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Abstract
Pancreatic cancer (PC) remains one of the most extremely lethal malignancies worldwide due to late diagnosis and early 
metastasis, with a 1-year overall survival rate of approximately 20%. The hypoxic microenvironment, induced by intratu-
moral hypoxia, promotes tumor invasion and progression, leading to chemotherapy or radiotherapy resistance and eventual 
mortality after treatment of PC. However, the role of the hypoxic microenvironment in PC is complicated and requires further 
investigation. In this article, we review recent advances regarding the regulation of malignant behaviors in PC, which provide 
insight into the potential of hypoxic microenvironment activation therapy for the therapeutic agents.
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Abbreviations
ATP	� Adenosine triphosphate
CAF	� Cancer-associated fibroblast
CODD	� C-terminal oxygen-dependent degradation 

domain
CSC	� Cancer stem cell
ECM	� Extracellular matrix
EMT	� Epithelial to mesenchymal transition
ENO1	� Enolase 1
HIF	� Hypoxia-inducible factor
MDR1	� Multidrug resistance 1
MIIP	� Migration and invasion inhibitory protein
NODD	� N-terminal oxygen-dependent degradation 

domain

PC	� Pancreatic cancer
PDK1	� Pyruvate dehydrogenase kinase 1
PHD	� Proline hydroxylase domain
ROS	� Reactive oxygen species
VEGF	� Vascular endothelial growth factor

Introduction

Pancreatic cancer (PC) is the fourth leading cause of cancer-
related mortality in the United States, with an overall sur-
vival rate of only 8% [1]. However, clinical outcomes are 
quite modest due to acquired and inherent chemoresistance. 
Although research advances have been made to develop 
chemotherapy options and certain biomarkers have been 
used for patient-targeted therapeutic strategies, there has 
been no significant improvement in preventing PC progres-
sion and metastasis. The limited availability of diagnostic 
channels and the use of surgery as the only existing cura-
tive option with an overall survival of only 10% of patients 
diagnosed contribute to the terrible nature of this disease [2].

Increasing interest has been concentrated on the tumor 
microenvironment of PC. Cancer cells, stromal cells, and 
extracellular components are significant constituents of the 
tumor microenvironment. Compared with most solid tumors, 
PC is recognized as lowest level of oxygen [3]. This is pos-
sibly a common phenomenon given the fibrotic vasculature, 
which is ineffective. Recent studies have begun to delineate 
that the hypoxia microenvironment, a fundamental charac-
teristic in PC, plays a critical role in PC development [4]. In 
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this review, we summarize the current information about the 
role of hypoxia in promoting the progression of PC and pro-
vide new insights for developing targeted therapies for PC.

Hypoxia promotes tumorigenesis in PC

Hypoxia, which is defined as reduced oxygen levels, occurs 
in 50–60% of locally advanced solid tumors, including 
PC. In PC, there is a reduction in the tissue oxygen partial 
pressure in tumors, with a median partial pressure of oxy-
gen (PO2) of 0–5.3 mmHg (0–0.7%); this is distinct from 
the median PO2 in normal pancreas (24.3–92.7 mmHg, 
3.2–12.3%) [3, 5]. A signature feature of PC is the forma-
tion of a compressed desmoplastic stroma with poor tumor 
cellularity that surrounds the tumor [6]. Hypoxia gives rise 
to several changes in gene expression in tumor cells. This 
adaptive response to hypoxia is activated by transcription 
factors such as hypoxia-inducible factors (HIFs), which in 
turn stimulate the expression of related genes involved in 
angiogenesis and glycolysis, thus prompting PC cells to 
adapt to the hypoxic conditions.

HIFs are heterodimeric transcription factors composed of 
an unstable α subunit (HIFα) and a stable β subunit (HIFβ) 
[7]. In normoxia, HIFα protein subunits have a rapid half-
life (< 5 min) because they are continually transcribed and 
rapidly degraded. This turnover is mediated by the post-
translational hydroxylation of highly conserved proline 
residues (Pro564 and Pro402 in HIF1α, Pro405 and Pro531 in 
HIF2α) within their N-terminal oxygen-dependent degrada-
tion domains (NODDs) and C-terminal oxygen-dependent 
degradation domains (CODDs) by proteins containing pro-
line hydroxylase domains (PHDs) [8]. Under hypoxia, HIFα 
subunits translocate into the nucleus to bind with HIFβ due 
to the suppression of factor inhibiting HIF (FIH) and PHD 
activities. The heterodimeric HIFα:HIFβ transcription factor 
complex binds to hypoxia-responsive elements (HREs) of its 
target genes and adjusts their transcription [9].

Previous studies have demonstrated that HIF1 could 
induce a large number of downstream transactivating genes 
encoding glucose transporters and glycolytic enzymes in 
response to hypoxia [10]. With the decrease in oxygen lev-
els, the production of adenosine triphosphate (ATP) changes 
from the oxidative phosphorylation pathway to the oxygen-
independent pathway of cytoplasmic glycolysis, a phenom-
enon known as the Warburg effect [11, 12]. Regarding the 
generation of ATP, glycolysis is less efficient than oxidative 
phosphorylation. However, due to the increase in glyco-
lytic enzyme activity, ATP production could be sustained 
by sufficient glycolysis. To increase the glucose supply, 
HIF1 promotes the increase in the transcription of glucose 
transporters 1 and 3 (GLUT1 and GLUT3) and facilitates 
the production of pyruvate and lactate dehydrogenase [13]. 

The lactate generated from glycolysis is further utilized as 
energy for surrounding cells and weakens the production of 
T-cell cytokines. Pyruvate dehydrogenase kinase 1 (PDK1) 
can prevent pyruvate dehydrogenase from using pyruvate to 
fuel the mitochondrial tricarboxylic acid cycle (TCA cycle), 
causing a drop in mitochondrial oxygen consumption [14]. 
In a hypoxic environment, low oxygen levels cannot sup-
port oxidative phosphorylation in mitochondria, and HIF1 
reduces mitochondrial oxygen consumption via activation 
of pyruvate dehydrogenase kinase 1 (PDK1) [15]. Another 
characteristic of a hypoxic environment in PC is an increase 
in tumor cell migration. There are multiple pathways acti-
vated by HIF1 that promote epithelial to mesenchymal tran-
sition (EMT), which is the transformation of cells from a 
polarized epithelial phenotype to fibroblast-like mesenchy-
mal phenotype. Hypoxia and HIFs promote EMT by upregu-
lating transcriptional repressors such as SNAIL, TWIST, and 
ZFHX1B and induce degradation of the extracellular matrix 
(ECM) via various proteins such as cathepsin and matrix 
metalloproteinase-1 and -2. In addition, hypoxia-induced 
expression of vascular endothelial growth factor (VEGF) 
promotes lymphangiogenesis and angiogenesis, which drive 
tumor cell intravasation and dissemination [16].

Furthermore, an increasing number of findings sup-
ports the essential role of noncoding RNAs because they 
are aberrantly expressed under hypoxia and participate in 
tumor cell migration and metastasis. Based on the com-
plicated roles of noncoding RNAs in tumor metastasis, 
targeting them in signaling pathways related to hypoxia 
has been emphasized recently [17]. Noncoding RNAs 
include microRNAs (miRNAs, 18–22 nucleotide) and long 
noncoding RNAs (lncRNAs, ≥ 200 nucleotides). MiRNA 
research offers molecular insight into tumor aggression 
and carcinogenesis. The mature form of these small non-
coding RNAs fit into the RNA-induced silencing complex 
[18]. MiRNAs cause either translational inhibition or 
mRNA degradation by binding to a conserved sequence 
of the 3′untranslated region of the target gene. Prior stud-
ies have noted evidence of the dysregulation of the expres-
sion of specific miRNAs in PC. Given the various roles of 
miRNAs in multiple aspects of cancer biology, it could 
conceivably be hypothesized that they also play a major 
role in the neoplastic hypoxia microenvironment [19]. 
Recently, a subset of hypoxia-inducible miRNAs have 
been reported to be abnormally expressed in PC, suggest-
ing that inducing the expression of these miRNAs may 
influence important target genes involved in tumor sur-
vival, invasion, and metastasis [20]. Migration and inva-
sion inhibitory protein (MIIP) has recently been noted as 
an inhibitor of tumor development. Niu et al. reported that 
HIF1 could regulate MIIP expression at the posttranscrip-
tional level by upregulating miR-646 transcription. Dys-
regulated miR-646 and MIIP expression were correlated 
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with tumor stage, metastasis, and lymphatic invasion in PC 
patients [21]. Mitochondrial fission is an important pro-
cedure for the development and progression of PC. Sup-
pressed mitochondrial fission could lead to a reduction in 
proapoptotic protein content, which hampers mitochon-
dria-related apoptosis pathways. A recent in vitro study 
described mitochondrial fission as a tumor suppression 
process that could be regulated by the HIF1/miR-125a/
Mfn2 pathway to restrict PANC-1 cell survival and migra-
tion [22]. LncRNAs may act as transcriptional modulators, 
enhancers, and molecular decoys for miRNAs and pro-
tein–RNA interactions [23]. LncRNAs can also act as an 
oncogene or tumor suppressor via modulation of cancer-
related signaling pathways in various manners [24]. ZEB1, 
a key regulator of EMT, could be activated by the binding 
of lncRNA-BX111887 (BX111) to the promoter region 
of the transcriptional factor Y-box protein (YB1). The 
hypoxic microenvironment is a crucial factor in the gen-
eration of pathological EMT-induced BX111 transcription 
via HIF1 overexpression [25]. Furthermore, lncRNAs can 
work as competing endogenous RNAs (ceRNAs) or “RNA 
sponges” that interact with miRNAs and reduce their regu-
latory activity on target mRNAs. NORAD (annotated as 
LINC00657 in RefSeq), a highly conserved mammalian 
noncoding RNA, could act as in an oncogenic capacity in 
the pathogenesis of PC via competition for miR-125a-3p, 
was upregulated during hypoxia and promoted EMT in PC 
cells [26]. These results are similar to a study reported by 
Ou et al. FEZF1-AS1, a recently described oncogenic long 
noncoding RNA, has been associated with poor prognosis 
of gastric cancer and shown to accelerate progression in 
pancreatic ductal adenocarcinoma. Ou et al. reported that 
FEZF1-AS1 could stimulate PC cell proliferation and inva-
sion via the miR-142/HIF1α axis under hypoxic conditions 
[27].

Role of hypoxia and HIF in drug resistance

In the past two decades, there was no significant progress 
in the prognosis of PC. Surgery is the only curative option, 
but 5-year survival rates after surgical resection alone are 
still pessimistic (approximately 15–27%; median survival 
period, 17–23 months) [28]. The combination of fluoroura-
cil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) 
and nab-paclitaxel plus gemcitabine has been adminis-
tered as a first-line treatment in patients with metastatic 
PC [29, 30]. However, the current treatments are corre-
lated with a median progression-free survival of approxi-
mately 6 months, and fewer than 10% of patients are alive 
5 years after initial diagnosis [31]. Hypoxia and/or HIFs 

can mediate chemotherapy resistance through additional 
mechanisms, including the following (Fig. 1):

a)	 Extrinsic resistance. Hypoxia in PC is produced partly 
through fibrogenic effects of cancer-associated fibro-
blasts (CAFs) and dense ECM components [32]. Ele-
vated interstitial fluidic pressure and inappropriate blood 
flow lead to hypoxic niches in the tumors and a decrease 
in circulating drug perfusion into the tumor. The ECM 
is a complicated network of macromolecules that pro-
vides a substantial scaffold to maintain tissue architec-
ture [33]. All the proteins, glycoproteins, and polysac-
charide elements of the ECM are generally produced 
by epithelial and stromal cells, which account for the 
fibrotic area in the PC. Posttranslational modifications 
of fibrillar collagens require the assistance of collagen-
modifying enzymes, some of which are regulated by 
HIFs. Therefore, reducing tissue tension and intratu-
moral pressure by modifying the expression of HIFs may 
result in improved perfusion of chemotherapeutic agents 
and therapeutic response [34].

b)	 The regulation of drug efflux. A growing body of litera-
ture supports the participation of HIF1 in drug resistance 
by stating that HIF1 is able to stimulate the expression 
of the multidrug resistance 1 (MDR1) gene in response 
to hypoxia. MDR1, which is translated into the mem-
brane-bound protein P-glycoprotein (P-gp), is associated 
with a family of ATP-binding cassette (ABC) transport-
ers. P-gp can decrease the intracellular concentration of 
chemotherapeutic drugs, such as paclitaxel and anthra-
cyclines, and can be used as a drug efflux pump [35].

c)	 Metabolic reprogramming. HIF manages a diverse range 
of metabolic pathways that are overactivated in cancer, 
such as mitochondrial activity, intracellular pH regula-
tion, and glycolysis. Mitochondria also plays an impor-
tant role in cell death by regulating intrinsic apoptotic 
pathways and producing reactive oxygen species (ROS) 
[36]. Experimental data for enhanced ROS formation 
in response to chemotherapy under hypoxic conditions 
were recently provided by Maher Y. Abdalla et al. Heme 
oxygenase-1 (HO-1) is the rate-limiting enzyme of cel-
lular heme catabolism. This microsomal enzyme acts on 
heme moieties to generate equimolar amounts of carbon 
monoxide and iron. These HO-1 degradation products 
were shown to modulate metabolism and promote tumor 
growth. Maher Y. Abdalla et al. suggested that hypoxia 
could upregulate HO-1 expression in PC cells. Under 
in vitro hypoxia conditions, the application of the HO-1 
inhibitors zinc protoporphyrin (ZnPP) and tin proto-
porphyrin IX (SnPP) could increase ROS production, 
enhance apoptosis, inhibit PC cell proliferation, and sen-
sitize these cells to gemcitabine [37]. Similarly, enolase 
1 (ENO1), a multifunctional glycolytic enzyme, sensi-
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tizes PC cells to hypoxia-induced resistance by altering 
ROS homeostasis. The mechanisms might be related 
to the influence of increase ROS on apoptosis and cell 
cycle progression [38].

d)	 Hypoxia-driven alterations in apoptosis and cell sur-
vival. Some studies have shown that HIF1 could regu-
late proapoptotic factors (BNIP3, NIX, and NOXA) as 
well as antiapoptotic factors (Bcl-xL, Bcl-2, Bid, Mcl-1, 
NF-κB, and p53) to modulate defective apoptosis and 
changes in cell cycle progression [39–41]. HIF1 func-
tions as a strong suppressor of apoptosis, and functional 
intervention with HIF1 in PC cells results in changes in 
programmed cell death upon treatment with chemothera-
peutic agents. For example, Nagaraju et al. suggested 
that inhibition of HSP90 with ganetespib, a small-
molecule inhibitor (SMI) of HSP90, downregulated 
the expression of HIF1 and induced the activation of 
signaling pathways, including proliferative, angiogenic, 
and antiapoptotic pathways. Notably, the promotion of 
apoptosis was also observed in gemcitabine- and 5-FU-
resistant pancreatic cell lines when HSP90 was inhibited 
[42].

e)	 Inhibition of DNA damage. DNA damage remains the 
foundation of many cancer treatments, and inducing 
DNA damage is the fundamental mode of action for the 
majority of classical chemotherapeutic agents. Despite 
their effectiveness in suppressing tumors, DNA repair 
pathways can also allow tumor cells to escape from 
genotoxic assault [43]. Complementing these results, a 
study by FF Blanco et al. showed that the proto-onco-
gene proviral integration site for Moloney murine leu-
kemia virus 1 (PIM1), a serine–threonine kinase, could 
regulate hypoxia-induced chemoresistance by phospho-
rylating targets and promoting apoptosis. Upon PIM1-
mediated phosphorylation of CDC25a, PC cells undergo 
dynamic reprogramming that allows them to acquire a 
chemoresistant response via DNA repair mechanisms. 
HuR (Hu antigen R; ELAVL1), an RNA-binding pro-
tein fundamental to posttranscriptional gene regulation 
in PC, is an element of the embryonic lethal and Dros-
ophila-like protein family. HuR can mediate the regula-
tion of PIM1 and consequently prevent DNA damage 
induced by chemotherapeutics. Importantly, inhibiting 
HuR could reverse hypoxia-induced PIM1 overexpres-

Fig. 1   Summary of mecha-
nisms and pathways underlying 
HIF-mediated chemotherapy 
resistance
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sion and notably enhance PC cell sensitivity to oxalipl-
atin and 5-fluorouracil in a hypoxic microenvironment 
[44].

f)	 Hypoxia induction of stemness. Cancer stem cells 
(CSCs) are a group of cancer cells with stem cell-like 
characteristics. In solid tumors, CSCs are functionally 
defined by their traits of self-renewal, differentiation, and 
tumor generation [45, 46]. If the CSC subpopulation is 
not eliminated during chemoradiotherapy of PC, tumor 
recurrence and subsequent clinical progression may 
manifest due to the drug resistance of CSCs. Compo-
nents in the stromal microenvironment, such as pancre-
atic stellate cells (PSCs), endothelial cells and immune 
cells, could develop into an ideal niche for pancreatic 
CSCs [47]. Hypoxic niches further facilitate the remod-
eling of the ECM, and changes in biochemical secreted 
factors can promote tumor invasive capacities and tumo-
rigenicity and help preserve progenitor CSCs. PC stem 
cell markers, such as ESA, CD133, CD24 and CD44, 
may be negative prognostic factors that are related to 
poor outcomes and resistance to standard treatment. 
Moreover, the abnormal activation of multiple signal-
ing pathways in the hypoxic microenvironment, includ-
ing the Wnt, Notch and PI3K/Akt/mTOR pathways, 
may play an important role in acquiring chemoresist-
ance to gemcitabine through the induction of stemness 
[48]. Zhang et al. reported that the Akt/Notch1 signaling 
pathway intervened to induce gemcitabine resistance in 
PC via stemness induction, which was exacerbated by 
the universal hypoxic niche in cancer cells [49]. Addi-
tionally, CD133 is a transmembrane protein expressed 
in lipid rafts, with an extracellular ganglioside-binding 
domain and cytoplasmic activity akin to tyrosine phos-
phorylation [50]. By promoting HIF1α expression under 
hypoxia, CD133 could influence tumor cell migration 
and invasion through EMT gene expression. Confirma-
tion of the CD133/HIF1α-signaling axis bolsters, the 
future possibility of a supplemental HIF1α inhibitor 
combined with conventional therapy to increase the 
efficacy of treating CD133+ CSCs in PC [51].

Strategies to inhibit the HIF1 pathway

As the key factors that correlate with treatment resistance 
and PC, hypoxia and HIFs have attracted increasing atten-
tion. Because the key regulator during hypoxia is HIF, agents 
that can suppress its function are still eagerly anticipated 
and should be examined for clinical activity in PC. Min-
nelide, a water-soluble analog of triptolide that has potent 
antiproliferative activity against multiple tumor types, inhib-
its HIF1 transcriptional activity and decreases stemness in 
PC cells. A phase I dose escalation and pharmacokinetic 

study with single-agent minnelide were recently completed 
in patients with advanced gastrointestinal tumors [52]. In 
addition, minnelide is currently in phase II clinical trials for 
the treatment of PC, which has stimulated increased interest 
in this promising agent [53]. Digoxin, a well-known cardiac 
glycoside, was previously verified to be a potent inhibitor 
of hypoxia-induced HIF1α production. In an in vitro study, 
Zhou et al. reported that digoxin could be used as a potential 
sensitizer to reverse chemoresistance in PC, but there is no 
official clinical trial that confirms this activity [54]. Another 
compound extracted from melphalan, PX-478, which inhib-
its HIF1α expression in PC, resulted in reduced preclinical 
tumor growth but showed restricted clinical activity in a 
phase I study [55]. However, in a recent in vitro study, Lang 
et al. found that PX-478 plus arsenic trioxide (ATO) could 
be a promising strategy to promote ROS-induced apoptosis 
in the treatment of PC [56].

Conclusion

The contribution of the tumor microenvironment to the lethal 
outcomes of PC is substantial. One of the elements in the 
PC microenvironment is hypoxia, which shifts the expres-
sion patterns in cancer cells to reduce intrinsic and extrinsic 
damage originating from rapid tumor growth under disad-
vantageous conditions. It is noteworthy that tumor hypoxia 
and its main driver, HIFs, promote the capacity for PC inva-
siveness and metastasis by activating EMT- and CSC-related 
pathways, which all contribute to the aggressive phenotype 
of this disease. Furthermore, hypoxia regulates many impor-
tant biological hallmarks of cancer, ranging from tumor cell 
differentiation and metabolic reprogramming to chemother-
apy resistance. Despite significant advances in recent years, 
chemotherapy resistance and the subsequent need for novel 
therapeutic approaches remain the main barrier in clinical 
oncology. It is now commonly accepted that the special-
ized hypoxia microenvironment of PC is largely account-
able for the insufficient in vivo efficacy of many treatments. 
To optimize the effects of these compounds, it is of chief 
importance to identify suitable patient subgroups and tumor 
cell subpopulations for precision medicine in PC. Moreo-
ver, identification of predictive markers for “hypoxia-based” 
substances and the development of combination therapies 
comprising multiple compounds that interfere with HIFs and 
hypoxia-related pathways with traditional chemotherapeutics 
are urgently needed to permit their investigation in clinical 
trials.
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