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Abstract
Neuropsychiatric disorders, including autism spectrum disorders (ASD) and anxiety disorders are characterized by a com-
plex range of symptoms, including social behaviour and cognitive deficits, depression and repetitive behaviours. Although 
the mechanisms driving pathophysiology are complex and remain largely unknown, advances in the understanding of gene 
association and gene networks are providing significant clues to their aetiology. In recent years, small noncoding RNA mol-
ecules known as microRNA (miRNA) have emerged as a new gene regulatory layer in the pathophysiology of mental illness. 
These small RNAs can bind to the 3′-UTR of mRNA thereby negatively regulating gene expression at the post-transcriptional 
level. Their ability to regulate hundreds of target mRNAs simultaneously predestines them to control the activity of entire 
cellular pathways, with obvious implications for the regulation of complex processes such as animal behaviour. There is 
growing evidence to suggest that numerous miRNAs are dysregulated in pathophysiology of neuropsychiatric disorders, 
and there is strong genetic support for the association of miRNA genes and their targets with several of these conditions. 
This review attempts to cover the most relevant microRNAs for which an important contribution to the control of social and 
anxiety-related behaviour has been demonstrated by functional studies in animal models. In addition, it provides an overview 
of recent expression profiling and genetic association studies in human patient-derived samples in an attempt to highlight 
the most promising candidates for biomarker discovery and therapeutic intervention.
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GluN2A	� Glutamate receptor NMDA type 2A
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Pde10a	� Phosphodiesterase 10A
PI3K	� Phosphoinositide 3-kinase
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POMC	� Pro-opiomelanocortin
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Pri-miRNA	� Primary micro RNA
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PTEN	� Phosphatase and tensin homolog
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Rap1	� Ras-related protein 1
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transcription
TNF-a	� Tumor necrosis factor alpha
TRBP	� TAR RNA binding protein
USV	� Ultrasonic vocalization
UTR​	� Untranslated region

Introduction

MicroRNAs (miRNAs) are a family of small non-coding 
RNAs (ncRNAs), which act at the post-transcriptional level 
to regulate gene expression. Ever since the discovery of 
the first miRNAs in Caenorhabditis elegans, let-7 and lin-
4 [1–3], numerous studies have been performed to explore 
the biogenesis pathways of these molecules (reviewed by 
[4, 5]). The majority of miRNAs are initially transcribed by 
RNA polymerase II as long primary transcripts (pri-miRNA) 
including a polyA tail and secondary hairpin structure(s). 
The 3′- and 5′-end of the pri-miRNA is then cleaved in the 
nucleus by the microprocessor complex, containing the 
RNase III family Drosha and DGCR8 as core components, 
to liberate a precursor miRNA (pre-miRNA), followed by 
its transport to the cytoplasm [6]. In the cytoplasm, another 
RNase III family enzyme Dicer together with the RNA bind-
ing protein TRBP then cleaves the hairpin structure of the 
pre-miRNA to form a miRNA duplex, in which two strands 
of about 22 nucleotides in length (guide/passenger strand, or 
5-p/3-p-strand) are associated by Watson–Crick base pair-
ing. This duplex is then dissociated upon loading of either 
the 5-p or 3-p strand, now called the mature miRNA into 
the miRNA-associated RNA-induced silencing complex 
(miRISC), which consists of one Argonaute family protein 
(AGO 1–4), along with accessory components such as Dicer 
and TRBP, among others [7].

MicroRNAs contain a 6–8 nucleotide long sequence at 
their 5′-end which is known as the “seed” sequence [8]. 
This sequence is important for target mRNA recognition 
since it is often fully complementary to a sequence in the 
3′- untranslated region (3′-UTR) of the targeted mRNA, 
known as the “seed match”. Once recruited to the target, 
miRISC suppresses protein production by inhibiting mRNA 
translation, promoting mRNA degradation, or both. In rare 
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cases when the miRNA is fully complementary to its target, 
the target mRNA is degraded upon miRISC recruitment by 
endonucleolytic cleavage catalysed by AGO2 [9, 10]. In 
addition to this canonical pathway, new non-canonical bio-
genesis pathways have been discovered which involve only 
Dicer but not the microprocessor complex [11]. However, 
the number of miRNAs which are produced through this 
pathway remains to be determined [12].

MiRNAs can originate in the genome from both the 
introns of protein-coding genes (host genes) [13] or regions 
without any known coding function [14]. MiRNAs can exist 
either singly or as clusters of up to several tens of different 
miRNA sequences [14–16]. Consequently, the expression 
levels of the individual miRNAs have a high correlation with 
the host gene expression [13]. The human genome contains 
2656 annotated mature miRNAs (https​://www.mirba​se.org, 
release 22), and it is estimated that the expression of up to 
50% of human genes is controlled by miRNAs [17]. This 
results from the fact that a single miRNA can regulate the 
expression of several hundred genes and that, on the other 
hand, the expression of a single gene may be affected by 
multiple miRNAs [18]. Besides this, the function of miRNA 
can be highly context-dependent, eliciting robust mRNA 
degradation in processes such as neuronal development and 
also subtle local changes in mRNA translation during syn-
apse development [19, 20]. Due to their ability to regulate 
entire pathways, miRNAs are increasingly considered in the 
context of neuropsychiatric disorders as a potential diagnos-
tic and therapeutic target.

Neuropsychiatric disorders refer to a group of diseases 
of the nervous system characterized by abnormalities in 
neuronal morphology, function, connectivity, which is 
manifested through distinct behavioural symptoms. These 
symptoms range from learning and memory deficits, intel-
lectual disability, repetitive behaviours, impairments in 
social behaviour and anxiety, among others. The individual 
diseases though vary significantly in terms of the onset, 
brain region and circuits involved, but also often display 
overlapping symptoms and genetic architecture. In this 
review, we provide an overview of key findings that link 
specific miRNAs to the two spectra of neuropsychiatric 
disorders—autism spectrum disorder (ASD) and anxiety-
related disorders.

Role of miRNAs in sociability—evidence 
from functional studies

miR379‑410 cluster

The placental mammal-specific miR379-410 cluster consists 
of 38 miRNAs and displays paternal imprinting. Constitutive 
germline deletion of this cluster in mice results in a rather 

unusual combination of both hypersocial and anxiety-like 
behaviour, reminiscent of the rare neurodevelopmental disor-
ders Williams and Angelman’s syndrome [21]. Specifically, 
the knockout (KO) mice displayed significant increase in 
number of juvenile ultrasonic vocalizations (USVs) during 
reciprocal social interaction and increased social preference 
towards conspecific compared to an object in a three-cham-
ber sociability test [22]. The knockout mice also displayed 
reduced repetitive behaviour as assessed through marble-
burying test, together constituting an “anti-autistic” pheno-
type. These behavioural phenotypes were accompanied by 
increased synaptic spine density in the hippocampal CA1 
pyramidal neurons and increased glutamatergic synapse-
specific gene expression in the hippocampus of knockout 
mice as shown by RNA sequencing. Electrophysiological 
analysis also showed enhanced excitatory synaptic transmis-
sion, collectively signifying the role of this miRNA cluster 
in hippocampal excitatory transmission and sociability [22]. 
It should be noted, however, that changes in hippocampal 
synaptic transmission have not been causally linked to the 
“anti-autistic” phenotype in these mice. Future studies are 
needed to disentangle the contribution of specific neural 
circuits (e.g. amygdala–hippocampus–prefrontal cortex) to 
the observed behavioural phenotypes. Moreover, the con-
tribution of each of the 38 miRNAs deleted in the model 
remains enigmatic. Bioinformatics analysis of hippocampal 
transcriptome data points to an exquisite function of a few 
“hub miRNAs”, but these findings need to be experimentally 
validated. Notwithstanding, in light of a previous description 
of an autistic patient with a duplication of the miR379-410 
genomic region [23], a more thorough examination of the 
therapeutic and diagnostic prospects of this miRNA cluster 
in ASD is clearly warranted.

miR‑124

Frontotemporal dementia (FTD) is a late-onset disease 
resulting from degeneration and dysfunction of neuronal net-
works in the frontal and temporal lobes as well as subcortical 
regions, and is a leading cause of dementia after Alzheimer’s 
disease. Studying FTD is also instructive in the context of 
social behaviour since a behavioural variant of FTD displays 
symptoms including social withdrawal, apathy and inappro-
priate repetitive behaviour [24]. One of the most abundantly 
expressed miRNAs in the brain, miR-124 is evolutionarily 
conserved and is implicated in several neurodevelopmen-
tal processes [25]. In a mouse model of frontotemporal 
dementia (FTD) in which a mutant version of the human 
CHMP2B gene is overexpressed in the forebrain (anterior 
part of the brain including the cerebral hemispheres, thala-
mus, hypothalamus, limbic system and olfactory bulb) neu-
rons, reduced levels of miR-124 and increased expression 
of its direct targets GRIA2, GRIA3 and GRIA4 (encoding 

https://www.mirbase.org
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the GluA2, 3 and 4 AMPAR subunits) was observed in the 
frontal cortex [26]. Adult CHMP2B transgenic mice (4 and 
8 months old) displayed decreased sociability (as meas-
ured by the time mice spent interacting with each other), 
whereas social recognition and social memory were unaf-
fected. Interestingly, intraperitoneal administration of an 
AMPAR antagonist and cortical GRIA2 silencing reversed 
this impairment in sociability. It is worth mentioning that the 
levels of miR-124 were found to decrease with age, and that 
the sociability defects were observed not before the age of 
4 months, indicating that miR-124-dependent downregula-
tion of GRIA2 might be particularly important to prevent a 
decline in sociability associated with ageing [26].

Interestingly, an earlier study also linked miR-124 to 
social behaviour. It was shown that the RapGEFs EPAC1/2, 
by stimulating the activity of the small Rho GTPase Rap1, 
inhibit miR-124 transcription through a regulatory element 
in the miR-124 promoter [27]. Consequently, the deletion 
of EPAC1/2 in mouse forebrain leads to an upregulation of 
miR-124, reduced levels of Egr-1 (Zif268), decreased syn-
aptic plasticity and deficits in social behaviour. In addition, 
knockdown of miR-124 rescues the EPAC null phenotype 
[27]. Yet another recent study found that the silencing of 
miR-124a (miR-124-3p according to new nomenclature) in 
adult mouse dentate gyrus (DG) by a lentiviral approach 
resulted in autism-like phenotype as measured through 
marble-burying test, self-grooming and social interactions. 
This also resulted in increased levels of brain-derived neu-
rotrophic factor (BDNF), a direct target of miR-124a. Inter-
estingly, viral-mediated overexpression of BDNF in DG 
resulted in similar phenotypes [28].

Taken together, there are conflicting results as to whether 
interfering with miR-124 leads to a pro-social [27] or anti-
social, ASD-like [26, 28] phenotype. The function of miR-
124 in regulating social behaviour is therefore likely a result 
of the target spectrum that is dependent on the cellular con-
text and/or developmental stage within the organism.

miR‑137

A recent study investigated the effect of in vivo loss of 
function of miR-137, a miRNA implicated in several psy-
chiatric conditions including autism, schizophrenia and 
bipolar disorder. While germline KO of miR-137 in mice 
results in postnatal lethality, heterozygous KO mice were 
viable [29]. Conditional deletion of miR-137 specifically 
in the developing nervous system using Nestin-Cre (cKO) 
resulted in synapse overgrowth as demonstrated by PSD95 
and synaptophysin immunostaining. In addition, Golgi stain-
ing showed an increase in basal and apical spines in the 
hippocampal CA1 region, possibly pointing to deficits in 
synaptic pruning, which in turn leads to enhanced dendritic 
growth and complexity. The cKO mice displayed deficits 

in spatial learning and memory as assessed through Mor-
ris water maze and Barnes maze, which were paralleled by 
deficits in synaptic plasticity as assessed by electrophysi-
ological LTP recordings in hippocampal slices. In addition, 
the cKO mice displayed increased repetitive behaviours as 
assessed through self-grooming and marble-burying test and 
increased anxiety in an open field test. Interestingly, the cKO 
mice also displayed a reduced social preference for a mouse 
over an object in a three-chamber test and no preference 
for a stranger mouse over a familiar mouse (social novelty). 
Subsequent proteomic, transcriptomic and bioinformatics 
analyses together with luciferase reporter assays identified 
Phosphodiesterase 10a (Pde10a) as one of the direct targets. 
Pde10a is highly expressed in the brain and regulates impor-
tant signalling cascades by degrading the second messengers 
cAMP and cGMP. In a rescue experiment, papaverine, a 
Pde10a-specific inhibitor partially reduced the impairments 
in memory, social and repetitive behaviour. Similar results 
were obtained with the lentiviral knockdown of Pde10a in 
the mouse brain [29], further suggesting the pathophysiolog-
ical relevance of this pathway in ASD. In addition, postsyn-
aptic downregulation of miR-137 in hippocampal slices was 
shown to enhance AMPAR-mediated synaptic transmission 
and to interfere with mGluR-LTD [30], which could also 
play a role in the regulation of ASD-related behaviours.

In humans, 1p21.3 microdeletions affecting the MIR137 
gene, among others, have been identified in individuals with 
ASD [31] and intellectual disability (ID) [32]. On the other 
hand, MIR137 was one of the top hits in a large GWAS for 
schizophrenia [33]. Subsequently, the associated SNP was 
shown to result in increased miR-137 levels, which suggests 
that, in contrast to ASD, miR-137 gain-of-function might 
contribute to the development of schizophrenia [34]. Sur-
prisingly, follow-up functional studies in mice show that 
miR-137 overexpression in the dentate gyrus mainly affects 
cognitive performance (i.e. hippocampus-dependent learn-
ing) by altering presynaptic physiology, without notable 
effects on anxiety or risk-taking behaviour [34]. Thus, the 
bi-directional deviation from a physiological range of miR-
137 expression leads to distinct neuropsychiatric condi-
tions, presumably mediated by completely different cellular 
mechanisms. This will have to be taken into account if the 
restoration of miR-137 levels is considered as a therapeutic 
strategy in mental disease.

miR‑17–92 cluster

Feingold syndrome is a rare neurodevelopmental condition 
characterized by microcephaly, facial dysmorphism, learn-
ing disabilities [35]. In an attempt to model this condition, 
a mouse model harbouring a heterozygous deletion of the 
miR-17-92 cluster was generated [36]. This miRNA cluster 
is mostly known for its role in oncogenesis but has recently 
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been shown to control neurogenesis both in the developing 
and adult brain [37, 38]. Interestingly, miR-17-92  +/− mice 
display reduced body growth and USVs during development. 
Behavioural phenotyping of adult mutant mice showed defi-
cits in spatial memory as well as social novelty recognition. 
In addition, altered levels of dopamine and serotonin were 
found in the medial prefrontal cortex (mPFC) and hippocam-
pus of the mutant mice [39]. Although mostly correlative, 
these data point to an important role of the miR-17-92 clus-
ter in the development of neural circuits relevant for the con-
trol of social behaviour. Accordingly, SNPs within the clus-
ter have been found to be overrepresented in ASD patients 
compared to controls [40]. Table 1 provides a summary of 
miRNAs implicated in social behaviour through functional 
studies in animal models. Figure 1 displays the correspond-
ing brain regions involved and Fig. 2 provides an overview 
of the underlying molecular mechanisms. 

Role of miRNAs in autism spectrum 
disorder—evidence from profiling 
and cellular studies

Autism spectrum disorders are a heterogeneous group of dis-
orders characterized by deficits in social communication and 
restricted repetitive patterns of behaviour. ASD display high 
comorbidity with other neurological disorders, such as intel-
lectual disability (ID), anxiety and/or epilepsy. ASD herit-
ability was estimated to 50–60%, including both highly pen-
etrant but rare genetic variants, chromosomal abnormalities 
and common variants with low penetrance [41, 42]. Given 
that epidemiologic studies indicate that ASD is mostly the 
result of the dysfunction of multiple gene networks rather 
than a single gene, posttranscriptional mechanisms such as 
miRNAs, which can alter entire gene networks, are increas-
ingly studied in this context [43, 44].

Several studies have attempted to perform miRNA profil-
ing in ASD patients in a range of tissues such as post mortem 
brain regions [45–48], peripheral blood [49], blood serum 
[50], lymphoblastoid cell lines [51–53], olfactory mucosal 
stem cells and primary skin fibroblasts [54]. There are a total 
of 156 unique miRNAs reported in these studies to be either 
upregulated or downregulated in ASD patients compared to 
healthy controls. Among these miRNAs, only 26 were iden-
tified by more than one study—seven overlapped in three 
studies while 19 in two studies. Even among these over-
lapping miRNAs, only 12 were reported to be deregulated 
in the same direction. Whereas eight of these 26 miRNAs 
were reported to change within the ASD cohort and control 
cohort with age [47], six were expressed at either low levels 
or undetectable in the dorsal frontal cortex of healthy human 
brains [55]. Another study using microarray profiling in a 
small group of Chinese patients with autism showed that a 

total of 77 miRNAs were differentially regulated compared 
to healthy controls. Subsequent quantitative reverse tran-
scription-PCR analysis was used to validate that miR-557 
and miR-486-3p were significantly increased in the majority 
of ASD patients [56]. A recent study extensively explored 
527 mature miRNAs in the saliva of ASD patients through 
RNA sequencing. The results showed downregulation of five 
miRNAs (miR-28-3p, miR-148a-5p, miR-151a-3p, miR-
125b-2-3p, miR-7706) and upregulation of four miRNAs 
(miR-665, miR-4705, miR-620, miR-1277-5p) in ASD group 
compared to typical development and non-autism develop-
mental delay groups [57]. With the exception of miR-146a 
(see below), it should be noted that overlapping the different 
profiling studies did not yield a strong candidate microRNA 
to follow up in detailed mechanistic studies in cellular or 
animal models. The reasons are likely manifold, including 
but not limited to the low number of subjects investigated in 
the studies, the heterogeneous sources of the material and 
the different technologies used for the assessment of miRNA 
expression levels.

miR‑146a

One of the miRNAs that appeared prominently from the 
human expression profiling studies is miR-146a. In rat pri-
mary cell culture, microarray analysis indicated that miR-
146a was enriched in astrocytes compared to neurons and 
that the overexpression of miR-146a in neural stem cells 
drives astrocyte differentiation [58]. In addition, strong 
expression of miR-146a was observed in the mouse cortex, 
hippocampus and amygdala and miR-146a overexpression 
in mouse primary neuronal culture resulted in altered den-
dritic morphology, with a positive function of miR-146a in 
the regulation of proximal dendritic branching [54]. Similar 
results were obtained in human neural stem cells (hNSC), 
with miR-146a overexpression enhancing neurite outgrowth 
and branching as well as overall neuronal differentiation 
[59].

Further studies elucidate the role of miR-146a in neuronal 
function. In cultured mouse hippocampal neurons, inhibi-
tion of miR-146a leads to an increase of dendritic micro-
tubule-associated protein 1B (MAP1B), thereby leading to 
AMPARs internalization and decreased synaptic transmis-
sion [60]. Interestingly, miR-146a overexpression in primary 
astrocyte culture resulted in a significant increase in uptake 
of extracellular glutamate, an abundant excitatory neuro-
transmitter in the brain, thereby potentially altering homeo-
stasis and synaptic transmission [54].

Expression studies in human samples demonstrate 
that there is an increase in miR-146a levels during early 
childhood in the temporal lobe and patient-derived olfac-
tory neural stem cells of ASD patients [54, 59]. Moreover, 
using small RNA sequencing, a study analysing miRNA 
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levels in saliva of ASD patients identified miR-146 as one 
of the reliable diagnostic markers [61]. Apart from ASD, 
increased miR-146a levels were also observed in temporal 
lobe epilepsy [62] and frontal cortical dysplasia [63], and 
decreased levels of miR-146b was reported in the hippocam-
pus of mice harbouring BDNF Val66Met SNP associated 
with human depressive- and anxiety-like traits [64]. These 
results point towards a possible convergence of molecular 
mechanisms in these disorders and ASD. One such mecha-
nism is altered inflammatory responses, as evidenced by 
miR-146a KO mouse models displaying severe autoim-
mune diseases, enlarged spleen and premature death [65, 
66]. Taken together, multiple lines of evidence point to an 

important role of miR-146a dysregulation in the aetiology of 
several neuropsychiatric conditions, including ASD. Given 
the widespread expression of miR-146a in multiple cell 
types in the brain, including neurons, astrocytes, immune 
and endothelial cells, tissue-specific miR-146a knockout 
models are likely required to get more insight into miR-146a 
regulated cellular pathways that are relevant for the control 
of ASD-related behaviours.

miR‑132

Another miRNA implicated in human expression studies is 
miR-132. Studies conducted with human lymphoblastoid 

Fig. 1   Brain region-specific role of miRNAs in sociability and anxiety behaviors identified through functional studies in mouse models. miR-
NAs associated with sociability are marked in green and anxiety in red

Fig. 2   Schematic linking miRNAs and their targets involved in sociability identified through functional studies in mouse models
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cell lines show a significant dysregulation of miR-132 
related to autism [52, 53]. However, whereas one study 
reported miR-132 upregulation in ASD patients compared 
to healthy controls [53], another study that used co-twins/
siblings for the analysis reported the opposite trend [52]. 
A role for miR-132 in the control of neuronal development 
and function is documented by both cell culture and in vivo 
animal studies. By regulating the expression of Foxp2, a 
transcription factor associated with language disorders [67], 
miR-132 together with miR-9 regulates neurite outgrowth 
and radial neuronal migration in the mouse cortex [68]. 
Moreover, keeping miR-132 expression within a physi-
ological range was found to be important for maintaining 
synaptic plasticity in the mouse visual cortex [69]. In trans-
genic mice, overexpression of miR-132 in mouse forebrain 
pyramidal neurons resulted in impaired cognitive behaviour 
as assessed by deficits in the novel object recognition tasks 
[70]. One of the validated targets of miR-132 is methyl CpG-
binding protein 2 (MeCP2), a transcriptional repressor that 
is implicated in a wide spectrum of neurological disorders, 
including ASD, Rett syndrome and ID [71]. In addition to 
its role in transcriptional repression, phosphorylated MeCP2 
was also shown to directly bind to DGCR8 protein. Thereby, 
it sequesters DGCR8 away from the microprocessor enzyme 
Drosha, impairing the formation of mature microRNAs such 
as miR-134, a critical member of the miR379-410 cluster 
implicated in the regulation of social behaviour [72]. Inter-
estingly, miR-132 and miR-137 mediate reciprocal regula-
tion between MeCP2 and phosphatase and tensin homolog 
(PTEN), another autism-related gene [73], highlighting the 
significance of miRNA mediated mechanisms in maintain-
ing balance in expression of key ASD genes. In addition, 
MeCP2 is also regulated by miR-483 [74]. In summary, 
while an important role of miR-132 in synaptic plasticity and 
cognition is well established, the links to ASD are mostly 
correlative. More insight into the role of miR-132 in ASD 
can be expected from the characterization of ASD-related 
behaviours, e.g. social and repetitive behaviour and commu-
nication, in miR-132 loss-of-function mouse models.

Role of miRNAs in autism spectrum 
disorder—insights from genetic association 
studies

Studies in the last decade have recognized copy number 
variants (CNVs) as one of the important factors contribut-
ing to ASD through analysis of protein-coding genes [75, 
76]. However, deleted and duplicated CNV loci hosting 
miRNA genes may similarly lead to dosage imbalance of the 
miRNA target genes, thereby resulting in functional impli-
cations related to ASD. So far, two studies have attempted 
to link miRNA genes and autism-associated CNV loci. By 

analyzing 378 CNVs in Autism Database (AutDB) that are 
consistently reported to be associated with ASD, 42 CNV 
loci were identified that harbour a total of 72 miRNAs [43]. 
Interestingly, expression analysis showed that some of these 
miRNAs—miR-484, miR-598, miR-7, miR-195 and miR-
211—were also deregulated in human post-mortem brain 
and lymphoblastoid cell lines derived from ASD patients 
[45, 51, 52]. Using a computational method, another study 
tested over-representation of miRNA genes in ASD-asso-
ciated de novo CNVs [77]. Of the total 178 de novo CNVs 
from ASD patients, 64 overlapped with at least one miRNA 
gene. Interestingly, 8 miRNA genes were reported in both 
of these studies—MIR429, MIR200a, MIR200b, MIR149; 
MIR85, MIR1306, MIR1286 and MIR649. However, very 
little is currently known regarding the function of these 
miRNA candidates in the context of the nervous system, 
and additional experimental studies are clearly warranted.

Single nucleotide polymorphisms (SNPs) within miRNA 
genes have been reported to be rare. Only an estimated 10% 
of human pre-miRNAs and < 1% of miRNAs (in the seed 
region) have SNPs [78, 79]. Variants in pre-miRNA genes 
that locate outside the seed region can also significantly alter 
miRNA expression, maturation and interaction with its tar-
get mRNAs [80, 81]. A recent case–control association study 
was performed by genotyping 350 common SNPs targeting 
163 miRNA genes and clusters in ASD patients and controls 
[40]. This study reported five SNPs in MIR219-1, cluster 
MIR133b/MIR206, cluster MIR106b/MIR93/MIR25 and 
the MIR17/MIR18a/MIR19a/MIR20a/MIR19b-1/MIR92a-1 
cluster. Through whole-exome sequencing, the same group 
studied the presence of rare variants in 701 pre-miRNA 
genes in 101 individuals from 30 ASD families. Although no 
variants were reported in the seed region, nine changes out-
side the seed region in the mature miRNA were identified. 
These changes were predicted to affect the hairpin stability 
and hence functionality of the miRNAs. Interestingly, three 
of these variants—MIR1182, MIR1914 and MIR589—are 
mapped to ASD-associated CNVs [40]. These studies indi-
cate that changes in miRNA levels resulting from CNVs and 
SNPs may contribute to the development of ASD and set the 
basis for mechanistic studies in human cellular models, such 
as induced pluripotent stem cell (IPSC)-derived neurons.

In addition to genetic risk factors, environmental factors 
are also surfacing to be important players in the aetiology of 
ASD. Although no single factor accounts for the increased 
prevalence of ASD, chemicals, infectious agents, dietary 
factors and physical/psychological stressors are known as 
environmental risk factors [82]. Polyphenols, an abundant 
class of dietary component present in many vegetables and 
fruits, has been found to regulate the expression of several 
miRNAs implicated in pathologies such as inflammation, 
cancer, neurodegeneration and aging [83]. Interestingly, 
several miRNAs discussed here in the context of social 
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behaviour and ASD were shown to be regulated by polyphe-
nols. For example, three members of the miR379-410 clus-
ter, miR-377, miR-376a and miR-654 are regulated by 13C, 
DIM and Isoflavone [84]. Another miRNA that prominently 
appeared in several profiling studies, miR-146 was shown 
to be regulated by 13C, DIM, Isoflavone and Resveratrol 
[84]. Another study demonstrated that exposure to pesticides 
altered miRNAs implicated in neurological functions such 
as neurotransmission (miR-517b, miR-133b, miR-597) [85]. 
Further functional studies are needed to disentangle these 
rather complex gene-environment interactions, with a focus 
on underlying mechanism and critical time period of action 
of these factors towards developing social deficits.

Role of miRNA in anxiety

Anxiety is an evolutionary trait and an organism’s response 
to cope with adverse environmental stimuli. It is associated 
with emotional, cognitive functions that are orchestrated by 
multiple and highly plastic neural centres and neurotrans-
mitter pathways [86]. Anxiety disorders comprise of acute 
stress disorder, obsessive–compulsive disorder (OCD), post-
traumatic stress disorder (PTSD), panic disorder (PD) and 
phobias. Besides the implication of amygdala in the manifes-
tation of anxiety and stress, studies reveal that the parahip-
pocampal gyrus, cingulate cortex and frontal cortex display 
heightened activity in response to anxiety-inducing stimuli 
[87, 88]. These findings collectively suggest an important 
role of the forebrain in the aetiology of anxiety disorders, 
with excessive excitatory neurotransmission being one of the 
physiological hallmarks [89].

Role of miRNAs in anxiety‑like behaviour—
evidences from functional studies

miR‑34 family

In 2011, the Chen lab provided first functional evidence for 
an important role of miRNA-dependent gene regulation in 
anxiety-related behaviours. Lentiviral-mediated local abla-
tion of the miRNA processing enzyme Dicer in the central 
amygdala (CeA) of adult mice resulted in increased anxiety-
like behaviour with no significant effect on neuronal survival 
and morphology [90]. This highlights the important contri-
bution of miRNA machinery to the functional regulation of 
the central stress response, deregulation of which is linked 
to the aetiology of anxiety and mood disorders. In response 
to both acute and chronic stress, miR-34c was found to be 
upregulated. Moreover, lentiviral mediated overexpression 
of miR-34c in the adult CeA conferred anxiolytic behaviour 
after stress induction, demonstrating that stress-mediated 

upregulation of miR-34c is functionally relevant to coun-
teract abnormal behaviour. Through an evolutionarily 
conserved binding site in the 3′-UTR, miR-34c targets the 
stress-related corticotropin releasing factor receptor type 1 
(CRFR1) mRNA, and reduces responsiveness of neuronal 
cells to CRF [90].

Surprisingly, genetic deletion of all three members of 
the miR-34 family in mice resulted in resilience to acute 
stress-induced anxiety and facilitation in fear extinction 
[91], somehow at odds with the results from Haramati et al. 
Using intracerebral in vivo microdialysis, the study found no 
significant increase in aminergic GABA release in the pre-
frontal cortex or amygdala and no stress-induced amygdalar 
dendritic remodelling. However, differential expression of 
GRM7, 5-HT2C, and CRFR1 mRNA expression was noted 
in the mPFC and basolateral amygdala (BLA) of the KO 
mice [91].

In another recent study, overexpression of miR-34b using 
miRNA mimics in the paraventricular nucleus (PVN) of 
rats resulted in decreased hyperactivity of the HPA axis and 
anxiety-like behaviour, possibly through its interaction with 
corticotropin‑releasing hormone receptor 1 (CRHR1) [92].

miR‑132/212

A recent study demonstrates that exposure to stress alters 
the expression of miR-132 and miR-212, two miRNAs 
that are expressed from the same non-coding transcript. 
Following acute stress (5 h), both miRNAs are upregu-
lated more than two-fold in the mouse hippocampus and 
amygdala, whereas following chronic stress (15 days) the 
upregulation was observed only in the amygdala [93]. 
Interestingly, miR-132 overexpression and miR-132/212 
conditional knockout mouse models both displayed 
increased basal anxiety-like behaviour, suggesting that 
keeping miR-132/212 levels in a physiological window 
is critical to suppress anxiety. At the molecular level, two 
miR-132 target genes Sirt1 and PTEN were differentially 
regulated in the hippocampus and amygdala of the trans-
genic mice. This indicates that the cellular level of miR-
132 and miR-212, through the regulation of these anxi-
ety-relevant target genes, is crucial in modulating stress 
responsivity and anxiety [93].

miR‑101a‑3p

In rats selectively bred for differences in emotionality and 
stress reactivity, the levels of miR-101a-3p were found to 
correlate with the traits observed—high novelty respond-
ing rats with low anxiety had lower miR-101a-3p levels in 
the amygdala, whereas the low novelty responding rats with 
high anxiety displayed the opposite trend [94]. Subsequently, 
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viral-mediated overexpression of miR-101a-3p in the amyg-
dala of high novelty responding rats resulted in increased 
anxiety-like behaviour as assessed through open field test 
and elevated plus maze (EPM). This manipulation also 
resulted in reduced levels of the histone methyltransferase 
Ezh2, which mediates gene silencing via tri-methylation of 
histone 3 at lysine 27 (H3K27me3). Knockdown of Ezh2 
resulted in behavioural phenotypes which were similar to 
those observed upon miR-101a-3p overexpression, albeit to 
a lesser extent [94], suggesting that miR-101 and Ezh2 might 
indeed be in the same pathway.

miR‑155

miR-155 is a microRNA that is predominantly studied in the 
immune system, although it recently emerged also as stress-
regulated miRNA in the nervous system. MiR-155 KO mice 
displayed reduced anxiety-like behaviour by spending more 
time in open areas in the open field and elevated plus maze 
[95]. In addition, the KO mice displayed reduced float dura-
tion and increased latency to float in the forced swim test, 
suggesting decreased depression-like behaviour. Since there 
were no deficits found in learning and memory or social 
preference/novelty in these mice, miR-155 seems to regu-
late specifically anxiety-like affective behaviours [95]. In 
line with the reported function of miR-155 in immune cells, 
analysis of hippocampi from miR-155 KO mice showed 
reduced expression of inflammatory cytokines, such as IL-6 
and TNF-a, compared to control animals.

miR‑17‑92 cluster

We have already discussed this miRNA cluster in the context 
of ASD, but dysregulation of miR-17-92 expression has also 
been implicated in anxiety and mood disturbances. Deletion 
of the miR-17-92 cluster in adult neural progenitors results in 
decreased neurogenesis in the dentate gyrus while its over-
expression results in the opposite outcome [38]. Genes in the 
glucocorticoid pathway were identified as direct targets of 
the cluster, particularly serum- and glucocorticoid-inducible 
protein kinase-1 (Sgk1), providing a link to stress-related 
pathways. Behaviourally, miR-17-92 KO mice display anx-
iety- and depression-like behaviours, whereas miR-17–92 
overexpression leads to opposite phenotypes. In addition, 
ectopic miR-17-92 expression rescues proliferation defects 
induced by corticosterone in hippocampal neural progeni-
tors [38]. Together, this is one of the few studies where a 
family of miRNAs was shown to bi-directionally control 
anxiety and depression-like behaviours. Since miR-17-92 is 
also involved in the regulation of ASD-related behaviours, 
it might be a promising target for therapeutic intervention in 
neurodevelopmental and psychiatric conditions.

miR‑135a

In a transgenic mouse model, overexpression of miR-135a 
specifically in serotonergic neurons in the Raphe nucleus 
leads to reduced anxiety- and depression-like behaviours 
after social defeat as measured by dark–light transfer and 
elevated plus maze tests [96]. On the other hand, miR-135a 
knockdown resulted in increased anxiety-like behaviour and 
decreased response to antidepressants. Subsequently, miR-
135a has been found to interact with serotonin transporter 
and serotonin receptor-1a, thereby modulating depression- 
and anxiety-like behaviours. Interestingly, miR-135a levels 
were significantly reduced in the blood of depressed patients 
compared to healthy controls, whereas miR-135a levels were 
increased upon antidepressant treatment. Collectively, these 
results indicate that miR-135a contributes to stress-resilience 
and emerges as a potential biomarker for depression diagno-
sis and treatment response [96].

Another recent study also investigated the role of miR-
135a in anxiety-like behaviour but focussing on its function 
in the amygdala. Knockdown of miR-135a in the amygdala 
leads to increased anxiety-like behaviour which is paral-
leled by an increase in spontaneous excitatory postsynaptic 
currents in amygdala acute brain slices [97]. In addition, 
through in vivo miRNA overexpression analysis, regulators 
of synaptic vesicle fusion (complexin-1 and complexin-2) 
were identified as direct targets of miR-135a. Interestingly, 
upon exposure to acute stress, downregulation of miR-135a 
and concomitant upregulation of complexin-1 and com-
plexin-2 were observed in the mouse amygdala, unravelling 
a novel mechanism of miRNA regulation of anxiety-like 
behaviours in the amygdala through modulation of presyn-
aptic glutamatergic neurotransmission [97]. Since miR-137 
was shown to control a similar set of presynaptic targets 
related to schizophrenic behaviour [34], it would be inter-
esting to determine the interaction of these two miRNAs 
in the control of synaptic transmission in the healthy and 
diseased brain.

miR379‑410 cluster

The large miR-379-410 cluster of placental mammal-specific 
paternally imprinted miRNAs, which had been previously 
linked to the regulation of energy homeostasis, was also 
implicated in anxiety-like behaviour. In one study [98], the 
deletion of the miR379-410 cluster in mice led to increased 
anxiety, however with no changes in locomotion, spontane-
ous exploration, learning, spatial memory and sociability. 
Increased levels of anxiety-like behaviours were later on 
confirmed in an independent miR379-410 KO model [22], 
however in this case accompanied by hypersociability. This 
rare combination of anxiety and hypersociability phenotype 
is reminiscent of Williams and Angelman Syndrome. Future 
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Table 2   List of miRNAs implicated in anxiety-like behaviour through functional studies in animal models

miRNA Animal model Behavioural phenotype Molecular mechanism References

miR-34 family/miR-34c Lentiviral overexpression of miR-
34c in central amygdala

Anxiolytic behaviour after stress-
ful challenge

Targets the stress-related cortico-
tropin releasing factor receptor 
type 1 (CRFR1) mRNA, and 
reduces responsiveness of neu-
ronal cells to CRF

[90]

miR-34 family Deletion of all three members in 
mice

Resilience to acute stress-induced 
anxiety and facilitation in fear 
extinction

Differential expression of GRM7, 
5-HT2C, and CRFR1 mRNA 
expression in mPFC and BLA

[91]

miR-34 family/miR-34b Overexpression of miR-34b using 
miRNA agomir in paraventricu-
lar nucleus of rat

Decreased hyperactivity of the 
HPA axis and anxiety-like 
behaviour

Interaction with corticotro-
pin‑releasing hormone receptor 
1 (CRHR1)

[92]

miR-132/miR-212 Overexpression and conditional 
knockout in mice

Increased basal anxiety-like 
behaviour

Sirt1 and Pten were differentially 
expressed in hippocampus and 
amygdala

[93]

miR-101a-3p Overexpression of miR-101a-3p 
in amygdala of high novelty 
responding rats

Increased anxiety-like behaviour Reduced levels of histone methyl-
transferase Ezh2

[94]

miR-155 Knockout of miR-155 in mice Reduced anxiety-like behaviour, 
decreased depression-like 
behaviour

Reduced inflammation-specific 
genes IL-6, TNF-a in hip-
pocampus

[95]

miR-17-92 cluster Knockout of the cluster Increased anxiety- and depres-
sion-like behaviour

Targets the glucocorticoid path-
way, particularly Sgk1

[38]

miR-135a Knockdown of miR-135a in 
mouse amygdala

Increased anxiety-like behaviour Increase in spontaneous excita-
tory postsynaptic currents

Increased levels of regulators of 
synaptic vesicle fusion com-
plexin-1 and complexin-2

[97]

miR-135a Overexpression of miR-135a in 
mouse raphe nucleus

Decreased anxiety- and depres-
sion-like behaviour upon social 
defeat

Strong interaction with serotonin 
transporter and serotonin recep-
tor 1a

[96]

miR379-410 cluster Constitutive germline deletion of 
the cluster in mice

Increased anxiety-like behaviour Increased excitatory synapse-
specific gene expression and 
decreased inhibitory synapse-
specific gene expression in the 
hippocampus

[22, 98]

Fig. 3   Schematic linking miRNAs and their targets involved in anxiety identified through functional studies in mouse models
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studies are needed to evaluate if miR379-410 knockout mice 
could indeed serve as an animal model for one of these rare 
neurodevelopmental conditions. Table 2 provides a summary 
of miRNAs implicated in anxiety-like behaviour through 
functional studies in animal models. Figure 1 displays the 
corresponding brain regions involved and Fig. 3 provides an 
overview of the underlying molecular mechanisms.

Role of miRNAs in anxiety disorder—insights 
from profiling and genetic association 
studies

One of the first studies that provided correlative links 
between miRNAs and anxiety performed differential 
miRNA expression profiling in the hippocampus of four 
inbred mouse strains. The expression of two miRNAs 
(miR-34c, miR-323) correlated with anxiety levels based 
on results from an elevated plus maze (EPM) test, whereas 
the expression of four miRNAs each correlated either with 
explorative behaviour (miR-34a, miR-323, miR-378, miR-
451) or learning and memory (miR-34c, miR-323, miR-378, 
and miR-451) [99]. Similarly, acute restraint stress was also 
shown to upregulate expression levels of various miRNAs 
(let-7a, miR-9 and miR-26-a/b) in the frontal cortex but not 
hippocampus of CD1 mice, whereas only minor changes 
were observed after repeated restraint stress. Based on these 
results, the authors of the study concluded that acute stress 
elicited rapid, but rather transient changes in miRNA levels 
[100]. In contrast, an earlier study performed in rats indi-
cated that repeated restraint stress leads to reduced levels 
of glucocorticoid receptor (GR) in the PVN in response to 
chronically increased levels of miR-18a [101]. In addition 
to the forebrain, chronic stress also results in altered lev-
els of certain miRNAs (increased miR-186, miR-381 and 
decreased miR-709) in the cerebellum [102]. These stud-
ies indicate that region-dependent changes in miRNAs in 
response to both acute and chronic stress might modulate 
the susceptibility to stress-related disorders.

In a model of visceral hypersensitivity and anxiety—
chronic water avoidance stress—39 miRNAs were found 
to be differentially regulated by stress in the spinal cord 
[103]. Particularly, significant upregulation of miR-17-5p 
was found in the stressed rats compared to controls, which 
led to a subsequent change in the expression of targets which 
function in both inflammatory (IL-6, JAK/STAT, TNF) and 
metabolic (PI3K/AKT) signalling pathways. In addition, 
miR-17-5p was demonstrated to have a modulatory role in 
visceral sensitivity in vivo [103]. Depressive-like phenotype 
upon chronic stress exposure was also shown to result in 
increased levels of miR-326 in the nucleus accumbens, while 
levels of the same miRNA decreased in the striatum [104].

MiRNA expression changes upon stress were also inves-
tigated in the amygdala, a structure strongly implicated in 
fear processing. Here, the exposure of rats to acute stress 
resulted in the upregulation of miR-134 and miR-183 [105], 
whereas, upon chronic stress exposure, the levels of miR-
134 were shown to be reduced. Mechanistically, the altered 
expression of these miRNAs resulted in changes in alterna-
tive splicing of acetylcholinesterase (AChE), thereby affect-
ing cholinergic neurotransmission under stress conditions 
[105]. Another study established that miR-186 regulates 
both AChE and also major peripheral cholinesterase (BChE) 
in mice exposed to predator stress, such that the levels of 
these targets were elevated 1 week post-exposure [106].

Maternal separation as a model of early-life adversity and 
stress results in increased levels of pre-miR-132, -124-1, -9-1, 
-9-3, -212, and -29a as well as the mature miR-132, -124, -9, 
and -29a in the medial prefrontal cortex (mPFC) of rats [107]. 
The function of miR-9 in the stress response remains contro-
versial since miR-9 downregulation was found to be linked 
to increased susceptibility to anxiety and depression in the 
context of early-life stress by targeting a dopamine receptor 
subunit (DRD2) in a more recent study [104]. Intriguingly, 
altered miRNA expression caused by traumatic early-life 
stress appear to be transmitted across generations and might 
even play a causal role in the heritability of adverse behav-
iours. In a mouse model of maternal separation and unex-
pected stress (MSUS), a large set of miRNAs (miR-375-3p, 
miR-375-5p, miR-200b-3p, miR-672-5p, and miR-466-5p) 
were upregulated in the sperm of MSUS males [107]. Inter-
estingly, stress-dependent changes in the expression levels 
of these miRNAs (except miR-200b-3p) were comparable 
between F1 sperm and F2 hippocampus, suggesting the exist-
ence of mechanisms that reinstate miRNA expression in the 
next generations. In addition, injection of sperm RNAs from 
stressed males into fertilized wild-type oocytes resulted in 
the same behavioural and metabolic changes in the offspring 
[107]. Although these findings are consistent with a causal 
role of miRNAs in epigenetic inheritance of adverse life 
events, the contribution of other RNA species, both coding 
(mRNAs) and non-coding (e.g. lncRNAs, piRNAs, circR-
NAs, etc.) to this phenomenon cannot be ruled out. In fact, a 
recent study from the same group established that long RNAs 
from sperm significantly contribute to the epigenetic inherit-
ance of adverse life events [108].

On the other side of the spectrum, a potentially positive 
effect of environmental enrichment on anxiety has been 
recently explored in rodents [109]. Interestingly, miR-124 
was found to be upregulated in response to environmental 
enrichment, ultimately resulting in improved cognition and 
neurogenesis in the rat dentate gyrus [110]. In agreement 
with a positive regulatory role of miR-124 in the context of 
anxiety, it was shown in another study that lentiviral mediated 
silencing of miR-124a increased neonatal isolation-induced 
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anxiety-like behaviour based on results from the open field 
and elevated plus-maze test [28]. Interestingly, this manipula-
tion also resulted in increased interaction in social behaviour 
test, suggesting a dual role for miR-124 in circuits mediating 
anxiety-related and social behaviour.

GWAS and case–control association studies have uncov-
ered many genetic variants associated with anxiety, each of 
which however does not contribute a high percentage to the 
heritability of anxiety disorders. This reflects the complex 
interplay between genetic, epigenetic and environmental fac-
tors that contribute to the disorder. Variations in miRNAs that 
regulate expression of RGS2, a gene previously associated 
with anxiety-related phenotypes and PD [111, 112], were 
investigated using bioinformatics and reporter assays [113]. 
Four algorithms predicted several miRNAs that were able 
to regulate RGS2 expression and subsequent disruption of 
the seed sequences of these miRNAs resulted in elevated 
expression of reporter genes. Hsa-miR-4717-5p exhibited 
the most pronounced effect on RGS2 expression and also 
regulated two other anxiety candidate genes (IKBKE and 
CNR1). Furthermore, two SNPs (rs150925, rs161427) within 
a 1000 bp upstream of the host gene of hsa-miR-4717-5p, 
MIR4717, showed a trend for association with PD. It was 
therefore proposed that hsa-miR-4717-5p regulates human 
RGS2 and thereby contributes to the genetic risk toward anx-
iety-related traits, pointing towards novel miRNA-regulated 
gene networks involved in anxiety disorders [113].

In addition to investigating variants within miRNA genes, 
investigations into the expression levels of miRNAs could 
provide first insights about possible links between miRNA 
dysregulation, anxiety and other stress-related disorders. 
Case–control studies analysing SNPs in 325 human miRNA 
regions in a cohort of panic disorder patients identified 
polymorphisms in the miR-22, miR-138-2, miR-148a and 
miR-488 genes [114]. These miRNAs were found to regulate 
several candidate genes such as BDNF, GABRA6, CCKBR, 
POMC, HTR2C, MAOA and RGS2, which are associated 
with PD and anxiety disorders. Another recent study focusing 
on depression showed that expression levels of miR-144-5p 
in plasma were inversely associated with depression scores 
and that levels of miR-144-5p were significantly lower in 
depressed patients than in healthy controls. Furthermore, fol-
lowing treatment, plasma levels of miR-144-5p significantly 
increased in depression/anxiety patients and were signifi-
cantly higher than levels measured at baseline [115].

Conclusions

The role of miRNAs in post-transcriptional regulation of 
gene targets in different cellular context is now well estab-
lished—from robust regulation of entire pathways during 

development to the local fine-tuning of specific targets in 
neuronal processes (for a detailed review see [116]). Strik-
ingly, studies over the last decade are beginning to uncover 
how this class of small non-coding RNA is influencing ani-
mal behaviour. Here in this review, we have provided an 
overview of the most promising miRNAs linked to changes 
in sociability and anxiety through functional studies in ani-
mal models. In addition, we have highlighted the key over-
lapping findings originating from association and expression 
profiling studies in human samples.

Animal models provide a valuable approach to link 
changes in miRNA biogenesis and molecular action to path-
ological and behavioural changes relevant for neuropsychi-
atric disorders [117]. Targeting either genes encoding for 
microRNAs themselves, microRNA biogenesis factors or 
microRNA target genes, animal models with knock-out, 
knock-down, or overexpression of specific gene can be per-
formed in a spatial and/or temporal manner followed by a 
detailed analysis of the resulting molecular and behavioural 
phenotypes. In addition, molecular tools such as miRNA 
mimics, anti-miRNAs or miRNA sponges can be employed 
to manipulate miRNA-related gene expression changes in an 
even more acute and regionally defined manner [117]. Con-
sistent with recent observations that prevalent neuropsychi-
atric disorders have large genetic overlaps, specific miRNAs 
have been repeatedly implicated in different mental diseases 
based on these functional studies. For instance, miR-137, 
miR-124 and the miR379-410 cluster, besides regulating 
social behaviour, have also been implicated in schizophrenia, 
frontotemporal dementia and anxiety, respectively.

At the molecular and cellular level, several of these 
miRNAs target components of the NMDA, AMPA recep-
tors and second messenger signalling cascades, suggesting 
that dysregulation of these systems might be a common 
denominator of mental illness. Nevertheless, there are also 
likely specific miRNA-dependent regulations in anxiety 
and social dysfunction. For example, the social behaviour 
disorders spectrum is often characterized by the dysregu-
lation of synaptic pruning, dendritic growth and the bal-
ance between excitatory and inhibitory synaptic transmis-
sion, specifically in the hippocampus and forebrain. On 
the other hand, concerning the anxiety-related behaviour 
spectrum, several miRNAs regulate corticotropin-releas-
ing factor signalling, excitatory postsynaptic transmis-
sion and synaptic vesicle fusion, among others. It will be 
interesting for future studies to investigate the expression 
levels of these miRNAs in a more brain-region (prefrontal 
cortex, hippocampus, amygdala, striatum) and cell-type 
(pyramidal neurons, inhibitory neurons, glia and micro-
glia) specific manner, using techniques such as single-
cell sequencing and single-molecule fluorescence in situ 
hybridization (smFISH). This, when complemented with 
advanced manipulation techniques such as CRISPR/Cas9, 
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AAV/Lentiviral approaches, will yield greater insights 
into the cell-type-specific function of these miRNAs and 
underlying molecular mechanisms.

While the use of animal models yields valuable insights 
into the disease mechanism, investigating the relevance of 
such miRNA candidates to human disease aetiology is cru-
cial. Though there is only limited number of miRNA expres-
sion profiling studies done in humans displaying anxiety 
and stress, numerous expression profiling studies have been 
done in human samples of autism spectrum disorders (ASD) 
ranging from blood serum, peripheral blood mononuclear 
cells, lymphoblastoid cell lines to post mortem brain sam-
ples as discussed here. However, the number of miRNAs 
that overlap among these studies are few and the direction 
of expression changes is not always consistent between the 
studies. This could arise from a range of factors such as 
tissue source, age, sensitivity of miRNA assay and statisti-
cal analysis criteria among others. Despite such differences, 
miR-146a appears to be strongly linked to ASD pathology, 
a miRNA which is also implicated in neurodevelopment, 
synaptic transmission and regulation of ASD-specific genes 
through both animal studies and cell culture experiments. 
Since the knockout of miR-146a leads to premature death in 
mice [65, 66], it is important to develop brain-specific con-
ditional knockout model to study the gene network affected 
by miR-146a dysregulation.

In conclusion, to be able to fully understand the signifi-
cance of miRNA in the onset and progression of social and 
anxiety disorders, future studies should be targeted towards 
expression profiling in larger patient cohorts and greater cov-
erage of miRNAs and complemented by functional studies 
in animal models. Significant advancements in the field of 
stem cells also offer promising methods to develop human 
induced pluripotent stem cell-based models for ASD and 
anxiety-related disorders and to study the role of human-spe-
cific miRNAs at the functional level. This will be imperative 
to advance the use of miRNAs in the diagnosis and therapy 
of complex neuropsychiatric conditions.
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