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Abstract
The genus Striga, also called “witchweed”, is a member of the family Orobanchaceae, which is a major family of root-
parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed 
production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the 
communication between Striga and their host plants through natural seed germination stimulants, “strigolactones (SLs)”, is 
required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, 
which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling 
in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the 
process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of 
SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate 
the dynamic behavior of SL receptors and the regulation of SL signaling.

Keywords Hydrolase · Karrikin · Parasitic weed · Phytohormone · Shoot branching · Strigolactone analogs · Strigolactone 
mimics · Ubiquitin–proteasome system

Abbreviations
2-MN  2-Methoxy-1-naphthaldehyde
5-DS  5-Deoxystrigol
ASK1  ARABIDOPSIS SKP-LIKE 1
ATPase  Adenosine triphosphatase
CL  Carlactone
CLA  Carlactonoate
CLIM  Covalently linked intermediate molecule
D14  DWARF14
DSF  Differential scanning fluorimetry
EAR  Element binding factor-associated amphiphilic 

repression
GA  Gibberellin
HTL  HYPOSENSITIVE TO LIGHT
ITC  Isothermal titration calorimetry
KAI2  KARRIKIN INSENSITIVE2

KAR  Karrikin
LGS1  LOW GERMINATION STIMULANT 1
LRR  Leucine-rich repeat
MAX2  MORE AXILLARY GROWTH2
MP  Methyl phenlactonoate
Nij-1  Nijmegen-1
SCF  SKP1-Cullin-F-box
SL  Strigolactone
SLR1  SLENDER RICE1
SMAX1  SUPPRESSOR OF MAX2 1
SMXL  SMAX1-Like
SOP  Soporidine
SPL7  Sphynolactone-7
TPR  TOPLESS-related protein
YLG  Yoshimulactone Green
YLGW  YLG double

Introduction

Orobanchaceae is a major family of root-parasitic plants and 
is divided into 90 genera (one genus is not parasitic) that 
are composed of more than 2000 species [1]. Each genus 
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is widely distributed around the world with different host 
preferences and dependencies. Obligate parasites require 
parasitism to their host plants for survival, because they lack 
photosynthesis and/or other physiological functions. In con-
trast, facultative parasites can grow on their own, whereas 
they parasitize if host plants are located near them.

The genus Striga, also called “witchweed”, is a highly 
threatening obligate parasite of the family Orobanchaceae; 
its habitat has expanded over 40 countries in Africa, and 
some species have reached India and Pakistan beyond the 
Arabian Peninsula [2, 3]. Striga parasitizes major crops, 
including maize, millet, sorghum, and rice, as host plants, 
causing a 30–90% reduction in agricultural production [2, 
4]. The crop damage caused by Striga is estimated to be 
111–200 million dollars in rice alone [5] and adversely affect 
at least 100 million people in sub-Saharan Africa [4]. Striga 
produces over 50,000 very-tiny seeds (approx. 0.2‒0.5 mm) 
[6]. In addition, Striga seeds remain viable and dormant in 
the soil for over 14 years until they perceive germination 
signals from their host plants [7]. Because of these features, 
Striga can lead to the formation of seed stocks in the soil and 
to explosive expansion once their crop hosts are cultivated.

The molecular mechanism underlying the interaction 
between Striga and their host plants is required to develop 
the technology for Striga control. Three common strategies 
have been presented thus far: (1) utilizing host-acquired 
resistance; (2) suppressing the germination of Striga seeds; 
and (3) depleting the seed stocks in the soil. Based on the 
host preferences, various crops were screened and analyzed 
for resistance to Striga parasitism. For example, a rice culti-
var (Nipponbare) exerts a potent post attachment resistance 
to Striga hermonthica [8]. The parasite penetrates the root 
cortex but cannot form a connection with the host xylem. 
Some other hosts induce a hypersensitive reaction at the site 
of infection to prevent Striga parasitism [9]. Regarding the 
ability to evade the Striga germination, some crops secrete 
modified germination signals that are not capable of induc-
ing effective germination. LOW GERMINATION STIMU-
LANT 1 (LGS1) was identified as a causative gene in sor-
ghum [10]. After germination, the Striga radicle invades a 
host root in close proximity (2‒3 mm). In addition, the size 
of the endosperm is insufficiently large to maintain radicle 
growth for more than 7 days [6]. Based on the ecological 
features of Striga seeds, “suicidal germination stimulants” 
have been proposed to eliminate the Striga seeds [11]. In the 
suicidal germination stimulant method, synthetic germination 
stimulants are applied to the soil before sowing the host crops 
to induce the germination of Striga seeds. Because Striga are 
obligate parasites, they are not capable of surviving without 
hosts, and thus, the seed stocks could be depleted.

“Strigolactones (SLs)” and their molecular bases in Striga 
germination have been discovered in this past decade and 
lead to the chemical regulation of the obligate parasite, 

which are highlighted from various viewpoints in the recent 
review articles [12–18]. Here, we outline recent findings on 
the SL perception mechanism in Striga germination and the 
chemical compounds developed based on the action of SLs.

Strigolactones and their roles in the host 
recognition of root‑parasitic plants

After invading a host root, the genus Striga initiates the 
formation of a structure called a haustorium for successful 
attachment and then grows underground for 4‒7 weeks, dur-
ing which it causes severe damage to the host. Once emerged 
above ground, it rapidly develops flowers and seeds. Striga 
host sensing is achieved by the perception of SLs, which 
are exogenous compounds secreted by the host plants. In 
1966, strigol was initially isolated as a natural SL from the 
root exudates of cotton [19] (Fig. 1). The structure of strigol 
was elucidated in 1972 [20], but its absolute configuration 
was not reported until 1985 [21]. Later, other germination 
stimulants were discovered with similar structures to strigol. 
For example, orobanchol, solanacol, and sorgolactone were 
identified from the root exudates of red clover [22], tobacco 
[23], and sorghum [24], respectively. Currently, 17 types of 
natural SLs have been proven to stimulate the germination 
of Striga and/or other Orobanche spp. [25].

Canonical SLs are composed of a tricyclic lactone (ABC-
ring) and a butenolide ring (D-ring) that are connected by an 
enol-ether linkage [11, 26] (Fig. 1). SLs are divided into two 
classes according to the stereochemistry of the BC junction 
on the ABC-ring. The SLs belonging to the “strigol class” 
have the same stereochemistry as strigol. In contrast, the 
“orobanchol class” is characterized by the opposite stereo-
chemistry of the BC junction to the strigol class [27], which 
was initially observed in orobanchol [22]. The BC stereo-
chemistry and other modifications of the ABC-ring affect the 
activity of SLs in Striga germination. Studies using different 
sorghum cultivars showed that the parasitism efficiency of 
S. hermonthica was positively correlated with the amount of 
5-deoxystrigol (5-DS) production [28, 29] (Fig. 1). Another 
stereochemistry, the configuration of the D-ring at C-2′, is 
common to all of the natural SLs in both classes, which is 
limited to an R-configuration. The R-configuration is required 
for greater S. hermonthica germination activity compared to 
the germination promoted by the S-configuration.

SLs are instable in water and easily degrade into inac-
tive ABC-rings and D-rings by breakdown of the enol-
ether linkage [30], and it is difficult to isolate natural SLs, 
because only trace amounts are produced in plants [31]. 
On the other hand, the ABC-ring of natural SLs adopts a 
variable structure to some extent. This structural infor-
mation led to the design of synthetic SL analog GR24 
(Fig. 1), which has been widely used for research purposes 
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because of its high Striga germination activity [30, 32]. 
Compounds lacking the A- or AB-ring of GR24, namely, 
GR7 or GR5, were also confirmed as retaining the ability 
to stimulate Striga germination. However, only the ABC-
ring or D-ring do not show germination activity. These 
findings suggest that the CD part is bioactiphore of SLs 
as germination stimulants [11, 26, 30], which is used as a 
model for the dedicated design of active SL analogs [33]. 
Nijmegen-1 (Nij-1) is a first SL analog with the germi-
nation activity of root-parasitic plants although it has a 
carboxy methyl group as an open C-ring. Indeed, Nij-1 
showed a considerable reduction of Striga seeds as sui-
cidal germination stimulants in the field trials as well as 
GR24 and GR7, and also worked in tobacco fields infested 
by Orobanche ramose L. [11, 34]. Recently, new types of 
natural SLs lacking the A-, B-, or C-ring were isolated 
from the root exudates of several plants, such as maize 
and sunflower, as germination stimulants [13] (Fig. 1). 
These are called non-canonical SLs as which methyl zea-
lactone, an SL biosynthetic precursor carlactone (CL), and 

its oxidized metabolite carlactonoate (CLA) are classified. 
Methyl zealactone has a carboxy methyl group connecting 
an enol-ether‒D-ring moiety similarly to Nij-1, and acts 
as a germination stimulant for root-parasitic plants [35].

Because the transformation method for Striga has not 
yet been established, a genetic approach is not available to 
identify the components related to SL-dependent germi-
nation using root-parasitic plants. Therefore, recent pro-
gress in this field has instead been achieved using chemical 
tools, including synthetic SL analogs/mimics and model 
plants that possess a similar pathway of SL signaling.

Similar molecular mechanisms of SL 
perception and signaling in parasitic 
and nonparasitic plants

Although SLs are secreted from host plants and used as 
gemination signals in root-parasitic plants, they also have 
important physiological roles, such as shoot branching 

Fig. 1  Chemical structures of 
natural (canonical and non-
canonical) SLs and synthetic SL 
analogs. The stereochemistry 
of the BC junction is different 
between the strigol and oroban-
chol classes, indicated by bonds 
colored in red
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suppression, root development, and stress responses, as 
endogenous phytohormones in the host plants [36–38]. 
The genetic components were initially identified by ana-
lyzing the phenotypes of mutants in model plants, includ-
ing Arabidopsis and rice. The core regulatory components 
for SL signaling are believed to be three types of subcel-
lular proteins: DWARF14 (D14) [39], D3/MORE AXIL-
LARY GROWTH2 (MAX2) [40, 41], and D53/SUPPRES-
SOR OF MAX2 1 (SMAX1)-Like (SMXL) [42, 43].

D14 is the most promising SL receptor and adopts an 
α/β hydrolase fold that is composed of a core domain with 
the conserved Ser-His-Asp catalytic triad and a helical 
cap domain [44–47] (Fig. 2a). Mutational analyses have 
shown that the catalytic triad is required for SL hydrolysis 
that breaks the bond between the ABC-ring and the D-ring 
[44, 47]. The remaining enzymatic activity is unusual in 
the ligand perception of phytohormone receptors [48]. SLs 
induce the interaction between D14 and D3/MAX2, which 
is a key molecular mechanism responsible for the activa-
tion of SL signaling (Fig. 2b). D3/MAX2 is a member 
of the leucine-rich repeat (LRR) family, composed of an 
N-terminal F-box domain and a C-terminal LRR domain 
with 19 LRRs in tandem [49, 50]. The F-box domain 
of MAX2 interacts with ARABIDOPSIS SKP-LIKE 1 
(ASK1), which is a component of the SKP1-Cullin-F-box 
(SCF) ubiquitin ligase complex [51]. Therefore, D3/MAX2 
is involved in SL signaling through a ubiquitin–protea-
some system. According to this mechanistic insight, D53/

SMXL and the DELLA protein SLENDER RICE1 (SLR1) 
were identified as SL-dependent interaction factors of D14 
[42, 43, 46] (Fig. 2b). D53/SMXL is also degraded as a 
target substrate of D3/MAX2 in SL signaling, and the rice 
d53 mutant showed an exaggerated number of tillers com-
pared to wild-type plants and was insensitive to exogenous 
treatment of 5-DS or GR24 [42, 43]. Although SMAX1 
and seven SMXL proteins (SMXL2‒8) were identified 
in Arabidopsis, only SMXL6, 7, and 8 were responsible 
for the SL-dependent regulation of shoot branching [52, 
53]. D53/SMXL belongs to the p-loop nucleoside triphos-
phate hydrolase superfamily, consisting of an N-terminal 
domain, a D1 ATPase domain, an M domain, and a D2 
ATPase domain, similar to the chaperone protein HSP101. 
The D1 and D2 ATPase domains are responsible for SL-
dependent interactions with D14 [43, 54]. In addition, the 
D2 ATPase domain contains the ethylene response ele-
ment binding factor-associated amphiphilic repression 
(EAR) motifs for the interaction with TOPLESS corepres-
sor, which regulates the transcription of many genes for 
plant development and phytohormone response [42, 55]. 
In fact, D53 interacts with rice TOPLESS-related proteins 
(TPRs), especially TPR2 [42]. These results propose that 
D53/SMXL acts as a repressor of SL signaling through the 
interaction of TOPLESS and TPRs. One of EAR motifs 
in D53 binds to the conserved TOPLESS domain (TPD) 
of TPR2 to mediate TPD tetramer–tetramer interaction, 
which promotes the assembly of D53–TPR2–nucleosome 
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Fig. 2  Molecular function of D14 as an SL receptor. a SL hydrolysis 
in the catalytic pocket of D14. CLIM is an intermediate covalently 
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domain is colored in pink. b Schematic diagrams of SL signaling 

mediated by D14, D3/MAX2, and D53/SMXL. In the upper path-
way, SL hydrolysis is required to form ternary complexes of D14, D3/
MAX2, and D53/SMXL. The lower pathway shows that SL is hydro-
lyzed for the deactivation and recycling of D14
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complex [55]. On the other hand, SLR1 is a repressor of 
gibberellin (GA) signaling in rice [56], and GA is a phy-
tohormone that suppresses the shoot branching of plants. 
Therefore, the interaction between D14 and SLR1 suggests 
cross-talk between SL and GA signaling in a branching 
regulation [46].

Recent biochemical and structural analyses proposed the 
mechanistic basis for the SL-dependent formation of the 
D14‒D3/MAX2 complex that eventually degrades D53/
SMXL through its ubiquitination [50, 57]. The interaction 
with MAX2/D3 in the presence of SLs induced a confor-
mational change in the helical cap domain of Arabidopsis 
thaliana D14 (AtD14), and SL was broken down into the 
intermediate D-ring molecule (CLIM) at the active site [50] 
(Fig. 2b). CLIM was proposed to have structures that cova-
lently link with the Ser and His residues of the catalytic 
triad (Fig. 2a). The covalent linkage of the His residue with 
the D-ring was also detected by mass spectrometry [57]. 
These findings concluded that SL hydrolysis was required 
for the complex formation of D14 with D3/MAX2. However, 
Seto et al. more recently reported that the AtD14 mutant at 
the catalytic Asp residue (D218A mutant) was still capable 
of interacting with MAX2 and SMXL7, complementing 
the atd14 mutant phenotype in an SL-dependent manner, 
although the D218A mutant lacked the hydrolytic activ-
ity of SL [58]. Based on these results, an intact SL mol-
ecule induces the formation of the D14‒D3/MAX2‒D53/
SMXL complex, and D14 is deactivated after SL hydroly-
sis (Fig. 2b). Another possible mechanism of SL signaling 
deactivation involves AtD14 degradation from the MAX2-
dependent proteasomal pathway after SL perception [59]. 
Thus, the accumulated evidence suggests the possibility of 
multiple SL perception mechanisms and interaction plas-
ticity [46, 54]. According to these mechanisms, the bio-
actiphore of SLs is probably required for their hydrolysis 
to induce the formation of SL signaling complex and/or to 
deactivate the signaling.

S. hermonthica has the orthologous genes D14 (ShD14) 
and D3/MAX2 (ShMAX2), and hence evolutionally conserves 
a similar SL perception system to host plants. However, no 
obvious defects in seed germination were observed in the 
loss-of-function atd14 mutant. In Arabidopsis, HYPOSEN-
SITIVE TO LIGHT/KARRIKIN INSENSITIVE2 (HTL/
KAI2) was identified as a seed germination regulator that 
belongs to the closely related α/β-hydrolase of D14, and its 
loss-of-function mutant showed a hyperdormant phenotype 
[60, 61]. These genetic studies elucidated that HTL/KAI2 
and MAX2 were necessary for the responses to exogenous 
SLs and other germination stimulants, including karrikins 
(KARs) [62–64], which are derived from the smoke of burn-
ing vegetation and induce seed germination after forest fires 
[65–67]. Although HTL/KAI2 is SL-responsive as well as 
D14, it recognizes different stereoisomers of SL [46, 63, 

68]. D14 responses specific to naturally occurring SLs with 
R-configuration at C-2′ of the D-ring and HTL/KAI2 exhibit 
selectivity to non-natural S-configuration.

HTL/KAI2 paralogous genes are present in higher copy 
numbers in seed-parasitic plants than nonparasitic plants. In 
S. hermonthica, 11 HTL/KAI2 paralogs were identified and 
categorized into three phylogenetic clades: the conserved 
clade (ShHTL1/ShKAI2c), intermediate clade (ShHTL2 and 
ShHTL3/ShKAI2i), and divergent clade (ShHTL4/ShKAI2d3 
to ShHTL11/ShKAI2d9) [69–71] (Fig. 3). All of them pos-
sess the conserved Ser-His-Asp catalytic triad and share high 
sequence similarity. However, ShHTLs belonging to differ-
ent clades show different responses to SLs and/or KARs 
in cross-species complementation assays in which ShHTL 
genes were transformed into Arabidopsis htl/kai2 mutants 
[69–71]. ShHTL4–9 belong to a parasite-specific clade and 
recovered seed germination in the loss-of-function mutant 
by responding to SLs but not KARs. Therefore, ShHTL4–9 
from divergent clades are proposed to be SL receptors in 
root-parasitic plants and are optimized to receive natu-
ral exogenous SLs. The SL/KAR responsiveness can be 
explained by the biochemical properties of ShHTLs among 
the three phylogenetic clades [72, 73]. The divergent clade 
(ShHTL4 and ShHTL7) showed hydrolytic activity toward 
GR24. In contrast, the conserved (ShHTL1) and interme-
diate (ShHTL3) clades possess KAR-binding properties 
without hydrolytic activity toward SLs (Fig. 3). According 
to the isothermal titration calorimetry (ITC) experiments, 
the binding affinity of ShHTL1 and ShHTL3 toward  KAR1 
was slightly higher than that of HTL/KAI2. These SL/KAR 
selectivities are correlated to the size of catalytic pockets 
(Fig. 3), which were evaluated by a comparative analysis 
with the crystal structures of ShHTLs belonging to the three 
clades [71, 73]. The pocket size is affected by the arrange-
ment of helix αD1 on the helical cap domain and the types 
of residues located in the pocket [73] (Fig. 3). Among the 
ShHTLs of the divergent clade, ShHTL7, which has the 
largest pocket size compared to the remaining ShHTLs, has 
evolved with unbulky residues. These structural bases may 
help to develop the chemical compounds that can be used for 
separately controlling the different clades of ShHTLs to their 
function in the seed germination of root-parasitic plants.

ShHTL7 and ShHTL4 are capable of binding to ShMAX2 
(the D3/MAX2 protein is conserved in S. hermonthica) 
in an SL-dependent manner, whereas this interaction 
with ShMAX2 is not detected in other clades of ShHTLs 
(ShHTL1 and ShHTL3) [73, 74]. These observations sug-
gest that the SL-induced seed germination process of S. 
hermonthica shares a similar SL perception mechanism to 
nonparasitic plants using the divergent clades of ShHTLs 
instead of D14. However, the role of SL hydrolysis and 
downstream signaling components are not yet fully under-
stood in seed germination stimulation through the divergent 
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clades of ShHTLs, and the target molecules for ShMAX2-
dependent proteolysis are likely to be different from shoot 
branching inhibition through D14.

Development of SL agonists and antagonists

To address the characterization of the parasitic SL receptors 
with a chemical biology approach because of unavailable 
genetic approaches, the fluorogenic SL mimic, Yoshimula-
ctone Green (YLG) (Fig. 4), was designed based on the SL 
hydrolytic activity of the ShHTLs [70]. Competitive bind-
ing assays using YLG revealed that ShHTL6 and ShHTL7 
exerted high sensitivities to GR24 and strong responses to 
various SLs [70, 71]. These characteristics are relative to 
larger pockets than the other ShHTLs, because there is less 
chance for steric hindrance to occur upon SL binding [73]. A 
variant of YLG with two D-rings (YLGW) was improved to 
eliminate background fluorescence and was applied to visu-
alize the dynamic behavior of SL signaling in S. hermon-
thica by utilizing its activity as an SL agonist [70] (Fig. 4). 
Root elongation occurred after three phases with different 
fluorescent patterns (initial perception, wake-up wave, and 
pregermination pause). YLGW fluorescence was strongly 
detected at the root tip and then gradually spread toward 
the cotyledon during root elongation. Such a dynamic man-
ner of YLGW fluorescence suggests that the induction of 
root germination is intricately regulated through SL receptor 

activation and degradation, amplification from ethylene pro-
duction, and cell-to-cell signal spread [16].

SLs play an essential role in the seed germination mecha-
nisms of root-parasitic plants. However, the practical use of 
natural SLs is limited because of their uneconomical and 
complicated syntheses and instability; hence, artificial SL 
analogs, including GR24 and Nij-1, have been developed 
so far. In addition, synthetic compounds with defective bio-
actiphore of SLs have been explored as SL mimics that can 
exert a part of SL functions. Debranones (phenoxyfuranone 
compounds) are the simplest SL mimics and function as 
shoot branching inhibitors similar to GR24 and modestly 
induce the seed germination of Striga [75, 76] (Fig. 4). 
Chemical modification improved the stimulation activity of 
debranones for Striga seed germination [77]. The 2-bromo-
6-nitrophenyl derivative was the most effective at inducing 
Striga seed germination among all tested debranones. In 
other synthetic SL analogs/mimics, SL analog with p-tol-
ylmalondialdehyde group, and SL mimics with aryloxy or 
phthalimide groups effectively function as germination stim-
ulants for Orobanche-type parasitic plants [78, 79]. Methyl 
phenlactonoates (MPs) are SL analogs that are designed by 
mimicking methyl CLA [80] (Fig. 4). Chemical modification 
affected the activity of the MPs in Striga seed germination 
and the shoot branching of the nonparasitic model plants. 
Among the tested MPs, MP1 showed the most efficient 
activity for Striga seed germination but lower activity than 
MP3 and MP7 for the inhibition of rice tiller outgrowths. 
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Recently, hybrid-type SL analogs/mimics were newly 
designed by coupling the D-ring with another phytohormone 
auxin [81, 82] (Fig. 4) and stimulated the seed germina-
tion of three types of the parasitic plants, S. hermonthica, 
Phelipanche ramose, and Orobanche minor. The SL analog 
derived from auxin, especially, is more effective toward O. 
minor than GR24. The higher activity was observed in the 
analogs/mimics with a natural monomethylated D-ring than 
in the derivatives with the di- or trimethylated D-ring.

These SL analogs/mimics can be referred to as SL ago-
nists that are targeted to the D14/HTL-type SL receptors 
in both parasitic and nonparasitic plants because of their 
common structural features. Uraguchi et al. designed an SL 

mimic, sphynolactone-7 (SPL7), to have a high affinity for 
ShHTL7 [83] (Fig. 4). In the competitive binding assays 
using YLG, the  IC50 value for ShHTL7 was 0.31 μM, but 
almost all other ShHTLs and AtD14 showed an  IC50 value 
of > 10 μM. SPL7 also showed a Striga-selective SL agonis-
tic activity in the femtomolar range. These results support 
that ShHTL7 can play a crucial role in the SL-dependent 
seed germination of S. hermonthica, and is a major target for 
developing suicidal germination stimulants. Although there 
is no structural information of SPL7 bound to ShHTL7, it is 
speculated that sulfonyl piperazine moiety at the ABC-ring 
portion of SLs contributes to the selectivity to ShHTL7 and 
the femtomolar-rage potency [83]. Practical SL agonists as 
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suicidal germination stimulants need to fulfill all require-
ments for Striga control in the field. Successful field trial 
for suicidal germination activity was performed in three 
SL analogs, Nij-1, MP1, and MP3 [84]. These formulated 
compounds reduced the number of emerged Striga plants 
to 39‒65% in farmer’s fields of pearl millet. Formulated 
MP1 also showed 42% reduction of Striga emergence in the 
sorghum field.

Many types of SL antagonists have also been discovered 
with in silico and/or chemical library screening to control 
the second tiller elongation of the host plants and the seed 
germination of S. hermonthica (Fig. 4). 2-Methoxy-1-naph-
thaldehyde (2-MN) was identified with in silico screening 
based on the structure of D14 complexed with the D-ring 
[46, 85]. 2-MN inhibits the D14‒D53 and D14‒SLR1 inter-
actions to restore the second tiller elongation and suppresses 
the SL-dependent germination of Striga seeds [85]. DL1 
and N-phenylanthranilic acid derivatives exert the inhibi-
tory activity of the SL receptor and increase the number 
of shoot branches [86, 87]. These compounds were identi-
fied by high-throughput screening using a YLG competi-
tion assay or differential scanning fluorimetry (DSF). On 
the other hand, soporidine (SOP) and Triton X-100 act as SL 
antagonists that inhibit the germination of S. hermonthica 
in the presence of SLs [88, 89]. Triton X-100 specifically 
sealed the entrance of the catalytic pocket of ShHTL7.

Carba-SLs are the most simply designed SL antagonists, 
but their actions are suggestive of the mechanism of SL sign-
aling activation [90]. In these compounds, the ether oxygen 
of the D-ring or the phenol ether oxygen of the synthetic SL 
agonists (GR24 and 4-bromodebranone) was replaced with 
a methylene group (Fig. 4). All carba-SLs are not cleaved by 
D14 hydrolytic activity; hence, they inhibit the interaction 
between D14 and D53 and suppress the SL-induced inhibi-
tion of rice tiller outgrowths. SL-induced seed germination 
of S. hermonthica is also suppressed by carba-SLs, which 
are capable of binding to the catalytic pocket of ShHTL7. 
Recently, Nakamura et al. reported SL agonists/antagonists 
of triazole urea derivatives (KK compounds) (Fig. 4), which 
are able to form a covalent bond with the catalytic Ser resi-
due of D14 [91]. Among them, KK094 showed the most 
potent suppressing effect on the SL-dependent inhibition of 
second tiller elongation. KK052 also acts as an inhibitor of 
D14, whereas KK073, with a trifluoromethyl group on the 
benzene ring of KK052, is capable of inducing the complex 
formation of D14 with D53 or SLR1. Therefore, the antago-
nistic and agonistic effects on the SL receptor are switched 
by the chemical modification of KK compounds, suggesting 
that these discovered compounds could also be useful to 
further elucidate the molecular mechanisms of SL signaling.

Summary and future work

In addition to the development of SL analogs based on the 
bioactiphore of SLs, the understanding of D14 and ShHTLs 
as SL receptors has helped the design of several types of 
synthetic compounds that exert activity as SL agonists or 
antagonists. Some of these compounds have the potential to 
suppress the germination of Striga seeds or deplete the seed 
stocks in the soil as suicidal germination stimulants, because 
they show better stability compared with the natural SLs 
and/or selectivity toward root-parasitic plants, including S. 
hermonthica. On the other hand, further mechanistic find-
ings may lead to a new approach to suppress the growth and 
expansion of root-parasitic plants. Based on the unraveled 
mechanism of SL-dependent seed germination in S. hermon-
thica, the SL perception system shares similar components 
between parasitic plants (ShHTLs and ShMAX2) and non-
parasitic model plants (D14 and D3/MAX2). However, there 
are several remaining questions that are yet to be described: 
for example, the molecular mechanism from SL perception 
to signal transduction (including the target molecule of the 
SL receptor complex formed by ShHTLs and ShMAX2), 
the physiological meaning of the molecular diversity of 
ShHTLs, and the dynamic behavior of SL signaling in seed 
germination, which may be characteristic of parasitic plants.
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