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Abstract
Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large vari-
ety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin’s 
interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and 
accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic 
aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of 
the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glyco-
lysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In 
doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibi-
tor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase 
kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In 
doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more 
readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin 
is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer 
cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin 
synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol 
to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the 
same treatment when melatonin is applied.

Keywords  Pyruvate dehydrogenase kinase · Pyruvate dehydrogenase complex · Chemosensitivity · Glycolysis · Acetyl 
CoA · Citric acid cycle · Dichloroacetate · Glycolytics

Introduction

Dysfunctional mitochondria seriously jeopardize optimal 
cellular and organismal health. There is a category of dis-
eases specifically identified as being related to compromised 
mitochondrial physiology, the so-called “mitochondrial dis-
eases.” Some of the conditions that fall into this category 
include cancer, Alzheimer disease, etc. [1–4].

One hallmark of perturbed mitochondrial physiology that 
contributes to altered function within cells is the generation 
of toxic derivatives of oxygen, i.e., reactive oxygen species 
(ROS) or free radicals [5–7]. When this occurs, it may be 
associated with an alteration in glucose oxidation and energy 
production by these cells.

Cancer is often a condition in which mitochondria exhibit 
markedly hindered metabolism [8–10]. Cancer cells of many 
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solid tumors shift glucose oxidation from the mitochondria 
to the cytosol where glucose undergoes rapid metabolism 
to lactate (the Warburg effect) [11, 12]. This disrupts nor-
mal physiology by interfering with the function of the citric 
acid cycle in the mitochondrial matrix and by reducing the 
production of ROS (reactive oxygen species) by the electron 
transport chain (ETC) enzymes in the inner mitochondrial 
membrane; this is accompanied by a downregulation of 
mitochondrial ATP synthesis which is also shifted to the 
less efficient, but more rapid, ATP production in the cytosol 
[13]. These changes provide cancer cells advantages in terms 
of accelerated cell proliferation, avoidance of apoptosis, and 
more rapid metastasis. The Warburg effect occurs in some 
other diseases in addition to cancer [14].

Melatonin is generally known as the pineal secretory 
product but is not unique to this gland [15]. Recent evidence 
has shown melatonin is taken up by and may be produced 
in the mitochondria of all cells [16–18]. In the pineal gland, 
melatonin is both produced and secreted in a circadian man-
ner with peak levels at night; in other cells mitochondrial 
melatonin production is neither cyclic nor it is released into 
the blood [19]. The pineal pool of melatonin is estimated 
to be less than 5% of the total melatonin produced in ver-
tebrates [20]. The two pools of melatonin have different 
functions. The 24-h variation in the synthesis and discharge 
of pineal melatonin is associated with conveying circadian 
and circannual information throughout the organism, e.g., 
the wake/sleep cycle, seasonal reproduction, etc. [21, 22]. 
In contrast, melatonin produced in the mitochondria of all 
other cells functions in the inhibition of ROS-mediated oxi-
dative stress and the conservation of optimal mitochondrial 
physiology and, via paracrine means, it possibly impacts the 
physiology of mitochondria in adjacent cells as well [23].

One of the earliest actions of melatonin to be identified 
after its discovery was its ability to inhibit the growth of cer-
tain cancer types. This ability was found to be related to the 
downregulation of the metabolic changes that provide them 
a physiological advantage by reducing tumor biomass and 
by limiting metastasis [24–28]. The following discussion 
reconsiders a novel action by which melatonin may inhibit 
the Warburg effect and function as an oncostatic agent.

Convergence of cancer, glucose oxidation 
and melatonin

Several years ago, in a study of xenografted human breast 
cancer cells growing in animals, Blask et al. [29] noted 
that tumors collected during the day clearly exhibited the 
expected cytosolic glycolysis as indicated by their high 
uptake of glucose and abundant release of lactate. When 
metabolism was measured in tumors collected at night, how-
ever, they had obviously abandoned aerobic glycolysis and 

switched to mitochondria glucose oxidation; the nighttime 
tumors metabolized only small amounts of glucose to lac-
tate. The data suggested that the cancer cells were of the 
cancer phenotype (displaying the Warburg effect) during the 
day but they functioned as a normal cell phenotype during 
the night when they use mitochondrial glucose oxidation 
for ATP production (Fig. 1). The authors showed that this 
metabolic shift was a function of the nighttime rise in circu-
lating melatonin since, when the large-amplitude nocturnal 
increase in melatonin was inhibited by exposing the cancer-
bearing animals to light at night, the tumors continually 
exhibited the cancer phenotype (high glucose uptake and 
lactate production over the 24-h period). The authors did not 
provide an explanation as to the mechanisms by which the 
melatonin rhythm mediated the day-to-night shift from cyto-
solic glycolysis to mitochondrial glucose oxidation in the 
tumors of animals kept under an alternating light:dark cycle.

In normal cells, glucose is abundantly taken up via glu-
cose transporters (GLUT1-4) [30] in the cell membrane after 
which its metabolites enters mitochondria where it is con-
verted to acetyl CoA by a large multienzyme complex named 
the pyruvate dehydrogenase complex (PDC); acetyl CoA 
then feeds the citric acid cycle which eventually aids the 
function of the electron transport chain (ETC) and ATP pro-
duction. In cancer cells, pyruvate is primarily metabolized to 
lactate (the Warburg effect) in the cytosol rather than being 
converted to acetyl CoA in the mitochondria [31]. The high 
metabolism of glucose in the cytosol rapidly generates the 
necessary ATP required for the highly elevated proliferative 
activity of cancer cells, resists their destruction by apop-
tosis and enhances tumor growth and metastasis [13]. The 
increased cytosolic metabolism of glucose occurs in cancer 
cells due to the upregulation of the enzyme pyruvate dehy-
drogenase kinase (PDK); PDK strongly inhibits PDC inter-
fering with the ability of the mitochondria to utilize pyruvate 
for acetyl CoA synthesis. This causes glucose metabolism 
to be shifted to the cytosol for its conversion to lactate [32].

We recently proposed that the day-to-night shift of glu-
cose metabolism in cancer cells, as reported by Blask et al. 
[29], is a consequence of the ability of melatonin to override 
the inhibitory action of cancer on the conversion of pyruvate 
to acetyl CoA in the mitochondrial matrix [33] (Fig. 2). As 
noted above, in cancer cells the mitochondrial enzyme PDK 
is upregulated leading to a strong inhibition of PDC, the 
enzyme that catalyzes the conversion of pyruvate to acetyl 
CoA [34]. This deprives the mitochondria of acetyl CoA, 
an important metabolite for normal cellular function and it 
shifts glucose metabolism to the cytosol. Several anti-cancer 
drugs being tested, e.g., dichloroacetate (DCA), enter the 
mitochondria and inhibit PDK allowing for the rapid upregu-
lation of PDC which permits the cancer cells to metabolize 
pyruvate to acetyl CoA thereby reducing cytosolic glyco-
lysis, converting the cells to a more normal phenotype and 
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reducing cancer growth. Thus, like some other oncostatic 
drugs, we predict that melatonin, as a mitochondria-targeted 
molecule, also inhibits PDK and stimulates PDC; this would 
explain the observations of Blask et al. [29], i.e., that breast 
cancer cells are only capable of cytosolic aerobic glycolysis 
during the day when melatonin levels are low and the mito-
chondria are unable to metabolize pyruvate to acetyl CoA.

The prediction that melatonin inhibits PDK, which is 
restricted to the mitochondrial matrix, would require that 
melatonin enter this organelle to carry out this task. The 
uptake of melatonin by mitochondria is consistent with a 
variety of published reports wherein melatonin improved 
the efficiency of the electron transport chain (ETC) [35], 
enhanced mitochondrial ATP production [15] and quenched 
ROS in the mitochondrial matrix [36, 37]. These beneficial 
actions of melatonin are an improvement over those caused 
by better known antioxidants, e.g., vitamin E [38, 39], even 
when the latter are structurally modified to allow more ready 

entrance into the mitochondria [40]. Recently, Acuna-Cas-
troviejo et al. [41] showed that peripherally injected mela-
tonin rapidly accumulates in mitochondria.

More direct evidence for the entrance of melatonin into 
the mitochondria of cancer cells was provided by Huo et al. 
[42]. This group identified two members of the solute car-
rier (SLC) family transporters, namely PEPT1/2, in cancer 
cell mitochondrial membranes which were associated with 
the uptake by and elevation of intramitochondrial levels of 
melatonin. The authors specifically used multiple cancer cell 
types for these studies and concluded, without proposing 
any mechanism, that the high levels of melatonin in mito-
chondria relate to the ability of this molecule to constrain 
cancer cell growth [42]. Here, we suggest that melatonin in 
mitochondria of cancer cells inhibits PDK which activates 
PDC and allows the entrance of pyruvate into the mitochon-
dria and its conversion to acetyl CoA. This shifts glucose 
oxidation away from the cytosol and converts cancer cells 

Fig. 1   The top two panels summarize the circadian changes, or lack 
thereof, in glucose uptake (left) and lactate release (right) under two 
different lighting conditions. When tumor-bearing rats were exposed 
to light:dark cycle where it was dark at night (alternating white and 
black bars at the bottom), both the uptake of glucose and the release 
of lactate (black curves in panels) exhibited strong circadian rhythms 
with highest levels of each parameter occurring during the day, indi-
cating that they were using cytosolic glucose oxidation to produce 
ATP, when circulating endogenous melatonin are lowest (black curve, 
right lower panel). Conversely, when tumors were collected from ani-
mals kept under a light:dark cycle where rats were exposed to dim 

light at night (LAN) (alternating white and red curves), both glu-
cose and lactate remained elevated throughout the 24-h period; this 
indicated that the tumors were using cytosolic glucose oxidation to 
produce ATP. LAN was associated with a markedly diminished noc-
turnal melatonin increase (red curve, lower right panel). The data are 
double plotted for clarity. A similar rhythm was seen in 3H-thymidine 
uptake by the tumors (an index of DNA synthesis and cell prolifera-
tion) (data not shown). The lower left panel summarizes the growth 
of the tumors under the two lighting conditions. The figure was drawn 
and restructured from the data of Blask et al. [29]
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to a more normal cell phenotype, as observed by Blask et al. 
[29] for nighttime collected breast tumors.

There is now ample evidence that mitochondria of at least 
normal cells also may synthesize melatonin [16, 43–45], 
which, if this also occurs in cancer cells, would be expected 
to inhibit PDK, so the cells would not exhibit the Warburg 
effect. To date, no attempt has been made to identify mela-
tonin production or levels in cancer cell mitochondria. When 
attempts are made, we predict that unlike normal cells, the 
mitochondria of cancer cells will be incapable of or have low 
intrinsic melatonin synthesis.

The presumed inability of cancer cell mitochondria to 
synthesize melatonin, particularly during the day, is consist-
ent with what is known about the control of the melatonin 
synthetic pathway. Acetyl CoA is not only an important 
metabolite to feed the citric acid cycle, which is situated in 
the mitochondrial matrix, but it is also a necessary co-factor 

for the rate limiting arylalkylamine N-acetyltransferase 
(AANAT), in the melatonin synthetic pathway [46]. In the 
absence of acetyl CoA, cancer cell mitochondria would not 
be able to produce their own melatonin, as normal cells do.

At night, however, high circulating levels of melatonin (of 
pineal origin) would inhibit PDK (stimulating PDC) allow-
ing cancer cells to switch from cytosolic glycolysis in favor 
of mitochondrial oxidative phosphorylation (Fig. 2). This is 
consistent with the findings of Blask et al. [29]; during the 
day cancer cells use aerobic glycolysis for ATP production 
and at night, due to melatonin-derived via the blood (mela-
tonin of pineal origin), they convert to a more normal cell 
phenotype. Thus, tumor cells only function with the cancer 
phenotype about half of the time; at night they display mito-
chondrial oxidative phosphorylation like normal cells.

A thorough search of the literature was unable to uncover 
other studies in which in vivo cancer cell metabolism was 

Fig. 2   Diagrammatic representation of some of the mechanisms by 
which cancer cells determine their own growth rate and survival, 
especially by influencing the activity of pyruvate dehydrogenase 
complex (PDC) and its gate keeper enzyme, pyruvate dehydroge-
nase kinase (PDK), of which there are multiple isoforms. In cancer 
cells, several transcription factors including Wnt, Myc and hypoxia-
inducible factors (HIFs) may work alone or in concert to transcrip-
tionally promote one or more of the PDKs (the isoform of which var-
ies among cancer cell types). The elevated activity of PDK causes 
the phosphorylation of serine residues in the E1α subunit of PDC, 
thereby inactivating the enzyme that normally converts pyruvate 
to acetyl CoA. With diminished acetyl CoA, the citric acid cycle is 
deprived of an important anaplerotic agent, mitochondrial melatonin 
production is inhibited and oxidative phosphorylation is compro-
mised. Melatonin synthesis drops because acetyl CoA is a neces-
sary co-factor for AANAT, the rate limiting enzyme in melatonin 

synthesis. The metabolic changes in mitochondrial function contrib-
ute to programmed cell death (apoptosis). Inhibition of PDC also 
reprograms glucose metabolism (the glycolytic shift) which then 
takes place in the cytosol (the Warburg effect) of many solid tumors 
(upper right). This generates large amounts of lactate and hydrogen 
ions (H +) which have major impacts on processes that enhance the 
hardiness of cancer cells, their means to reduce immune surveil-
lance, and their ability to resist chemo- and radiotherapy. In normal 
cells, pyruvate is primarily shunted into the mitochondria where it is 
metabolized to acetyl CoA assuring an optimal function of the citric 
acid cycle, ATP production and melatonin synthesis. AANAT aryla-
lkylamine N-acetyltransferase, ADP adenosine diphosphate, ASMT 
acetyl serotonin methyl transferase, ATS adenosine triphosphate syn-
thase, CI-CV respiratory complexes, e− electron, LDH lactate dehy-
drogenase, NAS N-acetyl serotonin, Pi inorganic phosphate, TRP 
tryptophan, 5-HT serotonin
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compared in tumors collected during the day and at night 
(in darkness). Perhaps this differential day:night difference 
also is typical of other Warburg-metabolizing solid tumors 
growing in vivo. This change would not be detected using 
cultured cancer cells since they are not exposed to a circa-
dian melatonin rhythm.

The mechanism by which melatonin may reduce PDK 
activity thereby allowing for the upregulation of PDC 
and the conversion of pyruvate to acetyl CoA in the mito-
chondria matrix is unresolved. Melatonin has numerous 
receptor-mediated actions [47] as well as functions that 
may be receptor-independent [48]. Mao and colleagues 
[49] reported that melatonin-rich blood collected from 
women who had taken 75 μg melatonin, when perfused 
onto xenografted leiomyomas growing in nude rats, 
caused a 57% reduction in glucose uptake and a 44% 
drop in lactate levels in blood collected as it was exiting 
the tumor. Since these changes were antagonized by the 
blockade of the best known melatonin receptors (MT1/
MT2), S20928, Mao et al. [49] speculated that melatonin’s 
actions in suppressing glucose uptake and lactate release 
involved these receptors. Moreover, they predicted that 

these receptor-mediated actions involved the phosphoryla-
tion of AKT since AKT has been shown to be involved 
in glycolysis regulation [50]. A potential association of 
pAKT and PDK has not been examined.

The MT1/MT2 melatonin receptors have been identified 
on the cell membranes of many normal [51] and cancer 
cells [52]. There are also reports that document that at 
least the MT1 receptor is located on the mitochondrial 
membrane [45, 53]. Thus, the inhibitory actions of mela-
tonin (both exogenously administered or endogenously 
produced) may impact aerobic glycolysis via the MT1/
MT2 receptors (Fig. 3), other intracellular melatonin bind-
ing sites [54, 55] or they may be receptor-independent 
[38, 48].

Another corollary of our prediction is that cancer cell 
mitochondria, while being incapable of synthesizing mel-
atonin during the day could possibly do so at night. At 
night, due to the shift of glucose oxidation from the cyto-
sol to the mitochondria, acetyl CoA would be available 
as a co-factor for AANAT, the rate limiting enzyme in 
melatonin production [56]. We, thus, presume that while 
cancer cell mitochondria are essentially devoid of mela-
tonin during the day, they may have high levels at night.

Fig. 3   This figure shows that melatonin likely signals via MT1/2 
receptors on the cell surface or after being transported by GLUT1 
and PEPT1/2 transporters into the cytosol. In the cytosol of cancer 
cells, melatonin may alter aerobic glycolysis by signaling through the 
MT1 receptor on the mitochondrial membrane, by interacting with 
other binding sites in the cytosol or its actions may be receptor-inde-

pendent. Both endogenously produced or exogenously administered 
melatonin is capable of reversing the Warburg effect. GLUT1 glucose 
transporter 1, MT1 melatonin receptor 1, PEPT1/2 human peptide 
transporter 1 and 2, pO2 oxygen pressure, LA linoleic acid, 13-HODE 
13-hydroxyoctadecadienoic acid, AANAT arylalkylamine N-acetyl-
transferase, ASMT N-acetylserotonin O-methyltransferase
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Drugs that reprogram glucose metabolism: 
glycolytics

A large number of small molecular endogenous and syn-
thetic inhibitors of the PDKs (there are four isoforms) have 
been identified with the suppressive actions of these agents 
being executed at four binding loci. These loci include the 
pyruvate binding site, lipoamide binding locus, nucleotide 
binding site and an allosteric site [57, 58]. The first three 
of these are situated in the regulatory N-terminal R domain 
of these enzymes. The endogenous inhibitors of PDK 
included pyruvate, NAD+, and CoA; we have proposed 
that melatonin may also be a member of this group [33]. 
Additionally, many xenobiotic/synthetic agents capable of 
inhibiting the PDKs have been developed. The best known 
of these is dichloroacetate (DCA). DCA was used for sev-
eral decades as a drug to treat type 2 diabetes and other 
disorders prior to its potential utility as an anti-cancer 
agent was discovered [59–61]. DCA is strongly inhibitory 
to the most widely distributed PDK isoform, PDK2, has 
roughly equal potency against PDK1 and 4 but is incapa-
ble of inhibiting PDK3, at least in the male gonad [62]. 
When administered orally or parenterally, it is absorbed 
and distributes widely including crossing the blood brain 

barrier (BBB), justifying its use as an investigational brain 
cancer inhibitor [63]. Shortly after DCA administration, 
tissue PDC activity is upregulated [64]. Continual dos-
ing with DCA maintains elevated PDC activity. The rise 
in PDC activity is apparent by the drop in blood lactate 
concentrations [65].

Glycolytic agents are drugs capable of changing glu-
cose metabolism in cancer cells so they become reliant on 
mitochondrial pyruvate metabolism and oxidative phos-
phorylation for ATP production. This switch in metabo-
lism reduces the likelihood of cancer cell proliferation and 
invasiveness. Because DCA functions in reprogramming 
glucose metabolism from the cytosol to the mitochondria, 
it is classified as the prototypical glycolytic and it is the 
most highly tested and widely used drug of its type [63]. 
As a glycolytic agent, DCA stimulates PDC by releasing 
it from the inhibitory actions of its regulatory enzyme 
PDK (Fig. 4); this allows for the conversion of pyruvate to 
acetyl CoA in mitochondria thereby reducing cancer-pro-
moting processes which normally are associated with cyto-
solic glucose metabolism to lactate [66, 67]. As a result 
of its actions, DCA has proven inhibitory to solid tumors 
that rely on the Warburg effect, a common denominator of 
many cancers. For example, DCA reverses the metabolic 
phenotype of breast cancer [68], colorectal cancer [69], 

Fig. 4   This figure illustrates 
how the glycolytic agents, 
dichloroacetate (DCA) and 
presumably melatonin, cause 
the upregulation of pyruvate 
dehydrogenase complex (PDC) 
allowing for the metabolism of 
pyruvate to acetyl CoA in the 
mitochondria. In cancer cells, 
the pyruvate dehydrogenase 
kinase (PDK) is stimulated 
resulting in the downregula-
tion of PDC which bolsters 
cytosolic glucose oxidation and 
high lactate production (the 
Warburg effect). Conversely, 
DCA and melatonin overcome 
the suppressive effect on PDK 
allowing for the upregulation 
of PDC and reprogramming 
pyruvate metabolism to the 
mitochondria and reducing the 
Warburg effect. AANAT aryla-
lkylamine N-acetyltransferase, 
PTL pyruvate translocase, TCA​ 
tricarboxylic acid cycle
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esophageal squamous carcinoma cells [70], etc., as well 
as reducing their growth and metastasis.

DCA has proven itself as an oncostatic agent related to 
its ability to switch the dysregulated cancer cell metabo-
lism to a more normal phenotype which allows the cells 
to enhance their cancer cell death pathways, i.e., relieving 
them of their highly proliferative activity, elevating cel-
lular apoptotic pathways, halting angiogenesis, decreas-
ing their metastatic potential, etc. [63, 71]. Another major 
aspect of perturbed cancer cell metabolism is the develop-
ment of resistance to conventional anti-cancer drugs [71, 
72]. Since many cancers exhibit such drug resistance, 
identifying agents that may reverse this process is a criti-
cal area of experimental and clinical interest [71]. DCA 
both enhances cancer sensitivity to therapies as well as 
overcomes drug resistance by processes similar to those 
that support its inhibition of cancer growth. Ovarian can-
cer, which is a rapidly progressing and highly deadly can-
cer, exhibits increased sensitivity to cisplatin when given 
in conjunction with DCA [73]. Hepatocellular carcinoma 
which often develops resistance to sorafenib becomes 
responsive to the same drug when PDC is upregulated 
due to co-treatment with DCA [74]. Similarly, by repro-
gramming glucose oxidation from the cytosol to the mito-
chondria, DCA synergizes with cisplatin to limit HeLa 
cell proliferation [75]. The killing of hepatoma cells by 
doxorubicin is improved by DCA due to its ability to shift 
glucose metabolism to the mitochondria resulting in ele-
vated ROS production which stymies cancer cell growth 
[76]. Likewise, taxol-resistant oral cancer cells become 
sensitive to the chemotherapy when it includes DCA [77]. 
In addition to these examples which illustrate the ability of 
PDC stimulation with DCA to enhance or permit a chemo-
therapy to carry out its prescribed actions, there are other 
similar studies summarized in recent reviews [71, 78].

Toxicity studies of DCA in humans have revealed sensory 
and motor peripheral neuropathy with long-term use [79], 
with age and recipient genotype being factors to consider. 
Overall, DCA is well tolerated when the dose is carefully 
controlled and consideration is given to the issues men-
tioned. Thus, it is identified as a relatively safe, non-toxic, 
anti-cancer agent [68]. The toxicity of DCA originates at 
several sites including the Schwann cells, which myelinate 
peripheral nerves, interference with the catabolism of phe-
nylalanine and tyrosine as well as altering heme metabolism, 
all of which cause an elevation of damaging ROS [80]; thus, 
the toxicity of DCA stems primarily from the resulting oxi-
dative stress that it induces.

Given that melatonin is a glycolytic mimetic, like DCA, 
which restores mitochondrial physiology in cancer cells, we 
predict that melatonin inhibits PDK resulting in the stimula-
tion of PDC activity (Fig. 4). This switch allows cancer cells 
to abandon cytosolic glycolysis and obtain a more normal 

phenotype by enhancing the conversion of pyruvate to acetyl 
CoA in the mitochondria.

Melatonin and DCA clearly seem to employ similar 
mechanisms to reverse the Warburg effect and inhibit tumor 
growth. Which of these would actually be more useful at the 
clinical level as a cancer treatment has not been determined. 
Perhaps, however, melatonin may be an improvement since 
it is an endogenously produced molecule that can be admin-
istered via any route and it has a very high safety profile 
[27]. In comparison, DCA is a synthetic molecule which is 
toxic if not properly used [79]. The ability of DCA to reduce 
Warburg metabolism has been more extensively investigated 
than has melatonin’s actions in this regard. Also, whether 
melatonin has a specific function in inhibiting PDK3, as 
does DCA, remains unknown [63]. Perhaps, a more optimal 
cancer treatment would be the combination of melatonin 
and DCA since melatonin would likely reduce the toxicity 
of DCA given that its noxious effects involve ROS.

For decades melatonin has been recognized as having 
anti-cancer actions [81–84]. Moreover, two decades ago it 
was noted that melatonin synergizes (increases the efficacy 
of) chemotherapies used to treat cancer [85]. Likewise, 
while improving the cancer-killing activity of these highly 
toxic therapies, melatonin also reduced their toxicity: doxo-
rubicin (adriamycin) [86, 87], bleomycin [88], cytarabine 
[89], cisplatin [90], etc. The synergistic actions of melatonin 
with cancer-fighting drugs, which have been confirmed in 
numerous subsequent studies [91–96] are reminiscent of 
those described for DCA when it is given in conjunction 
with chemotherapies. DCA and melatonin may have similar 
mechanisms relative to this effect. Melatonin has long been 
known to be a pro-oxidant in cancer cells [97–99], an action 
consistent with it forcing cancer cells to shift from cytosolic 
glycolysis to mitochondrial oxidative phosphorylation which 
increases ROS generation.

There is a plethora of studies the results of which support 
the conclusion that melatonin, while serving as a multifac-
eted antioxidant in normal cells [18, 100–102] is actually 
pro-oxidative in cancer cells. Indeed, the context specific 
pro-oxidant actions and the associated elevated oxidative 
damage have been used to explain, at least in part, the ability 
of melatonin to kill cancer cells [97–99]. Since we hypothe-
size that melatonin synthesis in mitochondria of cancer cells 
is severely compromised because of the lack of acetyl CoA, 
a necessary co-factor for the rate limiting enzyme (AANAT) 
in melatonin synthesis, when melatonin is exogenously pro-
vided and cancer cells switch from cytosolic glycolysis to 
oxidative phosphorylation (Fig. 2), the resulting rise in ROS 
would theoretically also be extinguished due to melatonin’s 
antioxidant actions. In normal cells, melatonin upregu-
lates, via epigenetic mechanisms, the antioxidant enzyme 
superoxide dismutase 2 (SOD2) to scavenge ROS produced 
by this organelle [23, 37, 103]. The stimulation of SOD2 
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by melatonin in cancer cells seems not to occur, since the 
elevated ROS generated by oxidative phosphorylation go 
uncontested and potentially contribute to melatonin’s cancer-
killing activity. Such dichotomous responses, referred to as 
context specificity, have been observed for other melatonin 
actions [104] and, to date, a satisfactory mechanistic expla-
nation for these differential responses has yet to be provided.

Melatonin: changing sensitivity of cancer 
to chemotherapy

The development of multidrug resistance of tumors to onco-
static drugs may also relate to the cytosolic glycolysis that 
cancer cells experience. If so, melatonin, like DCA, might 
overcome drug resistance of Warburg-dependent cancers. 
The first experiments that examined this were performed 
by Dauchy et al. [105] using ERα + MCF-7 human breast 
cancer cells grown as xenografts in nude rats. They found 
that suppressing the endogenous nocturnal melatonin rise 
by exposing the cancer-bearing rats to light-at-night (LAN) 
caused the tumors to grow more rapidly and also rendered 
them insensitive to a conventional anti-cancer medication, 
tamoxifen, a selective estrogen receptor modulator (SERM). 
When exogenous melatonin was introduced to establish a 
nighttime rise, the breast tumors were sensitized to tamox-
ifen. Thus, exogenously administered melatonin was able 
to overcome cancer resistance to the drug resulting from 
endogenous melatonin depletion. The authors surmised 
that drug resistance was broken due to the circadian actions 
of melatonin. Considering the similar effects of DCA and 
melatonin against cancer insensitivity to chemotherapies, 
it also seems likely that the inhibition of glycolysis which 
is presumed to be achieved by melatonin (like DCA) and 
the re-establishment of oxidative phosphorylation was also 
involved. At the time of their study [105], information impli-
cating melatonin as a Warburg effect inhibitor had not yet 
been suggested.

As with tamoxifen, Xiang et al. [106] reported that breast 
cancer insensitivity to doxorubicin was improved by mela-
tonin treatment. The experimental design of this study was 
essentially identical to that of Dauchy et al. [105] except 
doxorubicin was used in lieu of tamoxifen. Again, dim LAN 
was used to deprive the cancer-bearing rats of a robust mela-
tonin rise. The nocturnal increase was restored by giving 
supplemental melatonin. Whether melatonin has any benefit 
in defeating multidrug resistance has not been investigated. 
Asghari et al. [93] listed a variety of means by which cellular 
changes could interrupt cancer resistance to chemotherapies. 
One of these was for the treatment to convert cancer cells 
to a more normal phenotype, an action melatonin seems to 
possess.

Melatonin is a powerful direct ROS scavenger [107–109] 
and an indirect stimulator of antioxidant enzymes [110–112]. 
Considering that melatonin levels usually wane with age, the 
elevated toxicity of DCA in elderly individuals may be a 
result of the loss of this metabolic regulator. Likewise, light 
pollution which reduces at least pineal-derived melatonin 
[113, 114] and possibly peripherally synthesized mitochon-
drial melatonin [115] as well, may be a factor that increases 
the toxicity of chemotherapies.

Melatonin is known to reduce the toxicity of many drugs 
whose untoward effects relate to oxidative stress [116–118]. 
Hypoxia, which often occurs in solid tumors, induces the 
overexpression of HIF-1α in addition to other pathways 
which aid angiogenesis, cancer cell proliferation, growth 
and metastasis. Because of the central role that HIF-1α 
plays in preserving the progression and survival of tumor 
cells, it has often been considered a critical target for cancer 
therapy [119]. In an attempt to identify the role of HIF-1α in 
mediating the Warburg effect, Sanchez-Sanchez et al. [120] 
compared the actions of melatonin in an Ewing sarcoma cell 
line, which exhibits the Warburg effect, and with a chondro-
sarcoma cell line that does not display aerobic glycolysis. 
Whereas melatonin negated aerobic glycolysis, as indicated 
by the reduced lactate release from Ewing sarcoma cells and 
where it proved to be highly cytotoxic, melatonin had limited 
efficacy in killing chondrosarcoma cells. The authors specu-
lated that melatonin’s actions in Ewing sarcoma cells was 
due to a downregulation of HIF-1α as had been previously 
reported in other cancer cell lines [121, 122].

Clinical implications for cancer patients

There are numerous epidemiology reports which strongly 
support the importance of the daily nighttime dark period, 
which allows for high blood melatonin levels, for limiting 
especially breast cancer growth [123–125]. Humans who are 
wittingly (night shift workers) or unwittingly (individuals 
whose sleeping environment is not dark) exposed to LAN 
are reported to have a greater propensity to develop cancer. 
The International Agency for Cancer Research has classified 
light-at-night, which is accompanied by melatonin suppres-
sion, as a potential cancer-causing factor [126]. In humans, 
as in animals, light exposure at night suppresses circulating 
melatonin concentrations due to a drop in pineal melatonin 
synthesis and release [127–129]. In the absence of a night-
time melatonin surge, as previously shown in animals [130], 
cancer cells may exhibit a 24/7 cancer phenotype leading 
to more rapid tumor growth and metastasis [29, 82]. Hos-
pitalized or hospice care cancer patients are often exposed 
to a shorter period or a less dark environment due to the 
requirement for care/treatment. This perturbed light:dark 
cycle may aggravate cancer growth. This could be at least 
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partially remedied by having cancer patients use eye shades 
to prevent retinal light stimulation and melatonin suppres-
sion at night. Light pollution is increasingly being consid-
ered a cancer promoting factor [125].

There are implications beyond the potential involvement 
of the perturbed light:dark cycle for cancer patients. The 
presence of a tumor seems to reduce endogenous melatonin 
synthesis given that cancer patients often have lowered 
nighttime melatonin levels [131–134] relative to those of 
aged-matched humans who are cancer free. If the presence 
of cancer interferes with melatonin synthesis, a vicious cycle 
could occur wherein an enlargement of a tumor may further 
reduce the amplitude of the melatonin rhythm thereby pro-
moting an even more rapid cancer growth. The nighttime 
melatonin peak differs widely among individuals; some 
humans when compared with age-matched controls are rela-
tively melatonin deficient (hypomelatoninemia) which also 
may elevate the likelihood of these individuals developing 
a rapidly growing or metastatic tumor.

Finally, advanced age is a major risk factor for many can-
cers. The nocturnal melatonin peak is severely attenuated in 
most elderly humans [135]. Healthy individuals in old age 
typically have a more robust nocturnal melatonin rise; asso-
ciated with their improved health they also frequently have 
less cancer. While a cause/effect relationship has not yet 
been resolved for these individuals, nevertheless, it would 
probably be judicious for humans of all ages to strive to 
maintain a more normal light:dark environment to preserve 
a high nocturnal amplitude melatonin peak helping to pos-
sibly safeguard a more normal phenotype for cancer-prone 
cells. Maintaining a normal alternating light:dark cycle is 
becoming progressively more difficult in the urban setting 
where light pollution is increasing rapidly.

In addition to preserving a more normal daily dark period, 
other procedures may prove beneficial. Many humans, due 
to their lifestyle, for genetic reasons, or due to aging are 
severely depleted of melatonin. Melatonin has been regu-
larly used by thousands of humans (primarily to promote 
sleep). It is an endogenously produced molecule that has 
been found to have an uncommonly high safety profile [136, 
137]. No untoward effects have been reported for individuals 
who have used melatonin for decades. Also, many clinical 
trials have been performed using melatonin with only minor 
reported side effects over a very wide dose range, e.g., head-
ache, sleepiness, etc., similar to those caused by placebo. In 
animals, no lethal dose has been identified despite attempts 
to do so [138]. In view of its efficacy and high safety pro-
file, serious consideration should be given to the conduct of 
clinical trials related to melatonin’s potential as an oncostatic 
agent. Mechanisms for its potential benefits are described 
in this report and in other reviews [28, 82, 139, 140]. It is 
especially noteworthy that melatonin reduces the toxicity of 
chemotherapies used to treat cancer [85, 141, 142]. Thus, its 

use in combination with these therapies also should be per-
formed in humans. Moreover, melatonin improves the qual-
ity of life when given to cancer patients [143–145]. Unfor-
tunately, since melatonin is a naturally occurring agent, 
is non-patentable, and is inexpensive, the pharmaceutical 
industry will not support such trials and funding from other 
sources has proven difficult to secure.

Conclusions and perspectives

This review provides a novel perspective on how melatonin 
interferes with cancer cell metabolism, growth, and metas-
tasis (Fig. 2). This cancer-inhibiting mechanism, in addi-
tion to other processes identified in earlier studies, makes it 
important to further test melatonin as an oncostatic agent at 
the clinical level. This is of special importance since can-
cer patients more frequently die from metastatic than from 
non-metastatic cancer (Fig. 5). Considering that melatonin 
controls tumor growth and limits their size (large tumors 
more readily metastasize) as well as to its direct anti-meta-
static actions more than justifies tests of its efficacy. Other 
drugs that have actions similar to those of melatonin such as 
reprogramming cancer cell mitochondria are referred to as 
glycolytic agents. One of the best known of these is DCA, 
as noted above. It, as we propose for melatonin, inhibits 
PDK to allow upregulation of PDC resulting in acetyl CoA 
synthesis (Fig. 4). In addition to its utility as an oncostatic 
agent, DCA, because of its downregulation of PDK, also 
reverses the insensitivity of tumors to cancer chemothera-
pies. Melatonin has the same actions in rendering previ-
ously unresponsive cancers sensitive to chemotherapies, e.g., 
tamoxifen and doxorubicin. This is again consistent with 
the prediction that melatonin promotes the conversion of 
pyruvate to acetyl CoA in mitochondria.

Some anti-cancer drugs are useful as a treatment for sev-
eral cancer types, but often they are most effective against 
a malignancy, possibly related to the marked heterogenicity 
of cancer subtypes [146]. Hence, the speculations advanced 
in this review may only apply to breast cancers and should 
be investigated relative to other Warburg-dependent cancers 
and diseases [14]. Also, while this review considered espe-
cially the ability of melatonin to reorient glucose metabo-
lism, many cancers also display dysregulated fatty acid and 
amino acid metabolism [147, 148]. Melatonin should be 
tested relative to these perturbations as well in addition to 
the crosstalk among the glucose, fatty acid, and amino acid 
pathways.

Chemotherapeutic drugs often have serious side effects 
which limit their dose and use. For example, doxorubicin 
causes cardiomyocyte damage which may lead to heart fail-
ure and jeopardize life quality and survival of the patient 
in the long term. The co-administration of melatonin with 
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doxorubicin significantly reduces the toxic reactions in the 
heart without interfering with the anti-cancer activity of the 
drug. Given melatonin’s ability to diminish the collateral 
cardiotoxicity could translate to the use of a higher dose of 
doxorubicin with increased antitumor activity. Numerous 
studies have shown that melatonin has a high safety profile 
and is protective against chemotherapies [136, 137, 149].

There is another consideration that supports tests of 
melatonin in cancer patients. In patients in the later stages 

of cancer, it has been noted that supplementary melatonin 
improves their wellbeing thereby contributing to a better 
life quality. This benefit alone may be adequate justifica-
tion for the use of melatonin by cancer patients. As dis-
cussed herein, however, there are other compelling reasons 
melatonin should be tested as an integral part of the anti-
cancer armamentarium. Currently, there are no on-going 
clinical trials of melatonin to reduce Warburg-dependent 
cancers in humans. This deficiency is primarily related to 
the lack of financial support for such studies since mela-
tonin is a non-patentable molecule and it is inexpensive.

The hypothesis proposed here provides a working model 
for subsequent research on the means by which melatonin, 
either pineal or mitochondria-derived, influences cytosolic 
glucose metabolism and mitochondrial acetyl CoA produc-
tion as well as its role in growth stimulation or inhibition 
of Warburg-dependent cancers (Fig. 2). Since there are 
also diseases that do not have a neoplastic component that 
exhibits high cytosolic glucose metabolism, the hypothesis 
suggested here may be applicable to those diseases as well. 
The proposal assumes a causal connection between mela-
tonin and metabolic processes that support tumor growth. 
Based on published data, and in particular on the recent 
findings that melatonin is both taken up by mitochondria 
and likely synthesized in these organelles, it is reasonable 
to predict that it influences other mitochondrial processes 
as well. Among many considerations should be examina-
tion of the possible association of melatonin with fatty 
acid oxidation [150], the tricarboxylic acid cycle [151], 
the function of the electron transport chain [107, 152], the 
reverse Warburg effect [153], the ubiquitin–proteasome 
system [154] and on cancer stem cell survival and prolif-
eration [155].

Finally, SIRT3, which is primarily located in the mito-
chondria, is a known tumor suppressor since rodents that 
are deficient in SIRT3 exhibit an increased propensity to 
develop a malignancy [153]. This mitochondrial protein dea-
cetylase also has a major influence on the metabolic aspects 
of this organelle [154]. In cancer cells, the loss of SIRT3 
leads to excessive reactive oxygen species (ROS) production 
in mitochondria, which is associated with the stabilization 
of HIF-1α suggesting that the deacetylase may be involved 
in the Warburg effect [155]. SIRT3 has been shown to be 
depressed in a variety of human tumors which may con-
tribute to the accelerated growth of these neoplasms. Mela-
tonin, in normal cells, upregulates SIRT3 activity where 
it has been experimentally depressed [103, 123]. How the 
melatonin/SIRT3 interaction plays out in cancer cells has 
yet to be determined but should be given consideration for 
examination.

While the amount of information related to melatonin as 
an experimental oncostatic agent is massive, the associated 
clinical findings are remarkably sparse primarily due to the 

Fig. 5   This figure summarizes some of the processes cancer cells 
utilize to ensure their survival but compromise the survival of the 
host. Cytosolic glycolysis promotes the neovascularization of tumors 
which supplies nutrients for the rapid cancer cell proliferation and 
as routes of metastasis. Cancer cells also secrete vascular endothe-
lial growth factor (VEGF) and endothelin (ET-1) to ensure the vas-
cularization to support the rapidly growing tumor. To assist in their 
detachment from adjacent cells and their invasiveness, both of which 
are required for metastasis, cancer cells also execute other intracel-
lular changes (not shown in this figure) and release matrix metallo-
proteinase-9 (MMP-9; gelatinase), one of a family of enzymes which 
digests connective tissue elements of the extracellular matrix allow-
ing the cancer cells to move and invade blood vessels to more easily 
migrate to secondary sites. The processes summarized in this figure 
are not the only mechanisms that cancer cells use to improve their 
survival and assist in their movement. Many of the processes shown 
are antagonized by melatonin. Myc Myc proto-oncogene, Wnt Wnt-
signaling genes (signal transduction factor), HIFs hypoxia-inducible 
factors, VEGF vascular endothelial growth factor, ET-1 endothelin 
1, MMP metalloproteinase, Src c-Src proto-oncogene, PDKs pyru-
vate dehydrogenase kinases, PDC pyruvate dehydrogenase complex, 
OXPHOS oxidative phosphorylation, NADPH reduced nicotinamide 
adenine dinucleotide phosphate, ROS reactive oxygen species
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limited tests of melatonin as a potential anticancer agent in 
humans. Hopefully, this will change soon.
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