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Abstract
The mechanisms that synchronize the biorhythms of the mammalian retina with the light/dark cycle are independent of 
those synchronizing the rhythms in the central pacemaker, the suprachiasmatic nucleus. The identity of the photoreceptor(s) 
responsible for the light entrainment of the retina of mammals is still a matter of debate, and recent studies have reported 
contradictory results in this respect. Here, we suggest that cryptochromes (CRY), in particular CRY 2, are involved in 
that light entrainment. CRY are highly conserved proteins that are a key component of the cellular circadian clock machinery. 
In plants and insects, they are responsible for the light entrainment of these biorhythms, mediated by the light response of 
their flavin cofactor (FAD). In mammals, however, no light-dependent role is currently assumed for CRY in light-exposed 
tissues, including the retina. It has been reported that FAD influences the function of mammalian CRY 2 and that human 
CRY 2 responds to light in Drosophila, suggesting that mammalian CRY 2 keeps the ability to respond to light. Here, we 
hypothesize that CRY 2 plays a role in the light entrainment of retinal biorhythms, at least in diurnal mammals. Indeed, 
published data shows that the light intensity dependence and the wavelength sensitivity commonly reported for that light 
entrainment fits the light sensitivity and absorption spectrum of light-responsive CRY. We propose experiments to test our 
hypothesis and to further explore the still-pending question of the function of CRY 2 in the mammalian retina.
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Introduction

Most biological processes exhibit circadian rhythmicity. 
Throughout the organism, these biorhythms are regulated 
by an auto-regulatory transcriptional–translational feedback 
loop that runs at the level of each cell and is coordinated by 
the central clock of the suprachiasmatic nucleus (SCN) [1]. 

Endogenous biorhythms are influenced by diverse environ-
mental factors. Light is a major factor for the synchroniza-
tion and resetting of endogenous rhythms with the light/dark 
cycle (light entrainment). In mammals, the retina constitutes 
the only input pathway of light both to the central pace-
maker in the SCN as well as to peripheral pacemakers of the 
biological clock [2]. Indeed, recent studies have shown that 
peripheral clocks can be light entrained by inputs directly 
issued from the retina, independently of the SCN [2, 3]. 
Recent studies have also focused on the skin, the other organ 
exposed to light, but observations are contradictory. While 
one study reported that light entrainment of skin biorhythms 
depends on the retina via a neural pathway and is independ-
ent of the SCN [4], another has reported that entrainment 
directly depends on the UV-sensitive neuropsin (OPN5) 
photopigments that skin cells contain [5].

The retina was the first organ in which local, autonomous, 
biorhythms were observed [6]. Retinal biorhythms regulate 
many eye functions, including visual and non-visual (i.e. 
circadian) light reception [7]. Many retinal physiologic 
functions oscillate with a 24-h period, e.g. transcription and 
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translation of photoreceptor genes, neurotransmitter synthe-
sis and release, inter-photoreceptor coupling, disk shedding 
in rods, and the amplitude of the electroretinogram (reviewed 
in Buhr et al. [8], and Felder-Schmittbuhl et al. [9]). The 
light entrainment of retinal biorhythms is directly achieved 
by photoreceptors of the retina, independently of the SCN 
[9, 10]. Similar SCN-independent rhythmicity exists in the 
cornea and the retinal pigmented epithelium [11]. While the 
receptor responsible for the light entrainment of the SCN 
is melanopsin (OPN4), a pigment localized in intrinsically 
photosensitive retinal ganglion cells (ipRGCs), the precise 
identity of the receptor(s) responsible for the light entrain-
ment of the retinal biorhythms remains debated [8, 9, 11, 
12]. Here, following the underexplored previous suggestion 
from Buhr et al. [8], we propose that cryptochrome (CRY), 
and in particular CRY 2, acts as a light-receptor mediating 
retinal light entrainment in mammals.

State of the art

Light entrainment of retinal biorhythms

Different studies have addressed the question of the identity 
of the photoreceptor responsible for the light entrainment of 
retinal biorhythms by monitoring the expression of the clock 
gene Per2 in mouse retinal explants [8, 11–13]. By expos-
ing the explants to phase-shifting pulses of white light at an 
intensity of > 1014 photons/cm2/s, Ruan et al. [13] reported 
that, like the SCN biorhythms, the retinal biorhythms show, 
respectively, a phase delay, or a phase advance, when 
exposed in the first hours, or the last hours, of the subjective 
night. Moreover, they reported the dopaminergic circuitry 
to be crucially involved in the light resetting of retinal bio-
rhythms, suggesting the involvement of amacrine cells and 
the upstream ipRGCs from which they receive inputs (Fig. 1) 
[8].

Using transgenic mice, Buhr et al. [8] showed that nei-
ther rods or cones nor OPN4 containing ganglion cells were 

required for the light entrainment of retinal biorhythms 
under antiphasic 12 h/12 h light/dark cycles. During the 
whole light phase, light was provided by LED (between 417 
and 530 nm) at a constant intensity of 5 W/m2, which cor-
responds to about 1.4 × 1015 photons/cm2/s at 470 nm. In a 
follow-up paper [11], using antiphasic 9 h/15 h light/dark 
cycles with a light intensity of about  1014 photons/cm2/s 
(about  1013 photons/cm2/s at 370 nm), the authors showed, 
respectively, that 370 nm UV light and 417 nm and 475 nm 
blue light can photoentrain retinal biorhythms but 530 nm 
green light cannot. Furthermore, they reported that, for a 
light pulse of 3 h duration, the minimal intensity needed to 
cause a phase shift was between  1013 and  1014 photons/cm2/s 
at 417 nm. Using knockout mice, they demonstrated that 
neither short-wavelength-sensitive cone opsins (OPN1SW), 
nor the orphan opsin encephalopsin (OPN3) were required, 
and they identified neuropsin (OPN5) as the responsible 
photoreceptor [11]. Contrasting these findings, Calligaro 
et al. [12] found that rods play a crucial role in the light-
induced phase-shift of retinal biorhythms when exposed to 
light pulses reduced to only 15 min of duration (intensity of 
between  1013 and  1014 photons/cm2/s) at wavelengths up to 
520 nm. Using a candidate gene approach similar to Buhr 
et al. [11] they then demonstrated the absence of a light-
induced phase shift in rodless mice. They did, however, find 
a residual phase shift in rodless retinas when using UV light 
(395 nm), which they attribute to OPN5 and/or OPN1SW 
[12].

To sum up the findings to date, the photoreceptor respon-
sible for the light entrainment of retinal biorhythms is 
thought to be one or several opsins (Table 1) [9]. On the 
one hand, the precise identity of the receptor(s) remains a 
matter of debate, and the conflicting evidence is not easy to 
reconcile [12]. The OPN5 proposed by Buhr et al. [11] has 
a sensitivity that mainly covers the UV spectrum (maximal 
absorption at 380 nm, Fig. 2), both in rodents and in humans 
[18]. Buhr et al. [11] and Calligaro et al. [12], however, 
observed a phase shift at 470 nm blue light, which is outside 
the absorption spectrum of that opsin (Fig. 2), even in mice 

Fig. 1  Cellular organization 
of the mammalian retina. The 
distribution of photoreceptor 
cells is species-dependent
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[18]. As noted by the authors themselves and by Felder-
Schmittbuhl et al. [9], the role of OPN5 in the entrainment 
of retinal rhythms in diurnal mammals thus remains uncer-
tain. Furthermore, the lens is much less UV-transparent in 
diurnal than in nocturnal mammals [20], and the expression 
of OPN5 in the retina of humans and non-human primates 
remains controversial [12, 18, 21]. On the other hand, the 
reported involvement of rods in retinal light entrainment 

by Calligaro et al. [12], as well as these authors’ proposal 
of a contribution of OPN1SW containing cones, raises the 
question (stated by the authors themselves) of why the light 
response of retinal biorhythms requires light intensities that 
are several orders of magnitude above the sensitivity thresh-
old of rod opsins (rhodopsin, or OPN2, ~ 107 photons/cm2/s) 
and cone opsins (~ 108 photons/cm2/s), respectively [22]. 
Finally and most puzzlingly, Calligaro et al. [12] reported a 

Table 1  Mammalian opsin 
photoreceptors and their 
expression pattern, functional 
role and approximative maximal 
wavelength sensitivity

All three different types of OPN1 exist only in trichromats, such as humans (mouse, e.g., have only M- and 
S-cone opsins)
LW long wavelength, MW middle wavelength, SW short wavelength, RPE retinal pigmented epithelium
a Rods and cones also have non-visual functions (pupillary light response, ipRGCs-mediated light response)
b Melanocytes and keratinocytes
c Cortex, cerebellum, diencephalon
d The main function of OPN4 is circadian photoreception, but it also takes part in the pupillary light 
response and incidentally in visual photoreception [11, 14–18]

Abbreviation Name Location Main role Maximal sensitiv-
ity

Eye Other Mouse Human

OPN1
 OPN1LW L-cone opsin Cones Visuala 560 nm
 OPN1MW M-cone opsin Cones Visuala 510 nm 530 nm
 OPN1SW S-cone opsin Cones Skinb Visuala 360 nm 420 nm

OPN2 Rhodopsin Rods Skinb Visuala 500 nm
OPN3 Encephalopsin Rods, cones

Plexiform layers
Ganglion cells

Skinb

Brainc
Non-visual

OPN4 Melanopsin ipRGCs Non-visuald 480 nm
OPN5 Neuropsin RGCs Skinb Non-visual 380 nm
Go/RGR opsins
 RRH Peropsin RPE Non-visual
 RGR Retinal G protein-

coupled receptor
RPE Non-visual

Fig. 2  Absorption spectrum of 
the main opsins of the human 
retina and cryptochrome (CRY) 
in its oxidized, ground state 
(in mouse, OPN1SW has a 
maximal sensitivity at about 
360 nm). The bar at the bottom 
of the graph displays the range 
of wavelength sensitivity of 
retinal biorhythms (densely 
hatched: reported in experi-
ments using light-entrainment; 
less densely hatched: reported 
in experiments using light-
induced phase shifting). LW: 
OPN1LW; MW: OPN1MW; 
SW: OPN1SW [8, 11, 12, 14, 
18, 19]
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phase shift of retinal biorhythms at 520 nm, while Buhr et al. 
[11] could not light entrain these biorhythms with 530 nm 
green light. Even though the experimental paradigms of 
the studies mentioned were different (light entrainment vs 
pulse-induced phase shifting), the discrepancies between 
their respective results raise questions.

Cryptochrome photopigments

CRY are flavoproteins that are highly conserved from bacte-
ria to humans (Fig. 3). They are between 500 and 700 amino 
acids in size depending on the phylum or class considered. 
The N-terminal domain is highly conserved from their pho-
tolyase ancestor (the photolyase homology domain, or PHR), 
while the 40–250 amino acid long C-terminal α-helical 
domain is less conserved. The C-terminal domain seems 
essential for CRY activity, whether or not it depends on light 
[23]. Animal CRY are classified into two main functional 
groups, type I and type II CRY. Type I CRY, also known as 
Drosophila-type CRY, are photoreceptive, while type II, or 
vertebrate-type, CRY are generally thought to only fulfill 
non-light-dependent functions [24]. In all organisms, CRY 
are key components of the cellular clock, where they are 
part of the negative limb of the autoregulatory transcrip-
tion–repression feedback loop. In mammals, they bind to the 
protein PER (period) to repress CLOCK/BMAL1-dependent 
transcription [25].

In plants and insects, CRY act as (non-opsin) photopig-
ments that entrain the biological clock directly through the 
light response (photoreduction) of their flavine adenine 
dinucleotide (FAD) cofactor (cf. Fig. 2). The absorption 
spectrum of FAD in its ground, fully oxidized state is quite 
broad, with two maxima, one in the visible range around 
450  nm and another in the UV range around 370  nm 

(Fig. 2). At 400 nm, the absorption is around 60% of the 
maximal absorption (Fig. 2) [19]. Only FADH°, the neu-
tral radical form of the flavin cofactor in the active form 
of plant CRY and of the particular animal type IV Cry 
(CRY 4, see below) that mammals do not express, absorbs 
light up to 650 nm [19, 26]. The light sensitivity threshold 
of CRY has been mostly studied in plant CRY 2 where 
it is expressed as the photosynthetic photon flux density 
in micromol/m2/s (1 µmol/m2/s = 6 × 1013 photons/cm2/s). 
When measured based on the phosphorylation response 
of CRY 2, this threshold lies around 0.1 µmol/m2/s for 
30 min of 450 nm light illumination [27]. By studying its 
light-induced degradation, Weidler et al. [28] showed that 
plant CRY 2 responds to 0.01 µmol/m2/s under 2 h of blue 
light illumination, with saturation at about 5 µmol/m2/s. 
They also showed that CRY-dependent signaling response 
in plants can integrate light energy over time, with 2 h blue 
light causing about 65% and 80% of CRY degradation at 
0.01 and 0.1 µmol/m2/s, respectively. To our knowledge, 
0.01 µmol/m2/s is the lowest fluence studied to date in 
plant CRY. As the light response of CRY relies on the 
interaction between the FAD cofactor and its binding 
site in the highly conserved PHR domain, that threshold 
can be expected to not show large variations with CRY 
type [24]. In this respect, Zoltowski et al. [26] showed 
that point mutations in the FAD binding site cause vari-
ation of no more than a factor 2 in the light sensitivity of 
the reaction constant of FAD photoreduction, unless they 
concern the tryptophan (Trp) residues of the Trp triad that 
is involved in the light-response of CRY. This difference 
in light sensitivity is of the same order as the variation 
observed between the highly sensitive type IV CRY and 
plant CRY [26].

Escherichia Coli Photolyase

Arabidopsis thaliana Cry 1

Drosophila melanogaster Cry

Mus musculus Cry 1

FAD

FAD

FAD

FAD

MTHF

MTHF

PHR CCE

Mus musculus Cry 2 

MTHF

Fig. 3  Schematic representation of the structures of photolyase of 
bacteria (Escherichia coli) and representative cryptochromes (CRY) 
of plant (Arabidopsis thaliana), insects (type I CRY of Drosophila 
melanogaster), and mammals (type II CRY of mice, Mus musculus), 

with approximate binding sites of 5-methyltetrahydrofolate (MTHF) 
(equivocal in Drosophila) and flavin adenine dinucleotide (FAD) 
cofactors (equivocal in mammalian CRY 2). PHR photolyase homol-
ogy region domain, CCE C-terminal extension domain [23–25]
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Cryptochromes of mammals

In mammals, two type II CRY exist, CRY 1 and CRY 2. 
CRY 1 is the prominent subtype in most cells and tissues, 
where it plays an important and well-documented role in 
the cellular clock feedback loop (review in [29]). We know 
much less about the function of mammalian CRY 2. In the 
retina, its function is considered marginal compared to CRY 
1, and only a partial role could be identified in photopic 
electroretinogram rhythms [30]. Furthermore, the expression 
pattern of CRY 2 in the mammalian retina has been a matter 
of debate. While Thompson et al. [31] initially found CRY 2 
to be preferentially localized in retinal ganglion cells, subse-
quent studies reported CRY 2 to also be located in amacrine, 
horizontal and bipolar cells, as well as in cones (see Fig. 1) 
[9]. A recent study challenged these conclusions, demon-
strating the lack of specificity in two commercial CRY 2 
antibodies using tissue from CRY 2 knockout mice as nega-
tive controls [30].

Based on the known light dependence of the circadian 
function of CRY in plants and the high structural homology 
between type II CRY of vertebrates and plant CRY, includ-
ing the Trp triad [32], it has been proposed that CRY of the 
retina are responsible for circadian photoreception in verte-
brates [33]. To investigate the role of CRY in nonvisual pho-
toreception in mice, Van Gelder et al. [34] studied the pupil-
lary constriction reflex in response to blue light (470 nm). 
Mice with severe degeneration of the photoreceptors (rd/
rd mice) retained substantial photic sensitivity for pupillary 
responses and the light-induced phase shift of circadian 
rhythms. The authors showed that pupillary responses of 
Cry 1 and Cry 2 knockout, rd/rd mice were almost abolished 
in comparison to rd/rd mice, suggesting that CRY may func-
tion as retinal photopigments. However, the same authors 
later showed that mutations in other essential circadian clock 
genes, mPeriod and Bmal1 also induced a significant lower 
pupillary light sensitivity, which demonstrated that the effect 
of CRY loss on nonvisual photoreception was due to a non-
specific loss of the circadian clock [7]. These results thus do 
not argue in favour of a direct photoreceptive role of CRY in 
mammals, at least not with respect to the pupillary response 
and a central clock phase shift (review in Felder-Schmittbuhl 
et al. [9]).

In mammals, the clock function of CRY is therefore 
assumed to be independent of light, even in the retina [24]. 
Indeed, so far in vertebrates, only one light-dependent func-
tion is assumed for retinal CRY, specifically the magnetic 
compass sense in birds (review in [35]). The assumed mech-
anism relies on radical pairs formed upon photoexcitation of 
CRY, the spin state of which is influenced by weak magnetic 
fields (MF). The spin states of these chemical intermediates, 
in turn, influence the rate of CRY activation, which is trans-
duced into neuronal impulses through an as yet unknown 

pathway. Even though sensitivity to weak MF could hitherto 
only be demonstrated in the plant Arabidopsis thaliana [36] 
and fruit fly (Drosophila melanogaster) CRY [37], a wealth 
of evidence supports the involvement of CRY in the ability 
of birds to orient to the geomagnetic field [35]. From recent 
data, the magnetic sense in birds is based on a type IV CRY 
(CRY 4) localized in cones of the avian retina [38]. Mam-
mals do not possess an ortholog of CRY4, and although a 
magnetic compass sense has also been attested in them [39], 
no solid indication exists to date that supports the involve-
ment of CRY [40]. Of note, the CRY-based compass sense 
relies on the anisotropic part of the response of CRY to the 
MF, i.e. the one that depends on the relative orientation of 
the MF. That anisotropic response, however, only represents 
a minor part of the total MF response of CRY, which indeed 
is mainly isotropic [35].

Light responsiveness of mammalian CRY 2

Even though no light dependence is assumed for the function 
of mammalian type II CRYs, some data suggest that CRY 2 
of mammals is light responsive. Such responsiveness does 
not per se imply light dependence of a CRY function, but it 
does support the possibility of it.

Binding of the FAD cofactor to CRY 2

A prerequisite for CRY to fulfill a light-dependent function 
is that it binds the flavin cofactor FAD. Although that ques-
tion remains debated [41, 42], the studies reviewed hereun-
der seem to rule out light-dependent functions in CRY 1, but 
support that possibility in CRY 2.

In mice, the ability of CRY 1 to form the heterodimer 
CRY1/PER2 that represses the CLOCK/BMAL1-depend-
ent transcription has been shown not to depend on FAD, in 
contrast to that of Drosophila CRY [25]. In line with that 
in vitro observation, the FAD binding pocket of vertebrate 
CRY 1 is unoccupied when it is either in its ground state or 
in its active, heterodimeric, form [32, 43].

Contrary to CRY 1, the crystal structure of mammalian 
CRY 2 supports the view that the FAD binding pocket has an 
effective, dynamic, affinity for FAD [44], suggesting that the 
FAD cofactor plays a role in its function. While noting that 
this affinity is only modest for the ground, oxidized, state 
of FAD, the authors point out that it depends on the redox 
state of FAD, and could thus be higher for FAD in its active, 
reduced, form [44]. Indeed, Hirano et al. [45] reported that 
FAD binds to human CRY 2 (hsCRY 2) and that this  is 
affected by a single point mutation located in the phosphate 
loop of the FAD-binding domain that is responsible for a 
heritable sleep phenotype (familial advanced sleep phase). 
By subsequently studying that mutation in transgenic mice, 
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they showed that it caused a reduction of the response (phase 
shift) of the circadian biorhythms to a light pulse [45].

Light response of human CRY 2 in Drosophila

Light responses of hsCRY have been reported in three dif-
ferent studies using transgenic Drosophila. First, photore-
duction of hsCRY 1 and 2 has been documented in Dros-
ophila cells using fluorescence and electron paramagnetic 
resonance spectroscopic techniques [46]. Additionally, two 
studies have reported that hsCRY restore CRY-dependent 
behavioral responses to weak MF. As discussed above from 
the radical pair mechanism, such responses are presumed 
to rely on the light responsiveness of the CRY molecules 
[35]. Foley et al. [47] showed that hsCRY 2 rescues light-
dependent magnetoreception in CRY-deficient flies. Further-
more, Fedele et al. [48] reported blue light (450 nm ± 20 nm) 
dependent disruption of biorhythms in flies exposed to static 
or extremely low-frequency MF in the microtesla range, but 
only in flies expressing either native Drosophila CRY or 
hsCRY 2 and not hsCRY 1 (in the absence of Drosophila 
CRY). These two last observations illustrate the difficulties 
of extrapolating from in vitro to in vivo, which might explain 
the discrepancies between the reported FAD binding to type 
II CRY in living cells [46], that was absent in purified CRY 
molecules [42].

Discussion

The identity of the photoreceptor(s) responsible for the syn-
chronization of biorhythms of the mammalian retina with 
the light/dark cycle remains debated. The light entrain-
ment appears to be effective from the UVA spectrum 
(≥ 370 nm) up to over 500 nm [8, 11, 12]. According to the 
phase-shifting effect of light pulses observed both by Buhr 
et al. [11] and Calligaro et al. [12], the intensity threshold 
for that entrainment (respectively, at 417 nm and 465 nm) 
lies between  1013 and  1014 photons/cm2/s [11, 12]. Not-
withstanding differences in the respective methodologies 
used (light entrainment vs pulse-induced phase shifting), 
two main contradictions emerge between the findings of 
these two research teams. Firstly, while Calligaro et al. [12] 
reported a role for rods, Buhr et al. [8] excluded it. Secondly, 
while Calligaro et al. [12] reported a response (phase shift-
ing) to 520 nm light, Buhr et al. [11] did not observe any 
response (light entrainment) at 530 nm. Calligaro et al. [12] 
considered this last discrepancy as “puzzling”, i.e. as having 
no satisfactory explanation, even though it resulted from dif-
ferent experimental paradigms (pulse-induced phase-shifting 
vs light entrainment).

The dependence on rods reported by Calligaro et al. [12] 
was shown for a single dephasing light pulse between 15 min 

and 3 h of duration at an intensity 1 log lower than the one 
used by Buhr et al. [8] for the whole 12 h light phase of the 
light/dark cycle that they reported to light entrain retinal 
biorhythms in rodless mice. These results can be compared 
with the intensity- and duration-thresholds of the different 
activation pathways of ipRGCs for the light entrainment of 
central biorhythms. Indeed, while the “extrinsic” activation 
of ipRGCs by rods and cones is already effective as from 
intensities of  109 to  1011 photons/cm2/s, as attested by rod-
dependent phase shift [22], their “intrinsic”, OPN4-depend-
ent (rod-independent), activation is only effective above  1012 
photons/cm2/s at 480 nm, with saturation at about 3 × 1013 
photons/cm2/s [49, 50]. It is noteworthy here that OPN4-
dependent activation is characterized by a long response 
latency, and the ability of photon energy integration over 
time [51]. The observations by Calligaro et al. [12] and Buhr 
et al. [8] might thus be reconciled, for example, by suppos-
ing that the light entrainment of the retinal biorhythms is 
achieved by (a) specific photoreceptor cell(s) that require(s) 
extrinsic activation by rods below a certain light intensity 
and a certain duration of illumination, but that can work 
independently of extrinsic activation above that intensity 
and/or duration, as in the case of ipRGCs-dependent photo-
response [52].

As mentioned by Calligaro et al. [12], a role for rods 
would imply some process downstream of the photorecep-
tion by OPN2 in order to reconcile the intensities required 
for the light entrainment of retinal biorhythms with the much 
lower sensitivity threshold of that photopigment. In this 
respect, however, a recent observation has been made of an 
OPN2-dependent effect (dopamine release in the retina) that 
shows a bimodal behavior, with an inhibitory effect at a low 
light intensity and a stimulating effect at intensities above 
about 3 × 1014 photons/cm2/s [53]. Other questions about a 
role for OPN2 arise, notably, from the absence of response 
reported by Buhr et al. [11] to 530 nm light, and the report 
by the same authors of retinal light entrainment in rodless 
mice [8]. As mentioned above, a role for OPN5 in responses 
at 465 nm and above is incompatible with its wavelength 
sensitivity both in rodents and humans [18]. Furthermore, as 
noted by Calligaro et al. [12], recent studies failed to detect 
OPN5 expression in the retina of human and non-human 
primates [18, 21]. Finally, as suggested by Calligaro et al. 
[12], a role for OPN1SW and thus of SW cones should again 
imply the involvement of some downstream process, such as 
in the above-discussed role of rods depending on intensity. 
However, such a role for OPN1SW was excluded by Buhr 
et al. [8, 11] who also excluded a role for OPN4, of which 
the sensitivity is moreover nearly null at 395 nm. Finally, 
OPN3 has been ruled out by Buhr et al. [11]. Could the pho-
toreceptor mediating the response be of non-opsin nature?

Here, we have reviewed data and arguments of different 
nature in support of the light responsiveness of mammalian 
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CRY 2 and suggest a role for it in the light entrainment of 
retinal biorhythms (Fig. 4). Although it has already been 
evoked by Buhr et al. [8], this hypothesis has not yet been 
developed or studied. The hypothesis is confronted with 
many unknowns that need to be addressed because most of 
the supporting arguments are indirect. On the one hand, it 
is unknown whether actual binding of FAD to CRY per se 
implies that it fulfills a light-dependent function. For exam-
ple, from a study on both CRY 1 and CRY 2, Hirano et al. 
[41] concluded that FAD stabilizes CRY and influences their 
clock function, simply because FAD competes with the ubiq-
uitin ligase FBXL3 that labels CRY for degradation. On the 
other hand, as noted by Fedele et al. [48] and in line with 
the adaptability to cell environment that has been observed 
for the function of Drosophila CRY [54], the observations 
of a light response of hsCRY in transgenic Drosophila [47, 
48], raises the possibility that the particular molecular envi-
ronment of Drosophila cells has provided the biochemical 
environment or molecular interactors that allow mamma-
lian CRY to respond to light. Alternatively, the difference 
between in vitro and in vivo could be critical, i.e. that FAD 
can bind to CRY 2 only in vivo. Finally, light responsiveness 
of CRY 2 might not automatically imply that its function in 
the retina does depend on light. Noteworthy here, although 
Hoang et al. [46] did report a light response for both hsCRY 
1 and 2 in transgenic Drosophila, Fedele et al. [48] reported 
that only hsCRY 2, thus not hsCRY 1, could restore the 
(light-dependent) clock function of CRY in them.

Two characteristics of the light response reported for 
retinal biorhythms support the hypothesis of the involve-
ment of CRY in their light entrainment. These are the large 

wavelength sensitivity range of these biorhythms and the 
relatively high light intensities that are required for their 
entrainment. First, the wavelength sensitivity of the oxidized 
form (ground state) of CRY covers the whole wavelength 
sensitivity range that has been commonly reported by Buhr 
et al. [8, 11] and Calligaro et al. [12] (Fig. 2). Second, the 
intensity threshold reported for the activation of CRY at 
450 nm [27, 28] is close to that reported by both Buhr et al. 
[11] and Calligaro et al. [12] for light-induced phase shift 
at 417 nm and 465 nm, respectively. If CRY2 plays a role in 
the light entrainment of retinal biorhythms, different down-
stream mechanisms could transduce the photoactivation of 
CRY 2, such as an increased binding affinity to PER and/or 
CLOCK/BMAL1 (compared to CRY 1 that affinity is low 
for CRY 2 in its oxidized form [55]) or a light-induced inter-
action with another molecular partner, like in Drosophila 
[24]. Comparing the circadian light responses of the mam-
malian retina [8, 11–13] with the CRY-based circadian light 
responses in Drosophila, one makes two interesting obser-
vations. First, in Drosophila, like in mice, a light pulse can 
cause a phase shift as from 15 min of duration [56]. Second, 
the phase shift caused by blue light in Drosophila shows an 
inverse relationship between the intensity and the duration 
of the light pulse required for that shift. Vinayak et al. [57] 
indeed reported that, as in plants [28], CRY-dependent sign-
aling in Drosophila could integrate light intensity over time, 
with phase shifting requiring about  1016 photons/cm2/s for a 
10 min pulse of blue light and only about  1014 photons/cm2/s 
for a 120 min pulse. This resembles the abovementioned 
phenomenon of light energy integration that is known for 
the OPN4-dependent light entrainment of central biorhythms 

Fig. 4  Model of the hypothesis 
of the involvement of CRY 2 
in the light-entrainment of the 
retinal biorhythms, in associa-
tion with inputs from rods and, 
possibly, short-wavelength 
cones (SW). In retinal cells that 
express CRY 2, the biorhythms 
are directly synchronized with 
the light/dark phase due to the 
action of light on the activa-
tional state of CRY 2. In retinal 
cells, at the contrary to cells of 
other organs, only the photoacti-
vated state of CRY 2 can play a 
role in the clock feedback loop. 
PER: period; CLOCK, BMAL1: 
transcription factors (only a part 
of the molecular clock machin-
ery is shown) [9, 12, 24, 29]
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[51], and that Calligaro et al. [12] also noted, yet to a lesser 
extent, for the retinal biorhythms.

Further illustrating the fact that the debate about a light-
dependent role of CRY in mammalian retina is ongoing, 
Michael et al. [58] recently summarized different arguments 
in support of such a role. For example, transgenic mice that 
lacked both CRY and opsins (absence of photoreceptor cells, 
or vitamin A depletion) had substantially less circadian light 
responses compared to those lacking either only CRY, or 
only opsins [59–61].

Research avenues

How can the hypothesis be tested? A critical investigation 
of the role of CRY 2 in the light entrainment of retinal bio-
rhythms would in principle require the use of CRY 2 knock-
out animals (ideally of a diurnal species). A full knockout 
will, however, disturb the intrinsic biorhythms themselves 
(CRY 2 knockout mice have a circadian phenotype [7, 30]). 
As the present hypothesis specifically addresses the light 
response of CRY 2, which itself relies on the FAD cofac-
tor, one possible solution could be to use a mutant form 
of CRY 2 that is unable to bind FAD, such as the mutant 
form A260T that Hirano et al. [45] tested in mice. Another 
way to test the involvement of CRY could be to study reti-
nal explants of diurnal mammals, which likely lack OPN5, 
under 360–370 nm light and at intensities above the inten-
sity threshold of CRY, that is above about  1014 photons/
cm2/s. Indeed, any response (phase shift) at such wavelength 
would suggest the involvement of CRY (cf. Fig. 2). For these 
experiments, it would be crucial that the expression pattern 
of both CRY 2 and OPN5 in the retina of diurnal mam-
mals will be established using well-characterized specific 
antibodies. Additionally, the controversy about the role of 
rods [8, 12] might be further explored by studying the phase 
shift of biorhythms of retinal explants from rodless mice by 
testing a large range of pulse durations and light intensities, 
for example, between  1013 and  1016 photons/cm2/s. Indeed, 
this might uncover the possibility of a cutoff intensity and/
or duration, below which rods are required and above which 
they are dispensable.

Conclusion

At the current state of knowledge, mammalian CRY 2 might 
have kept the ability to respond to light. We reviewed several 
observations that led us to suggest their involvement in the 
light entrainment of retinal biorhythms, plausibly in collabo-
ration with rods [12], as recently suggested by Buhr et al. 
[8] and in line with the light dependence that had been for-
merly proposed for the function of CRY in the mammalian 
retina [33]. If future experiments support our hypothesis, 

they would help to answer the still pending question of CRY 
2 function in the mammalian retina and might have con-
sequences for studies on magnetic sensitivity in mammals 
[47, 48, 62].
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