeloid progenitor 

cells (CMP), or the common lymphoid progenitor (CLP). CMPs then go on to become 

red blood cells, platelets, or myeloblasts. A myeloblast can, in turn, become eosinophils, 

basophils, or neutrophils. On the other hand, CLP cells differentiate into a lymphoblasts, 

which become T-cells, natural killer cells, or B-cells. Finally, B-cells give rise to plasma 

cells. The mechanisms governing blood cell development and differentiation is actively 

evolving and is reviewed elsewhere (Dzierzak & Bigas, 2018; Laurenti & Gottgens, 2018). 

Unfortunately, when this process is dysregulated, diseases of the blood, such as leukemia, 

lymphoma, and anemia, arise.

Healthy HSCs collected from donors can be used to replace a patient’s diseased HSC supply 

in a process called HSC transplant (HSCT). However, current HSCT suffers from two 

major limitations: First, donor-patient matching is complex, leading to insufficient suitable 

matches for all patients who could benefit from HSCT. Second, because most of the immune 

system is derived from HSCs, patients can be afflicted with long-term complications such 

as graft versus host disease, where the donor (graft) immune cells attack the recipient 

tissues. Therefore, deriving HSCs in vitro from pluripotent precursor cells would enable 

patient-specific matching, overcoming these difficulties and generating an unlimited supply 

of HSCs for transplant. Unfortunately, despite recent advances (Batta et al., 2014; Doulatov 

et al., 2013; Elcheva et al., 2014; Lis et al., 2017; Pereira et al., 2013; Pulecio et al., 2014; 

Sandler et al., 2014; Sugimura et al., 2017), producing therapeutic grade, long-term HSCs 

capable of unlimited self-renewal has challenged the field for close to 40 years, pointing to 

our incomplete understanding of how HSC development and homeostasis are regulated. We 

therefore require a better understanding of how HSCs respond to signaling cues such as the 

Wnt pathway.

In vivo models for hematopoietic stem cell development

Mice, zebrafish, fruit flies, and chicks, are some examples of useful animal models for 

studying HSC development. Each of these models has its own advantages and uses 

conserved genetic mechanisms for generating HSCs. This review will focus on mice, 

zebrafish, and fruit flies but readers are directed to an in-depth review on HSC development 

in chickens (Mahony & Bertrand, 2019). Studies in mice are advantageous because, like 

humans, they are mammals and share many attributes of their developmental biology. In 

addition, there are a wealth of genetic models that are already established in mice, and 

establishing novel genetic manipulations is standard at this point (Yoshimoto, 2018).

However, HSCs are specified only during development, complicating the study of HSCs 

in mice due to their in utero development. HSC development is a dynamic process, as 

described below, and it can be difficult to capture the correct timepoints when these cells 

are born within an embryo, within a pregnant dam. Conversely, zebrafish are externally 

fertilized, are transparent as they develop, and HSCs begin emerging roughly 26 hours post 

fertilization (hpf) (Bertrand et al., 2010; Kissa & Herbomel, 2010), a process that takes 
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about 10 days in mice. In addition, fluorescent transgenes paired with translucent larvae 

enables the direct visualization of cell populations over time. Furthermore, technological 

advances have now made genome editing and high-resolution imaging streamlined in 

zebrafish (Otterstrom et al., 2022). Fruit flies, on the other hand are advantageous because 

they have simple genetics, very conserved transcriptional regulators and signaling pathways 

to humans; they are also inexpensive and have a short developmental window (Bier, 2005). 

Despite the differences in these three models, all species develop HSCs through a similar 

trajectory of specification, emergence, and expansion. These processes occur in slightly 

different anatomical locations but display conserved molecular mechanisms.

HSCs are derived from the mesoderm, which is pushed toward endothelial cells that are 

destined to either line our blood vessels or become hemogenic endothelium. Hematopoietic 

specification is the process by which these developing endothelial cells receive cues that 

direct their identity toward hemogenic endothelium (Maximow, 1924; Murray, 1932). In 

mice and zebrafish, hemogenic endothelium is found in the major arteries; in fruit fly, the 

larva lymph gland acts as the hemogenic endothelium (Figure 2).

HSC emergence occurs when specified cells of the hemogenic endothelium undergo a 

process called the endothelial to hemogenic transition (EHT) (Bertrand et al., 2010; Boisset 

et al., 2010; Kissa & Herbomel, 2010; Mizuochi et al., 2012; Rafii et al., 2013). In this 

process, the cells of the hemogenic endothelium undergo a trans differentiation where the 

endothelial program is turned off, and a hematopoietic program is initiated. These cells bud 

out from the endothelium to enter circulation. In different species, this happens in different 

tissues, and at different developmental time points, but the cues and cellular processes are 

highly conserved. In mice, emergence occurs in the aorta-gonad-mesonephros (AGM) region 

around E10.5; in zebrafish, emergence takes place in the dorsal aorta around 26 hpf; and in 

fruit fly, emergence occurs throughout the pupa during the pupal stage (Figure 2).

After emergence, HSCs circulate to seed the site of secondary hematopoiesis, where they 

undergo expansion and maturation. Expansion occurs in mice, in the fetal liver around 

E12.5; in zebrafish, in the caudal hematopoietic tissue (CHT) around 48 hpf; and in fruit 

fly, in hematopoietic pockets widely distributed in the adult fly (Figure 2). Finally, following 

expansion, HSCs migrate to their final sites of adult hematopoiesis: in mouse, bone marrow; 

in zebrafish, kidney marrow; and in fruit fly, dorsal abdominal hemocyte clusters (Ghosh et 

al., 2015) (Figure 2). There are roles for Wnt signaling in all these hematopoietic sites, as 

detailed below. There are also many other complex signaling requirements for this process, 

described elsewhere (Drevon & Jaffredo, 2014).

The use of in vitro models has been another source for studying the development of HSCs 

and has been of particular interest in the field of regenerative medicine. Human embryonic 

stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been used to gain insights 

into how human HSCs develop. Though we cannot yet make a bona fide HSC suitable for 

therapeutic use, this model has been instrumental in our understanding of HSC ontogeny in 

humans and is reviewed elsewhere (Demirci et al., 2020; Hyslop et al., 2005).
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Wnt Signaling

Wnt signaling is highly conserved and essential for development and homeostasis in all 

metazoans. Wnt proteins are lipid-modified secreted proteins that bind to cell surface 

receptors including those encoded by the Frizzled (Fzd) gene family to transduce 

intracellular signals (Albrecht et al., 2021; Rim et al., 2022). These downstream intracellular 

pathways act both on transcriptional regulation of target genes in the nucleus and on 

processes such as actin cytoskeletal formation in the cytoplasm and are generally referred to 

as β-catenin dependent (BCD) or β-catenin independent (BCI).

In the BCD cascade, Wnt binding to cell surface receptors results in dissociation of β-

catenin from the destruction complex which includes adenomatous polyposis coli (APC), 

glycogen synthase kinase 3 (GSK3) and axin, among others (Rim et al., 2022). This allows 

β-catenin to accumulate in the cytoplasm, and translocate into the nucleus, where it binds 

directly to transcription factors of the LEF/TCF family to initiate transcription of target 

genes. Expression of these target genes have been associated with a variety of biological 

outcomes including the proliferation and maintenance of stem cell niches.

The BCI pathways have multiple downstream effectors including RhoA, JNK, and calcium 

influx pathways, which employ different cytoplasmic proteins including Vangl, Cesr 

and Prickle (Menck et al., 2021). These pathways are incompletely understood but are 

believed to cause an array of biological effects including changes in cell adhesion and 

in cell membrane polarization, and movement of tissues along a plane. These changes 

are primarily thought to occur through changes in protein levels and localization rather 

than transcriptional regulation (Adler, 2012; Schlessinger et al., 2009). Additionally, BCI 

receptors have been implicated in HSC repopulation (Famili, Perez, et al., 2016).

Given the broad implications and roles for the Wnt pathway during development and 

homeostasis, regulation of the pathway is critical. One of the major ways Wnt signaling 

is regulated in vivo is through modification of the Wnt ligand through addition of the 

monounsaturated lipid, palmitoleic acid (PA) (Takada et al., 2006). This occurs early during 

Wnt processing and is essential for its function. In addition, this acylation renders the Wnt 

protein highly hydrophobic and poorly soluble. As such, the secreted Wnt ligand is thought 

to have a short signaling range, making Wnt activity very spatially restricted. In addition 

to regulation of the Wnt ligand, Fzd-specific transmembrane ubiquitin E3 ligases, Rnf43 

and Znrf3, inhibit Fzd expression on the cell surface by targeting it for ubiquitin-mediated 

endocytosis (Zebisch & Jones, 2015). Rnf43 and Znrf3 are both downstream targets of BCD 

Wnt signaling and, thus, act as intrinsic negative feedback within the pathway to limit Wnt 

signaling temporally (Hao et al., 2012; Koo et al., 2012). Loss of these types of control 

mechanisms can also lead to dysregulation of stem cell niches.

Wnt signaling in HSC development and homeostasis

Until relatively recently, data has been inconsistent surrounding the role of Wnt signaling 

in HSC development and maintenance (Staal, Chhatta, et al., 2016). But it is now clear that 

regulation of the spatial extent and timing of Wnt signaling impacts HSC development and 

Carpenter et al. Page 4

Curr Top Dev Biol. Author manuscript; available in PMC 2024 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



homeostasis in various ways at different stages of hematopoiesis (Table 1). For example, 

Wnt signaling acts as a rheostat, with varying levels controlling HSC destiny: low Wnt 

signaling maintains HSC proliferation, higher levels enhance HSC function, intermediate 

signal promotes myeloid differentiation, even more signaling enhances T-cell differentiation, 

while high Wnt signaling impairs hematopoiesis and repopulation capacity (Luis et al., 

2011).

Studies of distinct components of the BCD Wnt signaling cascade have ultimately converged 

on similar themes for Wnt function in HSC development and maintenance. In one example, 

mutating GSK3β constitutively activates β-catenin and increases HSC numbers which leads 

to eventual HSC apoptosis (Kirstetter et al., 2006; Scheller et al., 2006). Likewise, APC 

mutation can increase the number of HSCs (Li et al., 2013). Interestingly, APC mutations 

that produce varying levels of BCD signaling activation have differential effects on HSCs 

(Luis et al., 2011). One study used these differentially BCD Wnt activating APC mutations 

to monitor HSC transplant capacity in irradiated mice. They found that when BCD signaling 

is slightly increased over baseline, replacement of HSCs through reconstitution improves; 

however, when BCD is increased even further the HSCs do not successfully reconstitute 

(Luis et al., 2011), suggesting the requirement for a “Goldilocks” level of Wnt signaling. 

Moreover, gene expression analyses of APC have found that failed HSC reconstitution is 

due to increased HSC differentiation and loss of stemness (Famili, Brugman, et al., 2016). 

Together, these studies demonstrate that the BCD Wnt cascade is critical for HSC numbers, 

and that the dosage of the Wnt signal is important.

Several studies have demonstrated a requirement for Wnt signaling in HSC development 

by using chemical or genetic inhibitors of Wnt signaling. IWR-1-endo, which is 

a Wnt inhibiting drug through stabilization of Axin, increases total HSCs numbers 

during proliferation in adult zebrafish (Kimura et al., 2022). Conversely, blocking the 

β-catenin/TCF binding complex with PKF-115 inhibits Wnt and decreases HSC numbers 

during development (Ruiz-Herguido et al., 2012). This differing effect on Wnt inhibition 

on HSCs is likely attributable to adult versus developing HSCs. In zebrafish, expression 

of dominant-negative TCF (dntcf, which downregulates Wnt signaling) throughout the 

developmental periods of HSC specification and emergences results in fewer HSCs 

(Goessling et al., 2009; Grainger et al., 2016). Notably, dntcf does not have this effect if 

induced after HSC emergence, highlighting that this signal occurs earlier in development, 

even though the phenotypic effect is seen later in development (Grainger et al., 2016),. 

Taken together with the data above, these studies support that more BCD Wnt signaling 

can lead to more HSCs, but that too high of a Wnt dosage can be detrimental to HSC 

development.

One of the bottlenecks in the Wnt field continues to be how a Wnt ligand chooses and 

signals through its cognate Fzd receptor. Speaking to this, several Wnts and Fzds are 

expressed in hematopoietic sites across species. For example, murine Wnt5a, Wnt10b, Fzd3, 

and Fzd7 are expressed in E11 yolk sac and E14 fetal liver (Austin et al., 1997), while 

Wnt3a, Wnt5a, Wnt10b, Fzd1, Fzd3, Fzd4, Fzd5, Fzd6, Fzd7 and Fzd8 are expressed in 

the bone marrow niche (Yamane et al., 2001). The differences in complements of Wnt/Fzds 
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in these developmental and homeostatic niches, respectively, suggest that there may be 

specificity of function with different pairings.

The specificity of Wnt signaling events has also been shown during HSC development in 

zebrafish, where somitically expressed Wnt ligands are important for two different stages 

of HSC development. Wnt9a is required for intra-aortic amplification of HSCs, together 

with its cognate receptor Fzd9b (Grainger et al., 2019; Grainger et al., 2016), while Wnt16 

is necessary for HSC specification (Clements et al., 2011; Grainger et al., 2016). Though 

these ligands are both expressed in the somite, resulting in a convergence of signaling in 

the hemogenic endothelium, they drive separate developmental processes. These studies 

underline how specific Wnt/Fzd pairings lead to distinct events during HSC development.

As with HSC development, Wnts and Fzds have important roles in HSC maintenance 

and differentiation. For example, purified murine Wnt3a protein has been found to induce 

HSC self-renewal in vitro (Willert et al., 2003). Fzd6 is expressed in human LT-HSCs, 

supporting that HSC self-renewal is dependent on differential expression of Wnt-related 

receptors as well as ligands (Wagner et al., 2004). Additionally, murine HSC growth is 

inhibited when treated with the soluble cystine rich domain (CRD) of the frizzled receptor, 

which antagonizes Wnt signaling (Reya et al., 2003). In human and murine HSCs, β-catenin 

and purified Wnt proteins stimulate HSC self-renewal (Reya et al., 2003; Ruiz-Herguido et 

al., 2012; Willert et al., 2003), and in mice lethally irradiated, β-catenin and purified Wnt 

proteins increase HSC reconstitution (Reya et al., 2003) but deletion of β-catenin diminishes 

LT-HSC self-renewal (Zhao et al., 2007). APC inactivation in mice increases HSC cell cycle 

entry and exhaustion, subsequent defects of the CMP and CLP progenitor pool, suggesting 

that APC is needed for HSC maintenance and survival (Qian et al., 2008). Li et al (2013) 

found that inactivation of β-catenin rescues HSC exhaustion caused by APC inactivation. 

In addition, loss of β-catenin also prevented extreme HSC proliferation and apoptosis and 

CMP/CLP defects in APC-deficient mice. In culmination, this research suggests that APC 

is a regulator of HSC maintenance and differentiation through the BCD pathway (Li et al., 

2013). LEF/TCF also has a role in HSC maintenance. Irradiated mice with transplanted 

HSCs containing mutated LEF/TCF binding sites driving GFP expression did not have GFP 

fluorescence in the bone marrow after 14-weeks whereas irradiated mice with transplanted 

HSCs containing wildtype LEF/TCF binding sites driving GFP expression did have GFP 

expression in the bone marrow (Reya et al., 2003). These studies support the importance of 

BCD in HSC maintenance.

BCI Wnt signaling also plays a role in HSC homeostasis. For example, N-cadherin-

expressing osteoblasts primarily express BCI Wnt ligands and BCD inhibitors during 

quiescence (Sugimura et al., 2012). An example of this is Flamingo, which has homology to 

cadherins and regulates expression of Fzd8 at the interface between HSCs and N-cadherin-

expressing osteoblasts (Sugimura et al., 2012). Through this mode of regulation, Flamingo 

downregulates BCD signaling and activates BCI signaling to maintain quiescence in LT-

HSCs (Akashi et al., 2003; Sugimura et al., 2012). In another example, mice lacking 

receptor Ryk involved in the BCI Wnt pathway have fewer quiescent HSCs, decreased 

self-renewal capabilities, and increased apoptosis (Famili, Perez, et al., 2016). These studies 

generally support that BCI Wnt signaling is important for HSC maintenance.
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Research thus far supports that both BCI and BCD have important roles in the development, 

maintenance, and differentiation of HSCs. One area that requires more investigation is the 

pairings of Wnts with Fzds to activate BCI and BCD Wnt signaling, which has only recently 

begun to be investigated in HSCs and other contexts (Cho et al., 2017; Eubelen et al., 2018; 

Grainger et al., 2019; Grainger et al., 2016; Vanhollebeke et al., 2015; Zhou & Nathans, 

2014). Parsing out these potential pairings as they relate to HSCs may aid in making HSCs 

in vitro and eventually treating disease.

Wnt signaling and hematological malignancies

The discovery of Wnt1 in 1982 revealed that activation of the gene lead to an oncogenic 

phenotype in mice (Nusse et al., 1984; Nusse & Varmus, 1982; Tsukamoto et al., 1988). 

Since then, a substantial amount of research has been focused on the relationship between 

the Wnt pathway and cancer, and cancers of the blood are no exception. Maintaining 

a careful balance of Wnt signaling is critical for HSC development and homeostasis. 

Disruption of Wnt signaling can lead to uncontrolled expansion of blood progenitor cells 

and leads to cancers of the blood, which are classified as leukemia, lymphoma, and 

myeloma. Many of these blood cancers are dependent on β-catenin for survival and 

progression (Gutierrez et al., 2010; Hu et al., 2009; Khan et al., 2007; Mazieres et al., 

2005; Siapati et al., 2011). Studies of leukemia, lymphoma and myeloma in patient cells 

and animal models have provided some insights into how Wnt regulates cancer, which we 

overview briefly below, but has also been reviewed extensively elsewhere (Grainger et al., 

2018; Janovska & Bryja, 2017; Staal, Famili, et al., 2016; van Andel et al., 2019).

Leukemia is caused by the uncontrolled expansion of myeloid progenitors, leading to 

an overabundance of white blood cells and platelets; leukemias are categorized into 

four subtypes: acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute 

lymphoblastic leukemia (ALL), and chronic lymphocytic leukemia (CLL) (Siegel et al., 

2016). BCD Wnt signaling is a driving force in leukemic progression using in vitro and 

in vivo models. For example, in AML mouse models, HSCs and myeloid progenitor cells 

can derive pre-leukemia initiating cells (pre-LIC) and evidence suggests that β-catenin is 

necessary for pre-LICs to progress into mature, self-renewing LICs (Lane et al., 2011; Wang 

et al., 2010; Yeung et al., 2010), which has also been shown for CML cells (Nagao et al., 

2008), CLL (Franiak-Pietryga et al., 2015) and T-ALL (Giambra et al., 2015). Additionally, 

there are several oncogenic chimeric fusion proteins associated with leukemias, such as 

AML1-ETO, PML-RARα, or PLZF-RARα, which activate Wnt signaling in hematopoietic 

cell lines (Cheng et al., 2011; Muller-Tidow et al., 2004). This activation of signaling 

leads to enhanced proliferation, which has been shown for example in the AML cell lines, 

CD82 and CD70/CD27 (Ji et al., 2019; Riether et al., 2017). In AML cells in vitro, 

loss of key components of the Wnt pathway can in turn dampen this proliferative effect. 

Knockdown of Wnt receptor, Fzd1, inhibits AML proliferation, while cells with increased 

Fzd1 expression are chemoresistant (Wang et al., 2018). BCD Wnt signaling also contributes 

to CML in mouse models as evidenced by elevated nuclear β-catenin levels which drove 

the self-renewal capacity of the CML cells (Jamieson et al., 2004). Furthermore, granulocyte 

macrophage progenitor cells arise from CML progenitor cells due to an in-frame splice 

deletion in GSK3β leading to increased β-catenin expression (Abrahamsson et al., 2009). 
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Reduction of BCD Wnt signaling via inhibition of the BCR-ABL-PI3K-AKT pathway 

reduces the tumor forming ability of the LICs (Hu et al., 2016). This evidence supports a 

role for BCD Wnt signaling in leukemia however, it’s important to note that others have 

found evidence that BCI signaling is active in leukemias as well. For example, BCR-ABL 

CML cell survival is dependent on Wnt-mediated calcium signaling (Gregory et al., 2010). 

Additionally, BCI signaling is implicated in ALL where upregulated E2A-Pbx1 fusion 

protein activates the expression of WNT16 (McWhirter et al., 1999).

Given its requirement in leukemia, Wnt signaling has naturally been investigated as a 

therapeutic target. For instance, the Wnt co-receptor, ROR1, is expressed in human CLL 

cells and even higher levels have been found in an accelerated form of CLL (Cui et al., 

2016; Fukuda et al., 2008). For this reason, research has set out to target these cells 

with anti-ROR1 monoclonal antibody (Cirmtuzumab). For example, by blocking ROR-1, 

Cirmtuzumab inhibits Wnt5a signaling and prevents RhoA/Rac activation, thus reducing 

proliferation and migration of CLL cells, but it has no effect on non-leukemic cells (Cui et 

al., 2016; Yu et al., 2016). In fact, co-treatment of leukemic cells with Cirmtuzumab and 

a B-cell receptor blocking drug is more effective at clearing leukemic cells than using the 

B-cell blocking drug on its own (Yu et al., 2017).

An important consideration when therapeutically targeting the Wnt pathway is that loss 

of Wnt signaling in leukemia cells is not always detrimental to their persistence. For 

example, Wnt5a+/− mice have enhanced B-cell proliferation and develop spontaneous 

myeloid leukemia compared to Wnt5a homozygous mice. This may be because Wnt5a 

regulates the calcium cascade which antagonizes the β-catenin pathway (Liang et al., 2003; 

Ying et al., 2007) thereby suggesting that leukemia is more likely to progress with active 

β-catenin signaling. B-cells in vitro had reduced proliferation capacity when treated with 

Wnt3a, indicating that Wnt3a may also antagonize Wnt signaling in leukemia cells (Nygren 

et al., 2007). These differing effects of Wnt5 and Wnt3a on leukemia cells further supports 

the need for ligand/receptor specificity research to understand the role of Wnt signaling in 

leukemia.

Much like leukemias, lymphomas have been shown to have increased levels of Wnt pathway 

activation (Ge et al., 2012; Gelebart et al., 2008; Groen et al., 2008; Zhang et al., 2010). 

Regulators of the Wnt pathway include TCF7, FZD7, LRP5, AXIN1, APC, and DVL3 in 

mantle cell lymphoma (Rizzatti et al., 2005) and TCF1 and LEF1 in some T-cell and small 

B-cell lymphomas (Dorfman et al., 2003; Tandon et al., 2011). Lymphomas harboring fusion 

oncoproteins can also lead to increased expression of Wnt target genes such as cyclinD1, 

but this translocation does not drive lymphoma on its own (Bodrug et al., 1994; Bosch et 

al., 1994). Altogether, these studies suggest that increased canonical Wnt signaling leads to 

disease progression in lymphomas. Similar to leukemia, Wnt5a is suspected to antagonize 

canonical Wnt in lymphoma as loss of heterozygosity in Wnt5a+/− mice leads to B-cell 

lymphoma (Liang et al., 2003).

Myeloma is cancer of plasma cells, with multiple myeloma (MM) being the most common 

type of myeloma. Wnt2b, Wnt5a, Wnt7a, Wnt10b, Wnt11, and Wnt16 are expressed in MM 

patient cells and MM cell lines (Qiang et al., 2005). Like LICs and lymphoma cells, MM 
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cell growth is dependent on Wnt signaling (Derksen et al., 2004). Primary MM cells are 

killed following treatment with an inactivator of the β-catenin/TCF complex (PKF115-584), 

without affecting normal plasma cells, indicating that Wnt signaling may be necessary for 

MM cell viability but not healthy plasma (Sukhdeo et al., 2007).

Blood cancer cells are housed in the bone marrow, and unsurprisingly have a large impact on 

the bone microenvironment. For example, MM cells secrete the Wnt antagonists SFRP2 and 

DKK1, both of which inhibit bone mineralization and are associated with destructive bone 

lesions in patients (Oshima et al., 2005; Tian et al., 2003), and in vitro(Gunn et al., 2006; 

Tian et al., 2003). As a result, osteolytic bone disease manifests in patients with MM due 

to absorption of bone by osteoclasts and repression of new bone formation by osteoblasts. 

DKK1 antibody treatment can reverse decreased bone mineral density in severe combined 

immunodeficient mice with MM tumor cells (Fulciniti et al., 2009; Heath et al., 2009; 

Yaccoby et al., 2007), providing a possible treatment option for MM patients. These studies 

demonstrate the importance of Wnt signaling to skeletal health and cancer progression, and 

how these converge to devastating impacts.

Epigenetic Regulation in HSCs and Wnt Signaling

Epigenetic modulations can lead to heritable differential gene expression without alteration 

to DNA and include alterations such as DNA methylation, and histone posttranslational 

modifications including methylation and acetylation (Wright & Beato, 2012). These 

mechanisms act on chromatin organization to either increase (euchromatin) or decrease 

(heterochromatin) accessibility of DNA to transcription and consequently, control gene 

expression. This pattern of methylation and acetylation markers is known as the Histone 

Code (Strahl & Allis, 2000). Like other cell types, HSCs are impacted by modifications in 

the histone code.

Methylation of DNA is catalyzed by DNA Methyl transferases (DNMTs) and the removal of 

methyl groups is performed by demethylases such as LSD1 (Lysine specific demethylase 

1) (Jones & Liang, 2009). LSD1 is a critical regulator of HSC differentiation and 

proliferation (Kerenyi et al., 2013; Sprussel et al., 2012), and cooperates with BCD Wnt 

signaling through the transcriptional repressor Gfi1b to repress hyperproliferation of HSCs 

(Shooshtarizadeh et al., 2019). Methylated DNA is recognized by methyl-CpG binding 

domains (MBD) or C2H2 zinc finger proteins, which are a mechanism of epigenetic 

regulation beyond histones, and can lead to increased or decreased gene expression (Fitz-

James & Cavalli, 2022). For example, the methyltransferases DNMT3a/b, have been 

found to be both essential for HSC self-renewal and to carry out de novo methylation 

patterns which silence self-renewal genes within HSCs (Challen et al., 2014; Jeong et al., 

2018; Trowbridge & Orkin, 2011). Epigenetic regulation of Wnt signaling likely plays 

an important role in the maintenance of HSCs, CMPs and CLPs. For instance, CML and 

CLL cells exhibit aberrant hypermethylation of sFRPs, which are thought to act as Wnt 

antagonists (Liu et al., 2006; Pehlivan et al., 2009); silencing of another Wnt antagonist, 

Dkk3 is associated with ALL (Roman-Gomez et al., 2004). Finally, Wnt5a, which seems 

to play a tumor suppressor role in hematological malignancies is silenced in several blood 

cancer (Roman-Gomez et al., 2007; Ying et al., 2007).
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Given the unsuccessful attempts to generate LT-HSCs in vitro, it is possible that during 

culture the epigenetic signals of cells is altered. For example, long term culture of 

mesenchymal stem cells (MSCs) shows both hypo- and hypermethylation with additional 

complication of neighboring CpGs as well as alterations in nuclear organization, resembling 

epigenetic drift (Franzen et al., 2021). There are large gaps in knowledge within the 

epigenetics field generally, but specifically within Wnt signaling. Additionally, conditions 

surrounding epigenetic modulations in vivo are not yet clear, thus there is likely a 

large amount still to be discovered about how HSCs and Wnt signaling are regulated 

epigenetically.

Conclusion

Understanding the cellular signals occurring during hematopoiesis will enable advancement 

in treatment for hematological malignancies through improvement of HSCT, and more 

specific targeting of cancer cells. Wnt signaling is critical during hematopoiesis and 

members of both β-catenin dependent (BCD) and independent (BCI) pathways are 

dysregulated in cancer indicating potential therapeutic targets. Additional research into 

specific requirements for Wnt/Fzd pairings in HSC development and homeostasis will fill 

gaps in knowledge in this field and be key to future therapeutic interventions and our 

understanding of how our blood is made and replenished.
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Figure 1. 
Hematopoietic stem cell differentiation. Long-term (LT) HSC cells self-renew or repopulate 

the HSC pool. Short-term (ST) HSCs can differentiate into a common myeloid progenitor 

cell or a common lymphoid progenitor cell, which further differentiate into blood and 

immune cells.
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Figure 2. 
Locations of hematopoietic specification, emergence, expansion, and storage in mice, 

zebrafish, and fruit fly. Specification, indicated as red dots, in mice and zebrafish occurs 

in hemogenic endothelium, whereas in fruit fly larvae, specification occurs in the lymph 

glands. Emergence occurs in the aorta-gonad-mesonephros of mice, in the dorsal aorta of 

zebrafish, and across the pupa of fruit fly. HSC expansion takes place in the fetal liver of 

mice, in the caudal hematopoietic tissue of zebrafish, and in hematopoietic pockets across 

the adult fruit fly.
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Figure 3: 
Schematic of Wnt signaling pathways with and without the presence of a Wnt ligand. 

BCD pathway is activated by interaction of Frizzled (Fzd) receptor, lipoprotein related 

protein (LRP) and the Wnt ligand. The signal leads to nuclear translocation of β-catenin 

into the nucleus where it binds to lymphoid enhancing factor (LEF)/ T cell factor (TCF) 

transcription factors, thereby initiating transcription of Wnt target genes. One proposed 

β-catenin independent (BCI) pathway is initiated by the formation of a Ror2/Ryk-Wnt-Fzd 

complex. This leads to alterations in Ca2+ intracellular levels, impacting the protein kinase 

C (PKC), calmodullin-dependent protein kinase (CaMK) cascades, or NFAT/AP1 driven 

gene expression. DKK, Dickkopf; Dsh, Disevelled; GSK3β, Glycogen Synthase Kinase 3β; 

LSD1, Lysine Specific Demethylase 1; Ryk, receptor-like tyrosine kinase; Sfrp, Secreted 

frizzled-related protein.
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