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Abstract
Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and 
physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules includ-
ing acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level 
control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in 
the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS 
devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications 
of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based 
QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we 
highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm forma-
tion, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling 
for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology 
and synthetic ecology are discussed.

Keywords  Cell–cell communication · Signaling molecule · Microbial community · Population control · Genetic circuit · 
Gut microbiota

List of symbols
[A]	� Intracellular AHL concentration (mM)
[C]	� Intracellular CI protein concentration (mM)
[E]	� Intracellular CcdB protein concentration (mM)
[L]	� Intracellular LacR concentration (mM)
[LuxR]	� Intracellular LuxR concentration (mM)

[R]	� Intracellular AHL/LuxR complex concentration 
(mM)

N	� The cell density (CFU ml−1)
Nm	� The maximum cell density (CFU ml−1)
Fpfk	� The fractional Pfk-1 activity (U/mg)
Kd	� The cumulative dissociation constant
X	� Biomass concentration (g L−1)
n1, n2	� Transcription factor cooperativity/

multimerization
αC	� CI protein synthesis rate constant (μM min−1)
αL1, αL2	� LacR protein synthesis rate constants 

(μM min−1)
βC	� CI repression coefficient (mM)
βL	� LacR repression coefficient (mM)
d	� Cell death rate (nM−1 h−1)
dA, dE	� AHL and CcdB protein decay constant (min−1)
dC	� CI protein decay constant (min−1)
dL, dR	� LacR and LuxR–AHL complex decay constants 

(min−1)
k	� Growth rate (h−1)
kE	� CcdB protein production rate constant (h−1)
vA	� AHL production rate constant (nM mL h−1)
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θR	� LuxR/AHL activation coefficient (mM)
ρR	� LuxR/AHL dimerization constant (μM−3 min−1)

Introduction

Quorum sensing (QS) is a cell–cell communication process, 
which is ubiquitous in fungi [1], bacteria and even viruses 
[2]. QS regulates a series of physiological and biochemical 
functions, such as biofilm formation, conjugation, compe-
tence, bacteriocin production and pathogenesis, achieved 
by microbes producing, secreting, sensing and responding 
to certain signal molecules which are called autoinducers 
(AIs) [3]. Generally, various AIs can be roughly divided 
into three types: (i) acylated homoserine lactones (AHLs) 
and the diffusible signaling factors (DSFs) utilized by Gram-
negative bacteria; (ii) auto-inducing peptides (AIPs) utilized 
by Gram-positive bacteria; and (iii) autoinducer 2 (AI-2) and 
indole for interspecies communication of microbial com-
munities [4]. Combining these AIs and their relevant QS 
devices with synthetic genetic circuits is of great importance 
to the dynamic control of bacterial populations and to the 
development of potential clinical therapies (Fig. 1).

Dynamic control of bacterial populations usually includes 
population size control, dynamic metabolic engineering for 
desirable products and the regulation of various physiologi-
cal activities [5] (Fig. 1). Metabolic control, a major issue 
in dynamic control of metabolic engineering, can be divided 

into static metabolic control and dynamic metabolic con-
trol [6]. Usually, static metabolic control involves natural or 
slightly modified control systems with knockout, weakening 
and overexpression of genes. Dynamic metabolic control 
utilizes genetic circuits such as toggle switches and sensor-
regulator to achieve the dynamic adjustment of metabolic 
production of microbes [5]. According to the type of genetic 
circuits involved, either on–off or continuous dynamic meta-
bolic control can be achieved [7]. A common strategy via 
introducing an on–off switch is to close the relevant competi-
tive pathways when the bacteria population reaches a certain 
level. This type of genetic circuits has the disadvantages of 
requiring proper induction time, increasing production costs 
due to the addition of inducer and being incapable of sensing 
the changing environment continuously. To overcome these 
disadvantages, continuous dynamic metabolic control has 
been developed to up-regulate the desirable product using 
synthetic feedback loops, such as QS-based devices [7]. The 
implementation of dynamic metabolic control can be either 
pathway-specific or pathway-independent [8]. The pathway-
specific implementations are achieved by detecting input and 
output changes of a relevant intermediate or byproduct [9], 
while the pathway-independent implementations are through 
nutrients in the medium or by QS [10, 11]. Compared to 
the pathway-specific implementations which are restricted 
to sense and dynamically control the metabolism of intra-
cellular pathways, pathway-independent implementations 
allow microbes to respond to the changing extracellular 
environment and adjust accordingly their metabolism and 
physiological activities, with QS as an important enabler 
[8]. What’s more, significant advances have been made in 
synthetic biology which created synthetic pathways and cir-
cuits to control the expression levels of relevant genes, such 
as overexpressing the genes for producing glycosides [12] 
in engineered bacteria. Transcriptional toggle switches [13] 
and transcriptional oscillators [14] are involved in transcrip-
tional regulation of genes, and genetic loops such as bista-
ble positive feedback loops and RNA-based anti-switches 
are constructed into biological systems to control post-
transcriptional regulation [15], metabolic flux distribution 
[16] and signaling proteins expression [17]. These QS-based 
genetic circuits not only make the synthetic systems more 
reliable and robust [18], but also provide new avenues to the 
dynamic control of bacterial populations [19].

With the increasingly recognized importance of patho-
gens and microbiota for human health, the QS-based mono-
clonal synthetic biology and synthetic ecology have enor-
mous potential in promoting the development of potential 
clinical therapies for curing devastating diseases, tackling 
antimicrobial resistance [20] (Fig. 1). Many bacteria have 
been shown to have a tendency to organize in aggregates 
generally to adhere to surfaces to form biofilms, and biofilm 
formation is a principal virulence factor in many localized 

Fig. 1   QS applications for dynamic control of bacteria populations 
and its potential clinical therapies for diseases. Dynamic control of 
bacterial populations includes three aspects, i.e., the population of 
bacteria control, dynamic metabolic engineering control and regula-
tion of physiological activities. They mainly work on the combina-
tions of various genetic circuits such as genetic oscillators, genetic 
toggle switches and genetic logic gates. Underpinned by the func-
tioning of autoinducer molecules, i.e., AHLs, DSFs, AIPs, AI-2 
and indole, the disruptions and manipulations of QS in the dynamic 
control of bacteria populations can be extended to be widely applied 
in monoclonal synthetic biology and synthetic ecology to develop 
potential clinical therapies
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chronic infections [21, 22]. As shown by existing stud-
ies [23], QS and quorum quenching [4] can significantly 
affect biofilm formation. One of the most important factors 
causing the changes of microbiota is the use of antibiotics, 
which does not only alter the microbiota but also promote 
the emergence of antibiotics resistance [24]. It has recently 
been demonstrated that QS inhibition including quorum 
quenching and other QS-blocking approaches can decrease 
the production of virulence factor [25]. Therefore, coupling 
QS devices with microbial consortia in various environ-
ments such as the human gut has much therapeutic potential, 
for example, treating chronic infections [26] and relieving 
antimicrobial resistance [27]. Besides, as infections of phage 
increase at high cell density [28], QS devices have much 
potential to regulate the CRISPR-Cas (clustered regularly 
interspaced short palindromic repeats; CRISPR-associated) 
immune systems to monitor the development of diseases 
[29].

Recently, several QS-based reviews have been published 
which focus on aspects including QS signals transduction 
and architectures, dynamic control for metabolic engineer-
ing, applications of synthetic microbial consortia, socio-
microbiology based on cell–cell communications, the 
applications of QS inhibitors in biofilm formation and the 
mathematical modelling for QS, as listed in Table 1. The 
purpose of this current review is to provide an updated sum-
mary of the more recent achievements in applying QS to the 
dynamic control of bacterial populations and in developing 
potential clinical therapies. We start by presenting the recent 
promising achievements, including bacteria population con-
trol, applications of the genetic toggle switches, synthetic 
genetic oscillators and genetic logic gates that apply QS 
devices which are based on AHLs signal transduction in 
Gram-negative bacteria. We then provide an overview of the 
AIP-based dynamic regulations of competence and virulence 
in Gram-positive bacteria, followed by that of AI-2-based 
and indole-based control of metabolism and physiological 
activities in microbial communities. Building on the review 
of these rather generic QS applications, we further highlight 
the important progress in the disruptions and manipulations 
of QS devices for therapeutic applications. The last part of 
the reviewed literature is on the mathematical modelling 
related to QS applications in the dynamic control of bacteria. 
Finally, we identify key challenges and suggest directions for 
future QS research.

QS applications in Gram‑negative bacteria

QS for population control

QS-dependent activities are the result of density-depend-
ent expression of both intra- and extracellular gene 

products [47]. It is essential for population-level dynamics 
and genetic-level regulation [19]. An et al. [48] and Goo 
et al. [49] certified that nutrients are typically limited and 
the environment is unfavorable for growth and metabolism 
of microbes in a crowded environment. Therefore, it is of 
much importance to control the cell density to optimize 
metabolic production.

You et al. [50] proposed that cell–cell communication 
can be used to programme the dynamics of a population. 
Combining the cell survival and death genes to the LuxI/
LuxR QS circuit, they built and characterized a ‘popula-
tion control’ circuit that autonomously regulated the den-
sity of an Escherichia coli population (Fig. 2a). Balagadde 
et al. [51] applied two E. coli populations to construct a 
synthetic ecosystem (predator and prey) (Fig. 2b), which 
was based on two QS mechanisms (LuxI/LuxR and LasI/
LasR). The predators will die following the expression of 
a suicide gene (ccdB) when the density of prey is low. As 
the prey density increases, AHL accumulates in the culture 
and eventually reaches a sufficiently high concentration, 
its combination with LuxR will then work to increase the 
expression of an antidote gene (ccdA) to rescue the preda-
tors. However, the predators will produce and accumulate 
Las AHL to a sufficient level to bind with LasR, which 
will, in turn, activate the expression of ccdB gene to kill 
the preys. The series of events leads to the oscillatory 
behavior of the two E. coli populations, which is typi-
cal for a two-strain ecosystem. More recently, AHL-based 
synthetic E. coli systems were used to test a general rule 
deduced for predicting coexistence and productivity of 
mutualistic communities [52]. Compared to the previous 
work by the same group [51], new features of these experi-
mentally tested systems included the use of Isopropyl β-d-
1-thiogalactopyranoside (IPTG) to induce the expression 
of CcdB (representing stress), and the application of anhy-
drotetracycline (aTc) to induce the QS module to impose 
the cooperation cost to both strains.

With the development of genetic circuits, the lysis genes 
can be coupled with new synthetic circuits such as genetic 
oscillators to realize various functions. Din et al. [53] inte-
grated the lysis genes with a microbial drug delivery system 
[54] to form a synchronized lysis circuit (SLC) for control-
ling population levels and facilitating drug delivery using 
bacteria (Fig. 2c). The circuit includes a luxI promoter which 
promotes expression of LuxI, a therapeutic gene, a reporter 
gene and a lysis gene ϕX174 E. When AHL reaches a target 
threshold, the expression of the therapeutic gene and the 
reporter gene will be promoted, and bacteria will produce 
and release cytotoxic agents continually. At the same time, 
the number of bacterium will decrease due to the expression 
of the lysis gene. Then, a small number of remaining bacte-
ria will begin to produce AHL again to restart this process 
in a cyclical fashion. Compared with existing drug delivery 
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strategies, SLC can be used as a novel therapeutic technique 
to cure diseases through population control of bacteria.

In a separate study, two orthogonal QS devices and a 
population control mechanism were combined together to 
control the population densities of competitive microbes of 
Salmonella typhimurium strains [55] (Fig. 2d). lux and rpa 
QS devices can be integrated with two lysis genes to form 
SLCs in two bacterial strains to control bacteria population. 
When two competitive microbes, the Lux-QS strain and the 

Rpa-QS strain, are co-cultured, the latter has a significant 
growth advantage over the former. It was observed that 
from an initial population ratio of 100:1 between the Lux-
QS strain and the Rpa-QS strain with the lysis gene, the 
population ratio became about 1:1 over 10 h. Without the 
lysis gene, the co-culture would be taken over by the Lux-QS 
strain. This demonstrates that the integration of two orthogo-
nal QS devices to form an ‘ortholysis’ system is a potential 
strategy to stabilize competitive strains in co-cultures.

Table 1   Recent reviews focusing on QS

Theme Core content References

QS signals transduction and architectures Reviewed various signal–response systems and their applications in 
Gram-negative bacteria

[18]

Reviewed types of molecular mechanisms coupled with various QS 
devices in Gram-negative and Gram-positive bacteria, and some 
network architectures of QS circuits

[30]

Reviewed various signal–response systems in Gram-positive bacteria [31]
Reviewed the mechanisms of intracellular pathway and extracellular 

pathway QS system, and the applications of regulating of conjugation, 
competence, bacteriocin production, and biofilm formation in Gram-
positive bacteria

[32]

Reviewed the function of indole in bacterial pathogenesis and eukary-
otic immunity

[33]

QS and its applications in marine microbes [34]
Reviewed the diversity, functions, biosynthetic pathways, and turnover 

systems for the diffusible signaling factors (DSF) family of QS signals
[35]

Dynamic control for metabolic engineering Reviewed various strategies such as QS system in the applications of 
dynamic metabolic engineering

[7]

Reviewed some dynamic control strategies coupling with QS to syn-
chronize cellular activity

[36]

Applications of synthetic microbial consortia Reviewed some engineering cell–cell communication, mainly on QS, 
and synthetic microbial consortia for community composition, divi-
sion of labor, and biofilm formation with QS system

[37]

Reviewed some typical synthetic microbial consortia by cell–cell com-
munications, mainly on QS

[38]

Discussed complex interactions and interplays in synthetic microbial 
ecology based on QS-based cell–cell communication

[39]

Socio-microbiology based on cell-to-cell communications Discussed the complex signal network and the cooperation with QS 
cheating phenotypes in bacterial. And reviewed various and feasible 
mechanisms that have been certified to stabilize QS-based cooperation 
in microbes

[40]

Reviewed the background and brief history of QS, and the applications 
of QS in socio-microbiology

[4]

Applications of QS inhibitors in biofilm formation Reviewed natural and synthetic quorum sensing inhibitors (QSIs) in 
various microbes

[25]

Reviewed applications of QS in biotechnology, especially for QSIs and 
some other biosensors

[41]

Reviewed the mechanism for pathogenic biofilms formation, and dis-
cussed the current biofilm-targeting therapeutic strategies for disease 
which caused by microbial biofilms and drug tolerance

[42]

Reviewed how bacteria deploy QS in realistic, complex and dynami-
cally changing scenarios

[43]

Mathematical modelling for QS Reviewed the modeling approaches on a systemic level [44]
Proposed the core principles of autoinducer systems in bacteria [45]
Reviewed various QS mathematical models [46]
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The above studies suggest that the combination of lysis 
genes, such as ccdB, and various QS devices (LuxI/LuxR, 
LasI/LasR, or RpaI/RpaR) can be applied to achieve the 
control of bacterial populations in either mon-culture or 
co-culture systems. Such control helps meet the essential 
requirement on population size needed for realizing vari-
ous high-value metabolic production and microbial clinical 
treatments.

QS‑based synthetic genetic oscillators

Using only a small amount of regulators in a large-scale 
genetic regulatory network, a relatively large number of 
genes and hence the complex cell behavior can be regu-
lated [56, 57]. Many metabolic activities, such as popu-
lation control, respiration, hormone secretion and circa-
dian rhythms, are closely associated with synchronized 
oscillators [58–60]. Developing synthetic gene oscilla-
tors (SGOs) is one of the main research directions of the 
research on synthetic genetic regulatory networks [61]. 
The first SGO, the repressilator, was proposed in 2000 
and is illustrated in Fig. 3a [14]. Unlike the repressilator 
where only repression exists, a relaxation oscillator has 
positive feedback loops which can promote the expression 

of negative feedback loops [62]. Hasty et al. [63] applied 
the common gene regulatory components (ci, lac and PRM) 
to construct a SGO model (Fig. 3b). Stricker et al. [64] 
developed a fast, robust and persistent engineered genetic 
oscillator in E. coli with the induction of IPTG and arab-
inose (Fig. 3c), and confirmed that its oscillatory period 
can be tuned by altering inducer levels, temperature and 
the media source.

Due to the complexity of cellular interaction and vari-
ability, it is important to investigate population-level dynam-
ics of microbes, such as synchronization [65, 66] and pro-
grammed population interactions [39, 67, 68]. To avoid the 
random phase drift and remove the effects of noise, it is 
desirable to introduce measures to coordinate and synchro-
nize each cellular oscillator [69], and QS has been found to 
offer an important means for this task [70].

Mcmillen et al. [71] firstly combined a genetic relaxation 
oscillator, which is composed of promotor PRE, gene X (cii) 
and gene Y (ftsh), with the lux QS mechanism (Fig. 3d). 
Protein CII can be degraded by protein FtsH, while the com-
plex of AHL and LuxR (LuxR-AHL) can activate the tran-
scription of CII. When the concentration of AHL reaches its 
threshold, it will bind with another LuxR in other cells to 
regulate their CII level.

Fig. 2   QS for the lysis and population control. a The signaling mol-
ecule 3OC6HSL (Lux AHL) is produced by the LuxI synthase. It will 
accumulate in the culture with the increased cell density of E. coli. 
When the concentration of the Lux AHL reaches a certain thresh-
old, AHL will diffuse back into E. coli and be recognized by LuxR, 
a specific protein receptor to activate the transcriptional expression 
of the killer protein LacZa-ccdB to regulate the cell death of E. coli 
and consequently control the population density. b Based on the two 

QS mechanisms (LuxI/LuxR and LasI/LasR QS devices), two E. 
coli strains are engineered to construct a synthetic predator and prey 
ecosystem. c When the population reaches the critical threshold, the 
AHL will bind with LuxR to become AHL–LuxR complex. It will 
facilitate the expression of LuxI, gene ϕX174E for lysis, therapeutic 
gene for cytotoxic agents, and sfGFP for reporter. d Genetic circuits 
of a two-strain ecosystem including Lux-QS and Rpa-QS S. typhimu-
rium strains
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Danino et al. [17] applied a QS-based approach to syn-
chronized oscillations at the colony level (Fig. 3e). In this 
circuit, luxI, aiiA and yemGFP genes were controlled by 
the luxI promoter. The LuxR–AHL complex activated the 
luxI promoter [72]. AHL was degraded by homoserine 
lactonase (AiiA).

As the DNA copy number changes with environmental 
pressures, it is a challenge to combine gene circuits with-
out predictable dynamic control of gene expression [73]. 
Treating the DNA copy number as a circuit control element, 
Baumgart et al. [74] reported that the expression of some 
cut site genes on a plasmid can be repressed by a targeted 

Fig. 3   The applications of QS-based synthetic genetic oscillators. a 
When the promoter PllacO1 is successfully promoted, the TetR pro-
tein will inhibit the downstream PltetO1 promoter, the CI protein will 
not be expressed, the inhibition of the Pr promoter will be released, 
LacI protein will be expressed, and the state of the PllacO1 promoter 
will be changed from “turn on” to “turn off”. Then the expression of 
TetR protein will be inhibited, and the inhibition of the PltetO1 pro-
moter will be released, CI protein will be expressed, Pr promoter 
will be inhibited, LacI protein expression will be inhibited, and pro-
moter PllacO1 will resume its “turn on” state. This is the mechanism 
of the first repressilator. b A relaxation oscillator with several positive 
and negative feedback loops. CI protein promotes the expression of 
itself and of LacI protein, while LacI protein inhibits the expression 

of itself and of CI protein. c A relaxation oscillator with the induc-
tion of IPTG and arabinose. Arabinose promotes the expression of 
AraC, GFP and LacI protein, while LacI protein inhibits the expres-
sion of itself, GFP and CI protein without IPTG. d Network architec-
ture of the proposed gene network. The relaxation oscillator includes 
CII protein, FtsH protein LuxI/LuxR type QS system. e The network 
architecture of a synchronized oscillation design with LuxI/LuxR 
type QS system. f The circuit diagrams of two-plasmid circuit which 
includes the activator and repressor plasmid. The activator plasmid 
keeps activating luxI promoter to activate the expression of I-SceI in 
the repressor plasmid. I-SceI can be used to negatively regulate the 
expression of some cut site genes on the activator plasmid, which will 
reduces its copy number
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nuclease (I-SceI) to reduce the copy number. They combined 
the negative feedback component with the positive feedback 
component of lux QS system to form a synthetic gene oscil-
lator of the plasmid copy number (Fig. 3f).

Most SGOs, such as those introduced above, have been 
constructed to operate within single, isogenic cellular popu-
lations. Representing a step further, Prindle et al. [75] inte-
grated a genetic relaxation oscillator, lux QS system and 
redox signaling (arsenite) to form coupled genetic ‘biopixels’ 
among different colonies (Fig. 4a). This genetic circuit con-
sists of arsenite-responsive promoter, ArsR, lux QS system 
and arsenite. When there is no arsenite, ArsR will repress 
the expression of luxR, thus no fluorescence or oscillation 
is generated. The repression will be removed when there 

is a sufficient amount of arsenite, thereby the LuxR–AHL 
complex will promote oscillations and the expression of the 
fluorescence gene.

Compared to the synchronization of genetic oscillators by 
means of coupling with standard transcription factor-based 
methods such as QS devices, work on the delay times of 
synchronization by competitive protein degradation is much 
less [76]. Prindle et al. developed a post-translational cou-
pling platform which worked through shared degradation by 
the ClpXP protease [77] to couple various synthetic genetic 
modules rapidly and efficiently. This platform was used to 
integrate intracellular genetic oscillators (including Plac/ara-1, 
lacI and inducers) and the LuxI/LuxR-type QS system to 
realize synchronization (Fig. 4b).

As an example of synchronization with two QS devices, 
Chen et al. [78] constructed a SGO with an “activator” strain 
and a “repressor” strain to realize the emergent, population-
level oscillations of two genetically distinct E. coli (Fig. 4c). 
The activator produces Rhl AHL, which promotes the tran-
scription of target genes for both strains, while the repres-
sor produces Cin AHL, which inhibits the transcription for 
both strains mediated by the LacI protein. Besides, there is 
another negative feedback loop in which the AiiA protein 
can degrade these two AHLs. These feedback loops were 
divided into four types of topologies to investigate the pop-
ulation-level dynamics of these two strains.

These studies have demonstrated that incorporating QS 
devices can indeed enrich the design and implementation of 
SGOs. Such systems hold much potential in regulating the 
synchronization of synthetic microbial consortia to benefit 
real applications in metabolic engineering, particularly the 
development and optimization of production pathways for 
high-value metabolites, as well as some medical applica-
tions, such as the drug release process for some probiotic 
therapies. On the other hand, these potential applications 
may require further optimization of the QS-based SGOs 
to achieve more accurate controls, beyond the feasibility 
already demonstrated by the proof-of-concept studies.

QS‑based genetic toggle switches

The main objective of metabolic engineering is to increase 
the yield and productivity of the desirable production 
through genetic engineering [79]. As a synthetic genetic 
circuit, a metabolic toggle switch (MTS) is often used to 
meet this goal [13, 80]. Demonstrating a modular design 
strategy, Kobayashi et al. [81] created four E. coli strains 
that contained a genetic toggle switch (Fig. 5a). Half of 
the strains were interfaced with a transgenic QS signaling 
pathway from Vibrio fischeri that detects AHLs. The genetic 
circuit combined the QS mechanism and the artificial ON/
OFF genetic toggle switch. The QS circuit was composed 
of the luxI, luxR and lacI genes, and would work as follows: 

Fig. 4   QS for synchronization of genetic oscillators. a A genetic 
relaxation oscillator consists of arsenite-responsive promoter, ArsR, 
lux QS system, and arsenite. b Coupling (i) genetic oscillators which 
includes promoter Plac/ara-1, lacI gene, arabinose and IPTG inducers 
and (ii) LuxI/LuxR type QS system to realize the synchronization by 
the ClpXP protease platform. c Genetic circuit diagrams of the activa-
tor with Rhl QS system and repressor strains with Cin QS system
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Initially, the concentration of the AHL is too low to function, 
the expression of the target gene, such as gfp, is maintained 
at the ‘OFF’ state; when AHL reaches a critical concentra-
tion, the gene will switch to the ‘ON’ state.

Anesiadis et al. [82] proposed an integrated computa-
tional model and showed that a genetic toggle switch can be 
effectively employed in dynamic metabolic engineering to 
increase bioprocess productivity and yield (Fig. 5b). Anesi-
adis et al. [83] also applied the LuxI/LuxR-type QS system 
to reconstruct E. coli to improve the productivity of serine 
with an ON/OFF genetic toggle switch (Fig. 5c). The highest 
productivity of the final strain to produce serine was 29.6% 
higher than that of the previous mutant strain. To further 
the design, they integrated population response, dynamic 
metabolic regulation, and the DFBA metabolic modeling 

method to construct a mathematical model to analyze the 
global sensitivity.

Although the aforementioned on–off two-stage control 
strategies have taken into consideration the appropriate 
cell density or sufficiently high concentrations of AHLs 
into consideration to achieve the intended purposes, the 
desirable gene expression often requires a more accurate 
cell density to synchronize microbial growth and cellular 
activity. To further improve the desirable production, novel 
engineering strategies to manage the trade-off between 
cell growth and desirable production are needed. Soma 
et al. [10] constructed a synthetic lux system to achieve 
a dynamic switch of the metabolic flux between the TCA 
cycle and the isopropanol synthesis pathway (Fig. 5d), 
resulting in the yield and the conversion rate improved by 

Fig. 5   QS for the dynamic metabolic control in Gram-negative bacte-
ria. a Genetic circuit diagram of a genetic toggle switch and QS sign-
aling pathway. b Genetic circuit diagram of the integration of LuxI/
LuxR type QS system, central carbon metabolism and a genetic tog-
gle switch in E. coli. The genetic toggle switch consists of LacI and 
λCI proteins. Their expressions are inhibited mutually. The pta gene, 
relevant to ethanol production, is at the downstream of λcI gene. At 
low AHL concentration, λcI and pta genes express normally, while 
lacI gene is inhibited. When the concentration of the Lux AHLs reach 
a certain threshold, the inhibition of lacI gene will be released. Later 

on, the expression of λcI and pta genes will be repressed. c Genetic 
circuit diagram consists of the genetic controller for serine production 
and the QS sensor. d Design of synthetic genetic circuit coupling QS 
system and the genetic toggle switch. With the help of IPTG inducer, 
this genetic circuit can realize the switch flexibly between two path-
ways: isopropanol synthesis and the TCA cycle. e Schematic of 
dynamic control of cell growth and myo-inositol production. f Sche-
matic of two-layer dynamic control of cell growth and d-glucaric acid 
production
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3 and 2.3 times, respectively. The threshold cell density 
was controlled by IPTG in this system.

Gupta et al. [8] introduced the QS circuits to control 
the expression of pfk-1 gene (which determines the carbon 
flux to glycolysis and cell growth) to identify the optimal 
point to switch off gene expression in terms of the desired 
times and cell densities (Fig. 5e). When there is no AHL, 
the transcriptional regulator EsaRI70V will bind to the 
PesaS promoter. As cell density increases, the accumula-
tion of AHL will reduce the activity of EsaRI70V and turn 
off the expression of pfk-1 gene. As a result, most of the 
glucose will be switched to the target pathway to increase 
the titers of myo-inositol (MI).

Doong et al. [11] combined pathway-independent and 
pathway-specific strategies to form a control mechanism 
that involved two orthogonal and tunable dynamic regula-
tion strategies, for the purpose of improving the produc-
tion of d-glucaric acid (Fig. 5f). The pathway-independent 
strategy was based on the QS system to turn glucose utili-
zation from the glycolysis to the production of d-glucaric 
acid at the threshold of AHL concentration. The pathway-
specific strategy used myo-inositol as the intermediate 
metabolite sensor to achieve dynamic and autonomous 
control to improve the production of d-glucaric acid.

More recently, Honjo et al. [84] constructed an engi-
neered microbial community composed of an E. coli strain 
producing beta-glucosidase (BGL) and the other E. coli 
strain producing isopropanol (IPA) using QS-dependent 
cell lysis circuits. Specifically, the BGL-producing strain 
will produce BGL to convert cellobiose to glucose as the 
carbon source when the desired cell density is reached 
by lysing itself. The IPA-producing strain grows with the 
help of the BGL release and can detect AHL produced 
by the BGL-producing strain to induce the expression of 
IPA. With a three-species consortium (Gluconobacter oxy-
dans–Ketogulonicigenium vulgare–Bacillus megaterium) 
for vitamin C fermentation, Wang et al. [85] applied the 
LuxI/LuxR QS system to control the lysis of G. oxydans as 
the population level QS-based metabolic toggle switches 
for l-sorbose production and for the relieve of l-sorbose 
competition with K. vulgare, thus realizing one-step fer-
mentation for vitamin C.

The above studies commonly feature the combination 
of synthetic QS systems and metabolic toggle switches, 
allowing the synthetic genetic circuit to be activated at the 
targeted cell density, and hence resulting in self-induced 
metabolic states switching. With the gradual maturation of 
the application of metabolic division of labor in metabolic 
engineering [86], the combined applications of engineered 
microbial communities and QS-induced metabolic toggle 
switches appear to offer a potentially promising direction 
for metabolic engineering and synthetic biology.

QS‑based logic gates

Positive and negative feedback control loops are prevalent in 
physical systems. Analogously, various positive and negative 
feedback regulatory structures have been found in biologi-
cal systems [87]. The amazing similarities and sophisticated 
connections between the two types of systems have attracted 
many researchers to develop biomolecular computing sys-
tems [88] which mainly include the design and simulation 
of various genetic circuits such as logic gates [89, 90]. Logic 
gates, such as Boolean logic gates, are the basic content and 
computing units of digital electronic circuits. Boolean logic 
gates for genetic circuits that have been involved in various 
applications mainly include AND, OR, NOR, NAND and 
XOR [91]. As early as 2002, an AND logic gate based on 
exogenously added signals has been established, activating 
the expression of GFP as the output based on the addition of 
two inputs, IPTG and aTc [92]. Step by step, various logic 
gates were constructed in microbes, such as AND logic gates 
in Pseudomonas aeruginosa [93] and Shewanella oneidensis 
[94]. Due to the ability of coordinating cell behavior at the 
population level, the QS devices such as lux, las and rhl have 
been combined with other genetic circuits to form various 
QS-based logic gates.

QS devices can be used as “wires” to combine genetic 
circuits to produce more complex computations in space, as 
shown by Tamsir et al. [95]. Firstly, based on previous work 
[96], they constructed the simplest NOR gates from NOT 
gates with the addition of a repressor. The inputs and the 
outputs of the NOR gates were designed to act as promoters 
to form multiple gates. Secondly, three NOR gates and a 
buffer gate in four separate E. coli cells were wired together 
to form an XOR gate via Las AHL and Rhl AHL from P. 
aeruginosa PAO1 (Fig. 6a).

Different from the logic gates which solely rely on 
two exogenously added signals such as IPTG and aTc 
[97], Shong et al. [98] developed a synthetic AND gate in 
response to the endogenous AHL signal and exogenously 
added IPTG or aTc (Fig. 6b). The esa QS system from Pan-
toea stewartii was applied to obtain the endogenous Esa 
AHL signal to avoid the disadvantages of the lux QS system. 
They showed that the downstream gene would not express 
without a second exogenous signal, hence demonstrating the 
function of this QS-dependent AND gate.

An AND logic gate combined with the lux QS system was 
constructed in Shewanella oneidensis to realize the appli-
cation of a logic gate in microbial fuel cells (MFCs) [99]. 
They firstly integrated the IPTG responding module, a QS 
module and an output module (reporter or target gene mtrA) 
to form a synthetic AND gate (Fig. 6c) to control extracel-
lular electron transfer in S. oneidensis. When the Lux AHL 
concentration reaches a critical threshold and binds with 
LuxR protein to facilitate the activation of promoter Plux, 
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accompanied by the IPTG addition to release the inhibition 
of Ptac by LacI protein, this AND logic gate will be switched 
on to start extracellular electron transfer.

As stated earlier in “QS-based logic gates”, QS devices 
have been widely integrated with the synthetic genetic toggle 
switches in metabolic engineering to dynamically regulate 
and control the gene expression responsible for the desired 
production. As the cell’s physiological state affects meta-
bolic regulation, the stationary phase sensing system and 
a QS system were combined by He et al. [100] to obtain 
an auto-induced AND gate for monitoring cell growth and 
polyhydroxybutyrate (PHB) production (Fig. 6d). PrpoS regu-
lates gene expression in the stationary phase [101] and was 
chosen here to control the transcription of HrpS, forming 
one of the inputs of the AND gate. The other input was from 
a QS system that controlled the expression of HrpR. Pro-
moter PhrpL, controlled by the complex of HrpR and HrpS, 
was the output.

As a broadly shared paradigm, the LuxI/LuxR-type QS 
system has been integrated with synthetic genetic oscillators, 
genetic toggle switches, and logic gates, revealing a wide 
range of possibilities and potential applications. It should be 
emphasized that, although some success has been achieved 
in applying QS-based engineering to specific microbes 
within the scope of monoclonal synthetic biology, complica-
tions arising from factors such as metabolic load and toxicity 
of metabolites could seriously limit what a single microbe 

can achieve. Therefore, we anticipate that, following some 
of the existing studies reviewed in this section, more explo-
rations will be published on the engineering of microbial 
consortia with QS-based synthetic genetic circuits, as a prac-
tice of synthetic ecology, which realize the population-level 
synchronization in synthetic communities to overcome the 
limit of single species.

QS applications in Gram‑positive bacteria

Gram-positive bacteria can also apply their own QS mech-
anism to regulate gene expression at the population level 
dynamically. Different from the AHLs adopted in the QS 
systems in Gram-negative bacteria, QS of Gram-positive 
bacteria is dependent on AIPs, also known as pheromones 
[3, 102]. The Gram-positive bacteria can thus sense AIPs to 
regulate their own metabolism in a changing environment 
[103]. Under certain conditions, AIPs of Gram-positive bac-
teria are produced in the cytoplasm and then secreted by the 
oligopeptide transport system to the extracellular medium. 
Thereafter, they are either detected at the bacterial surface 
by the extracellular pathway or re-internalized by the intra-
cellular pathway [32].

As shown in “QS applications in Gram-negative bac-
teria”, the QS mechanisms in Gram-negative bacteria 
(including lux, las QS system and so on) are relatively well 

Fig. 6   The applications of QS-based logic gates. a Genetic circuit of 
an XOR gate with three NOR gates and a buffer gate in four separate 
E. coli colonies. Arabinose (Ara) and anhydrotetracycline (aTc) are 
inputs and expression of LasI is the output for the first NOR gate in 
cell 1. Based on the first LasI input, Ara and aTc are regarded as the 
second inputs for the cell 2 and cell 3. The output of cell 2 and cell 3 
is the expression of RhlI. The buffer gate responses to the RhlI input 
to express the reporter gene (YFP). b Schematic diagram of QS-

dependent AND logic gate genetic circuits in P. stewartii. c Genetic 
circuits schematic diagram of the AND logic gate in S. oneidensis. 
The promoter Ptac is inhibited by LacI protein, and it can be relieved 
by IPTG addition in IPTG responding module. The AND logic gate 
functions by the combination of the IPTG responding module and QS 
regulation of LuxR–AHL complex (QS module). d Schematic dia-
gram of the AND logic gate with the control of HrpR and HrpS in 
E. coli 
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understood and have been shown to be applicable to the 
design and construction of genetic toggle switches, oscil-
lators and logic gates. In contrast, QS in Gram-positive 
bacteria still has a number of unknown mechanisms [104], 
and there is much less research on the application of QS in 
Gram-positive bacteria than that of Gram-negative bacte-
ria [41]. Recently, Marchand et al. [105] reported the first 
construction of a synthetic QS system to realize cell–cell 
communication among Gram-positive bacteria. They incor-
porated the agr QS system of Staphylococcus aureus into 
Bacillus megaterium to synthesize a genetic circuit for 
monitoring cell growth. In this circuit, the original P2 pro-
moter for the expression of agrB, agrD, agrC, and agrA 
genes was replaced with the PxylA promoter. The AgrD pro-
tein was transported by ArgB and SipM protein to the cul-
ture medium to become mature AIPs, which would then be 
recognized by a two-component system (TCS). The TCS 
consisted of the AgrC receptor and the AgrA transcriptional 
activator which were used to regulate the P3 promoter and 
the expression of the target gene such as gfp reporter gene.

However, different from the aforementioned work [105], 
most of the other reported AIPs systems of Gram-positive 
bacteria are based on the up-regulation or down-regulation 

of their own native QS devices as opposed to “borrowing” 
one from a different species, as summarized in Table 2. 
These QS systems are disrupted and manipulated in their 
own specific bacteria. Compared with the AHLs, which can 
diffuse through the cell membrane freely, the secretion of 
AIPs requires the aid of the oligopeptides transport system 
[103]. Besides, it should be taken into consideration that the 
rates of diffusion of the larger oligopeptides are slower than 
the smaller AHLs, especially in a solid culture [31]. These 
differences between AHLs and AIPs are arguably among the 
reasons for fewer studies on the QS application with Gram-
positive bacteria.

QS for population‑level control based 
on interspecies communication

QS signals can either be used by bacteria to form coopera-
tion or exploited by individuals which do not secrete them; 
the latter is termed as cheating phenotypes [129]. QS cheat-
ing in microbes is one of the most important parts of QS 
research. As listed in Table 1, achievements on cheating 
phenotypes and AHL-based social interactions have been 

Table 2   Recent QS applications in Gram-positive bacteria with native devices

Pathways AIPs Bacteria species Function controlled References

Extracellular pathway Agr type peptides Clostridium botulinum Neurotoxin production and sporulation [106]
Clostridium acetobutylicum Granulose formation, sporulation [107]
Listeria monocytogenes Population dynamics in soil [108]
Clostridium perfringens Virulence and toxin production [109]
Staphylococcus epidermidis Biofilms and infection [110]
Clostridium perfringens Toxin production and virulence [111]

peptides that contain Gly–Gly motifs Streptococcus thermophilus Production of Blp Bacteriocins [112]
Streptococcus pneumoniae Competence development [113]
Streptococcus pneumoniae Competence control [114]
Streptococcus mutans Competence control [115]
Streptococcus pneumoniae Competence control [116]

Intracellular pathway Rap/NprR/PlcR/PrgX (RNPP family) Bacillus Competence control (Rap) [117]
Bacillus cereus group protease production in sporulation 

(NprR)
[118]

Bacillus cereus Necrotrophism (NprR) [119]
Bacillus cereus Virulence regulation (PlcR) [120]
Bacillus cereus and Bacil-

lus thuringiensis
Virulence and necrotrophic properties 

(NprR)
[121]

Enterococcus faecalis Regulation of conjugation (PrgX) [122]
Rgg-like family Streptococci mutans Competence control [123]

Streptococci genus cross-talk between these different 
SHP/Rgg systems

[124]

Streptococcus genus Competence control [125]
Streptococcus thermophilus Competence control [126]
Streptococci genus Competence control [127]
Streptococcus mutans Genetic competence [128]
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extensively reviewed by Whiteley et al. [4] and Asfahl et al. 
[40]. Different from the intra-species signal responses which 
are mainly dependent on AHLs and AIPs (as reviewed in 
“QS applications in Gram-negative bacteria” and “QS appli-
cations in Gram-positive bacteria”), the signals for inter-
species communication are mainly autoinducer 2 (AI-2) 
[130–132] and indole [133, 134] that regulate cooperation 
and competition in microbial communities, which is the 
focus of this section.

AI‑2‑based communication

AI-2 is a product of the LuxS enzyme, which widely exists 
in Gram-positive and Gram-negative bacteria, and even in 
fungi [3]. LuxS enzymes synthesize 4,5-dihydroxy-2,3-pen-
tanedione (DPD), which can be regarded as the precursor 
of AI-2 [135]. DPD is a by-product of the S-adenosyl-
methionine (SAM) metabolism, which is included in the 
activated methyl cycle (AMC). SAM can transfer methyl 
groups to methyl-transferases and substrates to produce 
S-adenosylhomocysteine (SAH). Catalyzed by a series 
of relevant protease, SAH can be converted to homocyst-
eine and DPD [136]. DPD is a highly active molecule that 
can spontaneously cyclize into different DPD derivatives, 
which can be identified as a signal molecule, AI-2, by dif-
ferent bacteria [137]. Chen et al. [131] certified that AI-2 
produced by Vibrio harveyi contains boron. In contrast, 
the AI-2 signals of S. typhimurium and E. coli [138] are 
non-borated cyclized. There are existing reviews [136, 137] 
which explain the mechanism of the AI-2 signaling systems 
at length.

Xavier et al. [139] testified that AI-2 can mediate two-
way communication between E. coli and Vibrio harveyi in 
co-culture. The AI-2 produced by E. coli can be sensed by 
V. harveyi to induce bioluminescence, and reciprocally, the 
AI-2 produced by V. harveyi can be detected by E. coli to 
regulate its Lsr system. Armbruster et al. [140] found that 
Haemophilus influenzae and Moraxella catarrhalis, which 
are responsible for one of the common childhood infections 
named otitis media, have reciprocal effects on biofilm for-
mation via the AI-2 QS signal. They pointed out that the 
former promotes the biofilm formation of the latter. This 
and the other studies show the potential of the exploration on 
AI-2-based control to further the understanding of interac-
tions between microbes and hosts and to develop strategies 
to influence the physiological and biochemical functions of 
various pathogenic bacteria for curing the relevant diseases.

Indole‑based communication

With l-tryptophan as the reactant, indole is synthetized 
by tryptophanase (TnaA) in many bacteria [141]. More 

recently, indole is regarded as a signaling molecule which 
is relevant to various bacterial physiology, such as bio-
film formation [142], plasmid stability [143], popula-
tion-based resistance [144], virulence [145], persister 
formation [146], spore formation [147], and cell division 
[148] in indole-producing bacteria. Yee et al. [149] had 
studied biofilm formation with indole-producing bacteria 
(E. coli) and non-indole-producing bacteria (P. fluores-
cens), where indole was converted to isoindigo by toluene 
o-monooxygenase (TOM), with the TOM gene introduced 
from the soil bacterium Burkholderia cepacia G4. Their 
results indicated that E. coli was present in a higher den-
sity when co-cultured with P. fluorescens which expressed 
TOM. Han et al. [150] proposed that indole oxidation by 
TOM will increase the electricity generation in an E. coli-
catalyzed microbial fuel cell. Lee et al. [142] reported that 
indole increases the biofilm formation of P. aeruginosa 
that does not synthesize indole. Also, indole derivatives 
(Indole-3-acetaldehyde) from pathogen Rhodococcus sp. 
BFI 332 have been verified for inhibition to biofilm forma-
tion of E. coli O157:H7 [151]. Indole and its derivative 
7-benzyloxyindole (7BOI) were investigated for their inhi-
bition to the virulence of S. aureus [152]. Lee et al. [153] 
found that indole influences the growth, biofilm formation, 
antibiotic tolerance, and motility of Agrobacterium tume-
faciens. Chu et al. [154] investigated the interaction and 
competitiveness between E. coli and P. aeruginosa in a 
mixed culture. They concluded that the major indole-based 
protection for the growth of E. coli in the mixed culture 
was due to direct inhibition of QS-based virulence factors, 
such as pyocyanin and elastase, in P. aeruginosa. Focus-
ing on the host-microbe interactions of various bacteria 
and Caenorhabditis elegans, Lee et al. [155] concluded 
that indole and its derivatives will influence the egg-lay-
ing behavior, chemotaxis, and the survival of C. elegans. 
Further details and examples of indole-based QS can be 
found in several reviews, such as the one by Lee et al. 
[133] which covered at length indole-producing bacteria 
and the mechanisms and applications of the signaling sys-
tems based on indole and its derivatives. Recently, the per-
spectives on indole signaling systems have been expanded 
from interspecies to inter-kingdom. For example, Lee et al. 
[33] and Tomberlin et al. [156] provided overviews on 
how indole and its derivatives affect various physiological 
activities in fungi, insects, plants, and animals.

The functioning of AI-2 and Indole, as two main sign-
aling molecules facilitating the inter-species communica-
tion, greatly expand the presence of QS in the microbial 
world. As the understanding of their mechanisms deepens, 
one would expect that engineering and medical innova-
tions leveraging such knowledge will start to emerge, 
despite their current relative insignificance.
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QS applications in potential clinical 
therapies

Biofilm formation and inhibition

Many bacteria have a tendency to be organized in aggre-
gates, commonly adhering to surfaces to form biofilms 
[157]. Compared to the free-living counterparts, there are 
some unique properties in bacteria forming biofilms, such 
as antimicrobial tolerance [158]. In fact, biofilms forma-
tion has been widely regarded as one of the most impor-
tant virulence factors for microbial toxicity and infections 
[159]. When there is a biofilm for bacteria within the 
human host, the infections will be hard to treat.

Many studies have reported that the QS of AI-2/luxS and 
DSF-based QS systems play an important role in biofilm 
development and disassembly [4, 42, 160, 161]. From the 
studies using flow-cell systems [160], QS and biofilms have 
been shown to be inextricably linked. Lebeer et al. [162] 
conducted the first investigation on the relationship between 
the LuxS and biofilm formation in Lactobacillus rhamnosus 
GG, which is one of the probiotics for human. They found 
that LuxS enzyme is crucial for the gastric stress resistance 
and the metabolism of L. rhamnosus GG. Sun et al. [163] 
found that the over-expression of luxS or AI-2 supplementa-
tion enhanced biofilm formation of Bifidobacterium longum 
NCC2705 by about 50%. Furthermore, exogenously addition 
of signaling molecule AI-2 was found to promote the biofilm 
formation of P. aeruginosa PAO1 [164], Helicobacter pylori 
[165], and Staphylococcus epidermidis [166]. Laganenka 
et al. [167] showed that self-produced AI-2 can mediate 
autoaggregation of E. coli to enhance bacterial stress resist-
ance and promote biofilm formation. Papenfort et al. [168] 
discovered 3, 5-dimethylpyrazin-2-ol (DPO) in Vibrio chol-
erae which can be regarded as a new QS signal that regulates 
biofilm formation and virulence. Liu et al. [169] identified 
that d-Ribose can be applied to decrease the activity of AI-2 
to inhibit biofilm formation of Lactobacillus paraplantarum 
L-ZS9. Besides, based on the DSF QS systems, Ryan et al. 
[170] proposed that DSF underpins the interspecies signal-
ing between Stenotrophomonas maltophilia and P. aerugi-
nosa, with the latter influencing the former’s biofilm forma-
tion. Dean et al. [171] demonstrated that the Burkholderia 
diffusible signal factor (BDSF) plays an important role in the 
inhibition and dispersion of biofilm formed by Francisella 
novicida. It has also been shown that DSF signaling regu-
lates many functions that contribute to biofilm formation 
in Stenotrophomonas maltophilia [172] and Helicobacter 
pylori [173]. What’s more, DSF-based QS systems can be 
used to regulate antibiotic tolerance (e.g., [174]) and the 
production of virulence factors (e.g., [175]); this area has 
been reviewed at length [176].

Given the close connections between QS and biofilm 
formation, the development of novel antimicrobial thera-
pies by QS inhibitors has attracted extensive attention from 
researchers [177]. QS inhibitors are functioned by the deg-
radation of QS signals (quorum quenching) [178] or some 
other QS-blocking approaches. Shen et al. [179] synthesized 
a series of structural analogues of the substrate S-ribosyl-
homocysteine (SRH) and a 2-ketone intermediate to inhibit 
LuxS enzyme. Zhang et al. [180] proved that two small pep-
tides, 5411 and 5906, could inhibit the AI-2 activity and 
influence biofilm formation and virulence of Edwardsiella 
tarda. Ni et al. [181] reviewed seven approaches to inhibit-
ing QS pathways. Brackman et al. [182] certified that cinna-
maldehyde and cinnamaldehyde derivatives can interact with 
the AI-2 QS signal by reducing the DNA-binding ability 
of LuxR. Brackman et al. [183] investigated the relation-
ship between the susceptibility of biofilms to antibiotics and 
the antibiofilm effect of quorum sensing inhibitors (QSI) 
in vitro and in vivo model systems. Christensen et al. [184] 
discovered, by an high-throughput cell-free screen, three 
AHLs inhibitors which can be used as potential therapeutic 
agents for virulence and microbial infections. O’Loughlin 
et  al. [185] reported that the meta-bromo-thiolactone 
(mBTL) can not only inhibit the production of pyocyanin 
and biofilm formation but also reduce the activity of two 
QS receptors, LasR and RhlR, in P. aeruginosa. Starkey 
et al. [186] identified several compounds as QSI (all with 
the structure of benzamide-benzimidazole) which can inhibit 
the expression of the mvfR QS system which is one of the 
key reasons for multidrug-resistant and antibiotic-tolerant 
infections. Ouyang et al. [187] also reported that quercetin 
can be applied to inhibit biofilm formation and virulence 
factors in P. aeruginosa.

Consortia‑based therapies for P. aeruginosa 
infection

Pseudomonas aeruginosa, a multidrug resistant pathogen, 
can cause disease in plants and animals, including humans 
[188]. Biofilms of P. aeruginosa can cause chronic oppor-
tunistic infections, especially for immunocompromised 
patients and the elderly. These biofilms also appear to pro-
tect the bacteria from traditional antibiotic therapies [189]. 
Therefore, research on the discovery of new treatments, such 
as consortia-based therapies against P. aeruginosa is much 
needed. In particular, engineering microbial consortia with 
genetic circuits based on QS devices to inhibit biofilm for-
mation offers a potentially attractive therapeutic technique 
to deal with the infectious pathogens.

Taking the potential applications in bioremediation 
(among other applications) into consideration, Hong 
et al. [23] combined the LasI/LasR-type QS system from 
P. aeruginosa with biofilm dispersal genes to control 
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biofilm displacement in a microfluidic device. The engi-
neered microbial consortia consisted of disperser cells 
and initial colonizer cells. In a disperser cell, the LasI 
protein which is the precursor of the signaling molecule 
Las AHL is produced continuously, and the biofilm-dis-
persing Hha13D6 protein is encoded when the relevant 
gene is induced by IPTG. In an initial colonizer cell, the 
LasR protein is encoded, which couples with Las AHL 
to form a complex to promote the expression of another 
biofilm-dispersing protein, BdcAE50Q (Fig. 7a).

Saeidi et al. [190] integrated the LasI/LasR-type QS 
system, a lysing device for engineered E. coli, and pyocin 
for killing P. aeruginosa. The Las AHL is produced by P. 
aeruginosa and detected by the engineered E. coli. When 
the Las AHL concentration reaches a threshold, the Las 
LasR–AHL complex promotes the transcription of PluxR 
and then facilitates the expression of pyocin S5 and lysis 
E7 genes. E7 lysis protein will accumulate and then lyse 
E. coli cell to release S5 pyocin to inhibit biofilm forma-
tion and kill P. aeruginosa (Fig. 7b).

In a further study, Gupta et al. [191] integrated a secre-
tion module to the genetic circuit “sense-kill” system for 
P. aeruginosa. They applied a novel pathogen-specific 
bacteriocin CoPy, the combination of Colicin E3 and 
Pyocin S3 to kill P. aeruginosa. What’s more, they uti-
lized a secretion tag, FlgM, to transport the bacteriocin 
CoPy into the culture to kill P. aeruginosa (Fig. 7c).

Hwang et al. [192] combined the LasI/LasR-type QS 
system, motility control and a killing device to form a 
novel genetic circuit engineered into E. coli to kill P. 
aeruginosa. The Las LasR–AHL complex promotes the 
expression of gene lasI, gene cheZ (controlling the motil-
ity of E. coli toward P. aeruginosa), gene Dnasel (control-
ling biofilm degradation of P. aeruginosa), and gene mcsS 
(killing P. aeruginosa) (Fig. 7d).

Based on a previous work [190], Hwang et al. [193] 
introduced an auxotrophic marker in E. coli to avoid the 
horizontal gene transfer of the antibiotic resistance to 
other bacteria. The alr and dadX genes which help the 
interconversion of d-alanine and l-alanine were knocked 
out in the novel engineered E. coli. To construct a modi-
fied “sense-kill” system for P. aeruginosa, they first com-
plemented the auxotrophic E. coli with an alr + plasmid 
(pEaak) to ensure the growth and other physiological 
activities and then added the dspB gene to the previous 
genetic circuits (Fig. 6b) to inhibit the biofilm forma-
tion more efficiently. The dspB gene encodes dispersin B 
(DspB), an anti-biofilm enzyme for degrading mature bio-
films. It was proven that combining the dspB and pyoS5 
genes together to disassemble biofilm formation is an 
efficient strategy to kill P. aeruginosa (Fig. 7e).

Fig. 7   The applications of QS devices relevant to biofilm formation. a 
Diagram of genetic circuits of disperser cell and initial colonizer cell. 
b Schematic of genetic circuit coupling QS, killing, and lysing sys-
tems to kill P. aeruginosa. c Genetic circuit architectural of “sense-
kill” system of P. aeruginosa with transport system of the bacteriocin 
CoPy. d Schematic of engineering E. coli to sense, migrate and kill P. 
aeruginosa. e Diagram of novel “sense-kill” genetic circuit coupling 
QS, dspB and pyoS5 gene (for killing), and lysing systems to kill P. 
aeruginosa 
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Probiotic therapies for diseases relevant to gut 
microbiota

Gut microbiota has been shown to clearly relate to a range 
of diseases and conditions of human, such as type 2 diabe-
tes [194], cardiovascular disease [195], clostridium difficile 
infection (CDI) [196], epithelial tumors [197] and obesity 
[198]. With the large quantities of antibiotics widely used 
in the past decades, antibiotic resistance is currently ubiqui-
tous and hard to deal with, especially in the human gut [20, 
199, 200]. Much research has thus been focusing on finding 
alternative antimicrobial therapies. Taking S. typhimurium, 
enterohaemorrhagic E. coli (EHEC) and Clostridium difficile 
as representative microbes, Bäumler et al. [60] reviewed the 
interactions among the microbiota, the host and these three 
pathogenic bacteria when treated by antibiotics. Antibiot-
ics treatment appears to increase free sialic acid (from the 
host) and succinate (from the microbiota) level. The elevated 
sialic acid and succinate in turn promote the expansion of 
the S. typhimurium and C. difficile, which will do harm to 
the intestinal epithelium cells (IECs). Besides, EHEC was 
found to use a fucose-sensing signaling-transduction QS 
system [201] to avoid the nutrient competition with com-
mensal E. coli. To avoid the defect of antibiotics treatment 
leading to antibiotic resistance, multiple attempts have been 
made to develop probiotic therapies which utilize probiotic 
bacteria such as lactic acid bacteria [54] to serve as vectors 
for delivery of drug and signaling molecules [202]. As one 
of the most important ways for cell–cell communication, 
QS devices hold enormous potential in sensing the patho-
gens (stated in “Consortia-based therapies for P. aeruginosa 
infection”) for probiotic therapies.

Diarrhoeal diseases, caused by the invasion of Vibrio 
cholera, are nightmares for both children and adults [203]. 
Co-culturing the Ruminococcus obeum and Vibrio cholera 
in AKI medium, Hsiao et al. [204] found that the patho-
genicity of V. cholerae was reduced by AI-2 of R. obeum. 
The results of experiments in the gnotobiotic mice model 
illustrated that the virulence of V. cholerae was regulated via 
a novel regulatory pathway in R. obeum. It relates to a new 
mechanism based on the VqmA virulence regulator rather 
than the known pathway based on HapR.

Considering that the gut microbiota mainly includes 
Bacteroidetes and Firmicutes, Thompson et al. [27] chose 
these two microbes to investigate the influence of AI-2 on 
the ratio of them. Firstly, they used streptomycin to induce 
gut dysbiosis, which had previously been applied to inves-
tigate the relationship between streptomycin treatment and 
colonization resistance in intestinal E. coli [205]. They sub-
sequently engineered E. coli to manipulate the AI-2 level in 
the mouse intestine and investigated the influence on strep-
tomycin-induced dysbiosis. By increasing the level of AI-2, 
the ratio of Firmicutes and Bacteroidetes was increased so 

as to relieve the strong effect of the antibiotic and restore the 
dysbiosis (Fig. 8a). Analogously, Xavier et al. also proposed 
that AI-2 can make some difference on the composition of 
gut microbiota in mouse [206].

Lactococcus lactis and Enterococcus faecalis are ubiq-
uitous in human gastrointestinal tract [207]. Borrero et al. 
[208] proposed using L. lactis, generally recognized as safe 
(GRAS) for human, to kill E. faecalis which is responsible 
for hospital-acquired infections such as enterococcal infec-
tions [209]. In this bi-directional system, L. lactis produces 
three antimicrobial peptides (AMPs), enterocin A, hiracin 
JM79 and enterocin P, to inhibit the growth of E. faeca-
lis, including vancomycin-resistant enterococcus (VRE) 
strains. E. faecalis produces and secrets the sex pheromone 
cCF10 (as an AIP) to be detected by the engineered L. 
lactis (Fig. 8b). When the concentration of the sex phero-
mone cCF10 expressed by E. faecalis reaches the thresh-
old, it will be imported by PrgZ protein and oligopeptide 
permease (Opp) system of the engineered L. lactis into its 
cytoplasm. cCF10 will then integrate with PrgX protein to 
form a PrgX–cCF10 complex which increases RNA poly-
merase access to PQ [104] and enhances the expression of 
the downstream antimicrobial peptides to kill E. faecalis.

As concluded by Coyte et al. [210], understanding the 
interactions between microbes, especially for the competi-
tion and cooperation among pathogens and probiotics, is 
key to revealing the mechanisms of gut microbiota-related 
diseases. To understand these complex processes, the studies 
reviewed above show that it is important to recognize the 

Fig. 8   The applications of QS devices in the gut microbiota. a Bal-
ance of the gut microbiota. Once treated by antibiotics such as strep-
tomycin, Firmicutes and AI-2 producing will reduce, while metabo-
lite such as sialic acid, succinate and fucose will increase in the gut 
microbiota. Artificially increasing the levels of AI-2 produced by 
engineered E. coli reliefs the dysbiosis, increases the ratio of Firm-
icutes, and reverses state partially. b Diagram of genetic circuits of 
applying Lactococcus lactis to sense and kill Enterococcus 
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QS signaling molecules as the language or bonds that link 
together the members of the microbiome, and also as the 
bridge for between the bacteria and the host [211].

Therapies based on CRISPR‑Cas immune systems

Bacteria often suffer from invasion by foreign mobile genetic 
elements such as bacteriophage infestation [212] and plas-
mids conjugation [213] which forms a basis for developing 
potential therapies to treat human diseases caused by patho-
genic bacteria. Bacteria possess natural defense systems, 
named CRISPR-Cas immune systems [76], to reject foreign 
phages or plasmids (Fig. 9). The regulation of CRISPR-Cas 
immune systems can occur during different stages of an inte-
grated network which involves pre-emptive warning, first 
contact, breaking the silence, detecting infection, and dedi-
cated regulators [214]. Due to infections of phage increase at 
high cell density [28], QS devices have much potential to be 
applied to monitor the infections [29]. It is costly to continu-
ously defend the whole CRISPR-Cas immune systems with 
an integrated network of various sensors [14]. Therefore, 
combining with QS devices, microbes can be “instructed” 
to regulate CRISPR-Cas immune systems only at high cell 
density, hence minimizing the cost. This is in line with the 
work of many researchers.

In response to phage and plasmids invasion, this is in line 
with the work of Rossmann et al. [56] which proposed that 
AI‑2 regulates enterococcal pathogenicity and induces the 
horizontal gene transfer (HGT) of virulence genes by con-
jugation or transformation from phages to the commensal 
enterococci.

Høyland-Kroghsbo et  al. [59] demonstrated that the 
CRISPR-Cas activity can be regulated by QS devices in the 
pathogen P. aeruginosa. The type I-F CRISPR-Cas system, 

LasI/LasR- and RhlI/RhlR-type QS devices were utilized 
to analyze the consequence of QS regulations on CRISPR-
Cas activity. When lasI and rhlI genes were knocked out, 
the mutant exhibited obvious decreases in the expression of 
CRISPR-Cas relative to the wild type. Also, CRISPR-Cas 
activity restored to wild type levels when certain auto-induc-
ers were artificially replenished. Therefore, it is possible to 
suppress the CRISPR-Cas immune system by QSIs as a cost-
effective way to promote the killing of the pathogens by the 
phage.phage therapies.

Patterson et al. [215] combined the SmaI/smaR-type QS 
system and homologs of the LuxI/LuxR-type QS system 
with type I-E, I-F, and III-A CRISPR-Cas systems, respec-
tively, to investigate the regulation effect of QS on HGT in 
Serratia sp. ATCC39006. The signaling molecule Sma AHL 
is produced by smaI gene and bonded with SmaR protein 
to form a SmaR–AHL complex. When the concentration 
of Sma AHL, Lux AHL homologs, is low at low cell den-
sity, the SmaR transcriptional regulator will act as a DNA-
binding repressor for the CRISPR-Cas operon. As the cell 
density increases, Sma AHL accumulates in the culture and 
eventually reaches sufficiently high concentrations, and the 
SmaR–AHL complex will then inhibit the DNA binding 
activity of SmaR, which causes the expression of CRISPR-
Cas to increase (Fig. 9).

The population-level resistance of bacteria upon invasion 
by foreign phages or pathogenic bacteria is commonly con-
sidered as important for maintaining the healthy state of the 
microbiome [214]. The development QS-based CRISPR-Cas 
technologies such as those reviewed above thus have the 
potential to bring useful additions to the toolbox for realizing 
population-level resistance.

Mathematical modelling for QS applications

Complementing experimental explorations and supported by 
the richness of biological information, a variety of synthetic 
genetic circuits and established databases [216], mathemati-
cal modelling has been widely applied in systems biology 
and synthetic biology to achieve systematic understandings 
of cellular behavior [217] and to optimize TYR for desir-
able products in engineering applications [218]. In particu-
lar, various modeling methods, such as flux balance analysis 
(FBA) [219], dynamic flux balance analysis (DFBA) [220], 
and sensitivity analysis have been combined with ordinary 
differential equations (ODE) [221–223] to construct math-
ematical models for QS. As listed in Table 1, there exist 
comprehensive reviews of deterministic and stochastic mod-
els and modelling approaches for QS devices, particularly 
of their molecular mechanisms. Not repeating these exist-
ing reviews, this section is intended to focus on the typi-
cal approaches and recent achievements of mathematical 

Fig. 9   The schematic of QS regulation on CRISPR-Cas systems in 
Serratia. Mechanisms have been described in the text. The more spe-
cific introduction for the mechanisms of CRISPR-Cas immune sys-
tems can be found in the review paper (Patterson et al. [214])
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modelling of the applications of QS for bacterial population 
control as reviewed earlier in this work.

QS applications modelling in monoclonal synthetic 
biology

As a commonly shared paradigm for QS modelling, the 
LuxI/LuxR-type QS has been modelled by a number of 
researchers. To predict the function of the circuit illustrated 
earlier in Fig. 2a (and explained in “QS-based synthetic 
genetic oscillators”), You et al. built a mathematical model 
which includes cell growth, cell death, production and deg-
radation of CcdB protein, and change of AHL concentration 
in this system [50]. The equations of the model are shown in 
Eqs. 1a–1c, which are derived following five assumptions:

(a)	 Without IPTG induction, cell density changes will fol-
low the logistic model;

(b)	 When induced by IPTG, the rate of cell death will be 
proportional to the concentration of CcdB protein;

(c)	 The generation rate of CcdB protein is proportional 
to the concentration of AHL, and the intracellular and 
extracellular AHL concentrations are equal;

(d)	 The generation rate of AHL is proportional to cell den-
sity;

(e)	 Degradation of CcdB protein and AHL follows a first-
order kinetics.

A number of QS models similar to the above have sub-
sequently been developed, making predictions based on the 
capture of the interactions between cell density, concentra-
tion of AIs, complex of AIs and their correspond receptors 
[44].

In principle, QS is not only dictated by reactions of vari-
ous molecules but also affected by diffusion. Basu et al. 
[224] designed a synthetic multicellular system with QS 
devices, which consists of “sender” and “receiver” cells. Due 
to the diffusion of AHL, the concentration of AHL gener-
ated by the “sender” decreases gradually from the cell to 
the periphery. Consequently, the “receiver” cells in different 
regions respond to different concentrations of AHLs and 
express different colors of fluorescent protein, thus forming 
different colors and different ring-like patterns.

(1a)
dN

dt
= kN

(

1 −
N

Nm

)

− d[E]N,

(1b)
d[A]

dt
= vAN − dA[A],

(1c)
d[E]

dt
= kE[A] − dE[E].

Building on the two models mentioned above, Anesiadis 
et al. [82] constructed a mechanistic model (Eqs. 2a–2e) 
for investigating the dynamics of the genetic circuit includ-
ing a genetic toggle switch (introduced earlier in Fig. 5a). 
The same research group [83] further integrated the QS 
model (Eqs. 2a–2e) and a DFBA model to maximize serine 
production.

As shown earlier in Fig. 5e and explained in “QS-based 
genetic toggle switches”, a synthetic genetic toggle switch 
can be designed and applied for MI production (Eqs. 3a–3c). 
Gupta et al. [8] modified the population control equation 
Eq. 1a by removing the lysis term and adding a variable 
which denotes the fractional Pfk-1 activity to predict the 
circuit’s function.

QS applications modelling in synthetic ecology

Based on the aforementioned relatively simple models 
for monoclonal synthetic biology, several more complex 
models for combinatorial quorum sensing [70] in synthetic 
ecology have been reported. Building on the model of You 
et al. [50], Balagadde et al. [51] modelled the dynamics of 
a synthetic E. coli predator–prey system, which includes 
two QS devices (lux QS and las QS) (introduced earlier in 
Fig. 2b). Further, Song et al. [225], from the group of You, 
expanded their model to investigate the spatiotemporal 

(2a)
dX

dt
= kX,

(2b)
d[A]

dt
= vAX − dA[A],

(2c)
d[R]

dt
= �R[LuxR]2[A]2 − dR[R],

(2d)
d[L]

dt
=

�L1

1 +
(

[C]∕�C

)n1
+

�L2 ⋅ Rn2

(�R)n2 + Rn2
− dL[L],

(2e)
d[C]

dt
=

�C

1 +
(

[L]∕�L

)n1
− dC[C].

(3a)
dN

dt
= FPfk ⋅ kN

(

1 −
N

FPfk ⋅ Nm

)

,

(3b)
d[A]

dt
= vAN − dA[A],

(3c)
dFPfk

dt
=

(

−
Kd

(Kd + [A])2

)

× (vAN − dA[A]).
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dynamics of the predator–prey system by adding the fac-
tors of chemical diffusion, cellular motility, and nutrient 
consumption. To study the dynamics of emergent genetic 
oscillations in a synthetic microbial consortium (intro-
duced earlier in Fig. 4c), Chen et al. [78] developed a 
model depicting the system with three compartments, 
namely the intracellular space of the activator strain, the 
intracellular space of the repressor strain, and the extra-
cellular space, to reduce the difficulty of modelling. Scott 
et al. [55] combined agent-based modeling and determin-
istic modeling to describe the population-level dynamics 
of synchronized oscillations (introduced earlier in Fig. 2d). 
Based on the models derived from two-strain consortia, 
Kong et  al. [226] developed models to investigate the 
dynamics of three- and four-strain ecosystems induced by 
nisin, a QS molecule of Gram-positive bacteria.

QS stochastic modelling

Stochastic models for QS are needed to account for the 
natural stochasticity in gene expression. In particular, 
when the rates of gene expression are relatively low 
and the amount of the reactants is relatively small, the 
effects of stochasticity on the system’s behavior cannot 
be ignored [227]. It thus becomes necessary to adopt a 
stochastic model to more faithfully capture the nature of 
genetic circuits such as synthetic genetic oscillators [56, 
58]. Tian et al. [228] recoganized the importance of noise 
in the switching of bistable systems, such as the QS-based 
genetic toggle switch (Fig. 5a). They developed quantita-
tive stochastic models for large-scale genetic regulatory 
networks by introducing Poisson random variables into 
deterministic models to analyze the influence of noise. The 
model developed by Baumgart et al. [74] considered the 
dynamics of the concentrations of LuxI, I-SceI and GFP, 
and was used for conducting robustness analysis of a sto-
chastic process that involved the positive feedback of QS, 
negative feedback of plasmid copy number, and intracel-
lular delay in feedback, which were integrated to describe 
the oscillator in DNA copy number control (mechanism 
shown in Fig. 3f).

The modelling studies reviewed in this section show that 
lumped-parameter (i.e., well-mixed), deterministic models, 
which are relatively simple, can already predict the effect 
of applications of QS-based genetic circuits in metabolic 
engineering and to offer useful insights on the dynamics of 
such systems. On the other hand, more advanced modelling 
schemes, such as those taking into account spatial heteroge-
neity and stochasticity, could offer more faithful and more 
detailed representation, which would become particularly 
important when such complexities play a decisive role in 
shaping the behavour and function of a QS-based system.

Summary and future perspectives

QS devices have been shown to be able to play a key role 
in engineered dynamic control of metabolism and various 
microbial physiological activities, such as the TYR (titer, 
yield and rate) increase of desirable metabolites, microbiota 
synchronization, and regulation of sporulation, virulence, 
competence and toxin production. These applications of QS 
have been realized by five main types of signaling molecules, 
namely AHLs, DSFs, AIPs, AI-2 and indole. Genetic oscil-
lators, toggle switches and logic gates have been constructed 
by coupling with AHL-based QS devices in Gram-negative 
bacteria. With Gram-positive bacteria, both extracellular 
and intracellular pathway AIP-based QS devices have been 
developed for controlling physiological activities. AI-2 and 
indole, on the other hand, can be regarded as languages 
of communication in microbial communities. Engineered 
applications of QS in microbes can be either “constructive” 
(through introducing new/foreign or enhancing existing QS 
mechanisms) or “destructive” (through inhibiting existing 
QS mechanisms). In constructive cases, the QS devices 
could be either natural or synthetic. Furthermore, a synthetic 
QS device can be either constructed partly from naturally 
occurring QS modules or synthesized from scratch. Among 
other areas, both constructive and destructive QS applica-
tions have found increasing potential in developing clinical 
therapies for a range of diseases caused by biofilm forma-
tion, antibiotic resistance and phage invasion.

For QS to be more effective and more widely applicable, 
further work is needed to address several general challenges. 
First, the target QS modulators must recognize precisely the 
corresponding signals in an extremely miscellaneous pool. 
Second, compared to the long-range effective electrical sig-
nals [229, 230], quenching problems are common in chemi-
cal signals in QS devices; answering questions such as how 
to realize the spatiotemporal and tempo control of signal-
ing molecules is essential, too. Third, there are couplings or 
crosstalk between different QS signals and receptors (e.g., 
AHL-based QS and indole-based QS affect each other); 
understanding how to decouple these pathways is necessary 
and important to achieve their applications with larger scale 
genetic oscillators in demanding tasks such as investigat-
ing the population-level dynamics of microbes. Fourth, the 
cheating behaviors aggravate the complexity of microbial 
communities; the questions of how to constrain cheaters 
when desirable and how to exploit cheating behaviors to 
inhibit QS are not only theoretically interesting for microbial 
ecology but also practically important for the development 
of QSIs. Finally, nonlinearities and stochasticity need to be 
considered and resolved appropriately in QS modelling.

With synthetic biology making great leaps forward, 
the future perspectives of QS applications are expected 
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to keep pace with it. Currently, most of the engineered 
dynamic regulation mechanisms build on AHL-based QS 
devices of Gram-negative bacteria. In contrast, existing 
QS-based interventions in Gram-positive bacteria are 
mostly in the form of up-regulating or down-regulating 
naturally occurring processes, and there is very limited 
research on synthetic QS in this type of bacteria. On the 
other hand, Gram-positive bacteria, such as Lactococ-
cus lactis have been viewed as important candidates for 
building engineered microbial cell factories and vaccine 
delivery systems, and they play an irreplaceable role in 
metabolic engineering and medical applications, such as 
producing dairy fermentations [231, 232], industrial prod-
ucts and various vaccines [233]. Given their significance, 
more research is needed to discover, study and apply the 
QS mechanisms in Gram-positive bacteria. In particular, 
one may expect that there is great potential to couple cer-
tain synthetic TCS-based or AIP-based QS devices with 
the original pathways in Gram-positive bacteria to improve 
the TYR of desirable products in Gram-positive cell facto-
ries and to develop future therapeutic systems.

As a broad perspective for future research, the explora-
tion of QS for population-level control of bacteria and its 
potential in therapeutic applications may proceed in hori-
zontal and vertical dimensions, respectively. Horizontally, 
QS applications can be centered on multi-circuit systems 
(the combination of various QS-based genetic circuits), 
multi-production (two or more products from one single 
cell), and microbial communities (engineering microbiota 
to produce one or more products). Vertically, QS applica-
tions in medical therapeutics have the potential to advance 
by addressing the interactions between microbes (virus, 
bacterium and fungi) and the host [212, 234–236]. The 
understanding of these interactions will accelerate the 
development of more reliable strategies for manipulating 
the microbiota against infectious diseases and antibiotic 
resistance, which is of great significance for human health. 
In the future horizontal and vertical developments of QS 
applications, mathematic models are expected to continue 
their supporting role to construct QS networks, by not only 
embracing nonlinearities and stochasticity, but also inte-
grating across component, circuit, cellular and community 
levels and addressing the interactions between microbes 
and their hosts and other environments, to offer the power 
of making holistic predictions.
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