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Abstract
Fetal and neonatal development represents a critical window for setting a path toward health throughout life. In this review, 
we focus on intestinal immunity, how it develops, and its implications for subsequent neonatal diseases. We discuss maternal 
nutritional and environmental exposures that dictate outcomes for the developing fetus. Although still controversial, there 
is evidence in support of an in utero microbiome. Specific well-intentioned and routine applications of antibiotics, steroids, 
and surgical interventions implemented before, during, and after birth skew the neonate towards pro-inflammatory dysbiosis. 
Shortly after birth, a consortium of maternal and environmentally derived bacteria, through cross-talk with the developing 
host immune system, takes center stage in developing or disrupting immune homeostasis at the intestinal interface. We also 
examine subsequent immunological cross-talks, which involve neonatal myeloid and lymphoid responses, and their potential 
impacts on health and disease such as necrotizing enterocolitis and sepsis, especially critical disease entities for the infant 
born preterm.
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Introduction

As years go by, care for premature infants continues to 
improve. Progress has been made in preventing neural tube 
defects and treating respiratory distress associated with 
prematurity. Necrotizing enterocolitis (NEC) and late-onset 
sepsis (LOS), on the other hand, continue to confuse inves-
tigators trying to identify their pathophysiological origins. 
Although decades of research have been dedicated to eluci-
dating etiologies of these two major causes of morbidity and 
mortality, specific mechanisms remain enigmatic.

New avenues in research relating to these conditions may 
provide answers. A few decades ago, we would not consider 
bacteria normally present in amniotic fluid, the placenta, and 
the fetal gastrointestinal tract, nor would we consider how 
their interaction with the infant’s developing immune system 
would dictate its development. This notion is changing. We 
also need to understand, using multi-omics technologies, 
how the susceptible immature preterm’s intestinal tolerance 

of gut bacteria often goes awry, and how environmental fac-
tors like breastmilk can influence the fledgling microbiome 
and immune system. Only then might we begin to under-
stand the root causes of two of the most devastating diseases 
of prematurity, NEC and LOS.

This review summarizes important factors of each devel-
opmental stage pertaining to neonatal intestinal immunity, 
namely: maternal nutrition and the in utero environment, the 
perinatal period, including mode of delivery, and the post-
natal period, including breastfeeding. We apply a special 
focus on preterm infants, born before 37 weeks of gestational 
age, and how they differ from those born at term. Finally, 
we summarize the current body of evidence relating these 
factors to the development of LOS and NEC.

Maternal nutrition and the in utero 
environment

The interplay between maternal microbiota, stress, and nutri-
tion critically dictates major characteristics of fetal devel-
opment. Maternal exposures, including diet, modulate the 
maternal microbiota, which in turn influences the formation 
of the neonatal microbiota and subsequently its immune sys-
tem [1]. Overnutrition and undernutrition both directly and 
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strongly link maternal nutrition to unhealthy pregnancy [2, 
3]. Specific micronutrient and macronutrient consumption 
by the pregnant mother is also associated with subsequent 
outcomes related to neonatal immunology and the develop-
ing gut microbiota. This interplay between maternal nutri-
tion and neonatal outcomes is summarized in Table 1.

In utero development: questioning 
the dogmatic “sterile womb” hypothesis

It has been postulated for over a century that the normal 
fetus is devoid of colonizing commensals. Through indirect 
mechanisms alone, the maternal microbiota can be quite 
impactful on fetal development. It is known that the develop-
ing immune system of the fetus and neonate is shaped by cir-
culating metabolites originating from the mother’s intestinal 
microbiome, entering the fetus and neonate simultaneously 
with maternal antibodies via the placenta and breastmilk, 
respectively [4]. This indirect early immunological influ-
ence critically sets the developing fetus and neonate on a 
path towards or away from immunological homeostasis later 
in life [5]. Exposure to large amounts of viral and bacterial 

pathogen-associated molecular patterns (PAMPS), made 
worse by maternal stress and malnutrition, exacerbates the 
inflammatory stress response. Since it is known that mater-
nal microbiota and their metabolites may have the potential 
to influence neonatal and birthing outcomes, the topic of 
maternal probiotics to prevent preterm birth and negative 
health outcomes has been explored. However, this practice 
fails to conclusively show benefits [6].

We now have reason to question the dogmatic view of a 
“sterile womb”. A recent commentary in nature succinctly 
sums up the growing evidence against this notion [7]. Using 
16S sequencing, our group demonstrated that meconium 
from preterm infants contained microbial DNA, suggest-
ing the womb is not sterile as previously postulated [8, 9]. 
In addition, a growing body of evidence supports the con-
cept of an intrauterine environment that is not sterile, as 
previously thought, and that the formation of the neonatal 
microbiome may originate in utero [9–12]. Bacterial DNA 
has been found in the human placenta as well as amniotic 
fluid, suggesting a unique placental microbiome [10, 13] 
that might impact the immune balance of the fetus directly 
[14]. If cervicovaginal microbiota composition can already 
be used as an indicator of prospective preterm birth risk 

Table 1   Maternal nutrition during pregnancy and immunological or developmental impacts on the subsequently born neonate

IUGR​ intrauterine growth restriction, LTi lymphoid tissue inducer cell
a Serum vitamin D deficiency not related with birth outcomes

Maternal nutrition Effect on neonate

Caloric intake
 Excess caloric intake/obesity
(overnutrition)

Preterm birth risk increased [2]
C-section risk increased [182]
Lactation dysfunction [183]
IUGR risk increased [4]
Miscarriage/stillbirth risk increased [184]
Neonatal gut dysbiosis risk increased [185, 186]
Risk for pro-inflammatory chronic disease later in life increased [4]

 Inadequate caloric intake/underweight (undernutrition) Preterm birth risk increased [2]
Perinatal infant mortality risk increased [187]
Birth defect risks increased [187]
Neonatal gut dysbiosis risk increased [186]
Heightened stress response [5, 52]
Risk for chronic disease later in life [188]

Macronutrients
 High fat diet Maternal and neonatal gut dysbiosis risk increased [189–191]
 Omega-3 fatty acids Reduced preterm birth and low birth weight rate [3]

Prevention of intrauterine infection [192]
Epigenetic upregulation of immunomodulatory genes [193]

Micronutrients
 Vitamin D supplementationa Reduced preterm birth rate [194, 195]

Increased birthweight [194]
 Vitamin A deficiency Decreased lymphoid organ, B cell, myeloid cell, and LTi development [196]
 Selenium deficiency Preterm birth risk increased [197]
 Zinc deficiency Decreased lymphoid organ and immunocyte development [4, 198, 199]

Heightened stress response [4, 198, 199]
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[15–18], understanding the in utero microbial composition 
might perhaps serve to predict birth outcomes to an even 
larger extent and fill a critical gap in knowledge in this field. 
This is just one example of what might come from investi-
gating uterine bacteria during pregnancy.

Despite the recent series of findings in favor of the notion, 
there is still debate concerning the validity of the “in utero 
colonization” theory. Critics claim that bacterial DNA is not 
strong enough evidence of bacterial presence in utero due to 
possible experimental contamination or circulation of cell-
free bacterial DNA [19]. They claim that this highlights the 
need for further studies to elucidate better culturing methods 
or other ways to definitively show bacterial presence and 
function in utero [7, 20]. To address this criticism, a small 
study of 5 samples showed that most bacterial DNA reported 
in meconium comes from living bacterial cells by eliminat-
ing non-viable bacterial DNA with a chemical compound 
[21]. However, recent studies suggest the lack of a com-
mensal in utero microbiome during healthy pregnancy [22, 
23]. Despite the skepticism, it remains true that the majority 
of recent investigations have found bacterial DNA in com-
ponents of the placenta and amniotic fluid, and if we have 
faith in our current methods of detection, it is not a far-cry to 
conclude that bacteria or at the very least, their components, 
reside along with the developing fetus in utero. If that is 
the case after additional rigorously performed studies with 
appropriate quality control and assay blanks, it will open 
an entirely new window of developmental immunology at 
the fetal–maternal interface with potential for great leaps in 
mechanistic and therapeutic understanding.

Impact of the perinatal and post‑natal 
period on intestinal homeostasis

At the beginnings of extra-uterine life, the preterm newborn 
is thrust into a sea of antigens to which it must selectively 
and appropriately respond, despite underdeveloped mecha-
nisms to do so. The neonate’s birthing conditions and expo-
sure and response to imminent environmental antigens will 
culminate to dictate its subsequent development.

Mode of delivery: surgical vs vaginal

Preterm infants are particularly likely to undergo cesarean 
section (C-section) delivery. Surgical C-section delivery is 
a life-saving procedure. In some areas of the world, it is 
not used enough to deliver infants that need it, but in other 
parts of the world its use exceeds medical necessity and is 
often done out of convenience. This has been thought to set 
the stage for dysbiotic neonatal microbiota entirely differ-
ent from what has been selected for by millions of years of 

co-evolution. Differences in microbial composition among 
infants’ feces born via C-section have been found to be pre-
sent up to 7 years [24]. Moreover, it can take months to insti-
tute a solid gut microbiome in a surgically delivered infant 
[25]. Thereby, type of delivery appears to be a key factor in 
the development of the infant gut microbiome.

Surgically delivered infant microbiota is thought to con-
sist of overall decreased bacterial diversity, less protective 
vaginally derived Bacteroidetes colonization, and more (per-
haps skin-derived) Staphylococcus, Propionibacteria, and 
Streptococcus species until 1–2 years of age [26–28]. It is 
for this reason that it is postulated that the physical passing 
of the infant through the birth canal inoculates a symbiotic 
intestinal flora into the infant. In support of this idea, it has 
been observed that Lactobacillus, Prevotella, or Sneathia 
spp. are more prevalent in vaginally delivered babies, and 
within months there is an appreciable spread of Bifidobacte-
rium and Bacteroides. Bifidobacterium is thought to have an 
especially beneficial role in the maturation of the developing 
gut lining and neonatal immune tolerance [29]. Metagen-
omic microbiome signatures vary accordingly between neo-
nates born to surgical or vaginal delivery and might explain 
immune response differences between them [30].

Mouse studies have found that surgical delivery of pups 
leads to an increased inflammatory and dysbiotic state, 
which can be partly corrected with prebiotics [31]. The study 
also found that some aspects of surgical delivery compli-
cations in neonatal mice were not able to be reversed by 
prebiotics and are thus microbiota-independent. This neo-
natal dysbiosis associated with surgical birth is either com-
pounded or perhaps caused by the prophylactic antibiotics 
given to mothers during cesarean section birth [32].

The decision to perform a C-section is often necessary, 
but with it comes with risks for many gastrointestinal and 
immunity-related problems for the newborn, including 
breastfeeding complications, food allergy, and, later in 
life, obesity and asthma, and potentially juvenile arthritis, 
immune deficiencies, and inflammatory bowel disease (IBD) 
[27, 33, 34].

There continues to be skepticism about the mechanism 
explaining C-section-mediated intestinal dysbiosis, as well 
as the “vaginal seeding” practice whereupon the surgically 
delivered fetus is iatrogenically exposed to microbes from 
the birth canal [35, 36]. A recent study by the Aagaard group 
finds no causative relationship (P = 0.057) between deliv-
ery mode and infant gut microbiome structure or function 
[37]. The results were almost statistically significant but 
contradict what many other investigators have found, and 
thus should not be looked at in isolation. However, another 
recent high-profile study echoed the finding that mode of 
delivery does not leave persistent microbiome alterations 
when confounders present in other studies are accounted 
for [38].
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Despite the aforementioned two recent studies finding 
no relationship between mode of delivery and the neonatal 
microbiome, the fact remains that the majority of investi-
gations with human subjects focusing on this issue point 
to impaired neonatal gut microbiota and elevated risk for 
immune-related diseases correlated with mode of delivery. 
Clinically, eliminating any and all unnecessary and non-
medically indicated surgical deliveries, which have been 
estimated to encompass nearly half of all surgical births in 
the US, should still be an urgent and top medical priority 
[39].

Antibiotic use

It has been suggested that inflammation associated with the 
mode of delivery and administration of intrapartum antibi-
otics together alter the bacterial composition of the breast 
milk, and through the milk are mainly responsible for the 
development of dysbiosis observed in C-section delivered 
babies [40]. Intrapartum antibiotics are frequently used in 
C-section deliveries in the US and very often around the 
world. Some postulate that they are the major reason why 
infants born surgically have been observed to exhibit differ-
ent microbiota profiles [35]. Though lifesaving when used 
correctly, these drugs may set the developing infant micro-
biota on a path towards dysbiosis and disease.

When 18 mothers received intrapartum antimicrobial 
prophylaxis (IAP) due to confirmed or suspected vaginal 
colonization by Group-B-streptococci, a reduction of poten-
tially protective Actinobacteria and Bacteroidetes and an 
increase of Proteobacteria and Firmicutes abundance was 
later observed in the fecal microbiomes of babies from 
IAP-treated mothers compared to babies from mothers not 
exposed to antibiotics. Additionally, infants born to mothers 
in the IAP group showed reduced proportions of putatively 
mutualistic microorganisms, such as the family Bifidobac-
teriaceae, but increased proportions of potentially patho-
genic microorganisms including Campylobacteriaceae and 
Helicobacteriaceae [41]. Broad-spectrum antibiotics for 
neonatal LOS prevention during the first months after birth 
significantly contribute to decreased species richness [42] 
and delayed colonization of Bifidobacterium in the neonate 
as well [43].

Antibiotic exposure during the first year after birth is 
linked with development of immunological issues such as 
wheezing and eczema by 8 years of age [44]. Exposure to 
antibiotics at this developmental period was also linked with 
an increased risk for development of IBD as well as type 2 
diabetes mellitus later in life [45]. The increased risk of dis-
eases like chronic asthma and allergies in this demographic 
can be attributed to the frequency of antibiotic use through-
out the first month after birth and beyond [46–48].

Antenatal corticosteroids are commonly given to pregnant 
women expecting preterm delivery between 24 and 33 weeks 
of gestation in order to prevent neonatal respiratory distress 
syndrome, intraventricular hemorrhage, premature rupture 
of membranes, NEC, and LOS [49, 50]. Use of antenatal 
steroid medications was found to be an additional risk factor 
for developing neonatal intestinal dysbiosis [51].

Post‑natal microbiota and intestinal 
development

The human gastrointestinal tract is a complex and special-
ized organ that arises during embryonic and fetal life from a 
simple tube. This multifaceted organ will eventually house 
the largest microbial reservoir of the body and interface with 
the outside world. The last trimester of gestation represents 
a critical developmental window for the fetal intestine that 
is often shortened by preterm birth. At term birth in humans, 
intestinal motility, mature villus and crypt anatomy, and 
feeding reflexes are fully developed to help the infant estab-
lish proper nutrition and a functioning immune system [52]. 
If the infant is born preterm, these are not fully developed 
[52]. Refer to this excellent review about more details of 
early embryonic and fetal gastrointestinal development [53].

The gut microbiota, often referred to as the “forgotten 
organ”, is central to neonatal mucosal immunity and afore-
mentioned intestinal anatomical development [54]. Shortly 
after birth, gut colonization is thought to be influenced by 
the birth canal in addition to microbes from colostrum. Its 
development during the first 2 weeks after birth represents 
a critical window, especially for premature infants who have 
underdeveloped intestinal barrier function. The microbiota 
composition helps determine the integrity of the intestinal 
barrier, formed by tight junction proteins between intesti-
nal epithelial cells (IECs) that prevent escape of inflamma-
tory microorganisms and molecules into circulation [55]. 
Gut colonization by commensal bacteria is a vital part of 
development of the mucosal barrier and modulates risk of 
developing systemic inflammation, NEC, LOS, and other 
pathologies. Depending on the conditions of the gastroin-
testinal tract and composition of commensal bacteria, the 
microbiota can either degrade or enrich the mucus bar-
rier of the gut. Some commensals provide stimulation to 
goblet cells to coat the intestinal surface with a glycocalyx 
(mucin), which serves as a protective barrier between com-
mensal microbes and IECs. On the other hand, pathogenic 
or opportunistic bacteria actively degrade it, making sepsis 
more likely. Commensal bacteria can also stimulate epithe-
lial transcription and translation of tight junction proteins 
to close the intercellular route for the uptake of large mol-
ecules and microbiota, while dysbiotic microbiotas with 
opportunistic pathogens weaken intestinal integrity in order 
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to proliferate and translocate. At the same time, the release 
of defensins and cathelicidins (which act as anti-microbial 
molecules) by Paneth cells and IECs protects the mucosa 
from pathogenic bacteria [56].

Underdevelopment of the preterm intestine leads to a 
highly permeable intestinal surface and pathogenic bacte-
rial colonization because of reduced gastrointestinal motil-
ity as well as limited enteric nervous system function, all 
of which sets the stage for destructive dysbiosis, chronic 
inflammation, and microbial translocation through the weak-
ened intestinal barrier, leading to potentially lethal diseases 
of prematurity described later in this review.

Premature infants have a vastly different intestinal milieu 
than term infants. The majority of them are vulnerable to 
the pathogenic hospital environment, which stresses their 
microbiota further. As a consequence of all factors associ-
ated with prematurity, their microbiota diversity is reduced, 
and its composition is very different compared with healthy 
term infants [57]. The compositional effect of gestational age 
on microbiota can last up to 4 years [58]. Preterm neonates 
have diminished microbial species alpha-diversity, reduced 
protective bacterial genera (Bifidobacterium, Lactobacil-
lus), and increased proportions of potentially pathogenic 
bacteria such as Clostridium difficile and bacteria of the 
γ-proteobacterial class, namely Pseudomonas, Klebsiella, 
and Escherichia coli [59–63]. This dysbiosis is thought to 
be implicated with a major intestinal disease of prematurity, 
namely NEC.

Neonatal nutrition and microbiota 
development

Recent data suggest both the physical and nutritional process 
of breastfeeding is critical for the development of a symbi-
otic neonatal microbiome (e.g., Bifidobacterium-dominant) 
and prevention of NEC [63]. Alternative feeding methods, 
provided by inserting temporary tubes through the nose or 
mouth into the stomach or proximal intestine as well as intra-
venous catheters, are required to supply nutrition in preterm 
infants until they are developmentally ready to feed by breast 
or bottle, but they lack many protective factors and overlook 
the interplay between nutrition and microbiota. For exam-
ple, inappropriately supplementing iron to deficient neo-
nates may promote dysbiosis in addition to increased risks 
of death and LOS, as it circumvents maternal breastmilk and 
neonatal mechanisms to restrict iron from pathogens that 
readily take it up and become dominant [64, 65]. Preterm 
babies may be further disadvantaged due to their underde-
veloped suckling and swallowing reflexes, which can make 
actual breastfeeding of colostrum not possible at birth [63].

The glycans of the neonatal gut and prebiotic fiber (or 
lack thereof) in breastmilk or formula further play a role 

in selection of commensal bacteria. Specific genes encod-
ing glycosyltransferases determine the composition of the 
intestinal glycans. Expression patterns of these genes are 
epigenetically downregulated during the post-natal period; 
the breastmilk-derived fermentable and bioactive compo-
nents are expected to make up for the subsequent lack of 
mucin and innate defenses [66]. Consumed fucosylated 
oligosaccharides from milk pass undigested into the colon, 
where they are used as carbon sources to select for beneficial 
Bifidobacteria, Bacteroidetes, and other anaerobes that are 
key for symbiosis [67, 68]. This process is disturbed by par-
enteral nutrition and lack of enteral feeding commonly expe-
rienced by preterm infants in neonatal intensive care units.

Breastfeeding dictates neonatal immune 
trajectories

Human breast milk (HBM) feeding is the optimal nutrition 
for the human newborn in normal conditions. HBM feeding 
has been shown to reduce infant mortality by 12% compared 
to formula feeding and has shown to be greatly beneficial in 
preventing several neurological, respiratory, and gastroin-
testinal diseases, including NEC [69].

The ideal carbohydrate source for the infant is lactose, 
as the infant’s intestine contains lactase enzyme activity at 
birth, and symbiotic bacteria have evolved to prefer it as a 
carbon source. Human milk oligosaccharides (HMOs) can 
additionally expand the metabolism and modulate the com-
position of the infant microbiota [70]. These carbohydrate 
sources, in addition to lactose, serve as fermentable carbohy-
drate prebiotics that positively select for beneficial gut bacte-
ria, though we do not fully understand how HMOs function 
in the preterm intestine, which may have markedly different 
effects than what has been observed in a term gut [71]. These 
carbohydrate sources also prevent pathogens from binding 
to IECs and instead carve out a niche for beneficial mutual-
istic bacteria such as Bifidobacteria. In doing so, they serve 
as carbon sources that facilitate production of beneficial 
metabolites by those commensals, such as microbial short-
chain fatty acids (SCFA) and folate (vitamin B9), both of 
which act as potent epigenetic regulators. Higher levels of 
immunomodulatory SCFAs acetate and propionate (but not 
butyrate) have been observed in the feces of HBM-fed pre-
term infants than were seen in feces of formula-fed preterm 
infants [72]. SCFAs acetate, propionate, and butyrate are all 
known to enhance epithelial integrity, which is critical in 
maintaining systemic immune homeostasis. These bacterial 
metabolites, and others, dictate immune development in the 
preterm infant. In contrast to HBM-fed infants, many infant 
formula products contain sucrose and glucose, no HMOs, 
and some do not contain lactose at all, all of which modu-
lates the gut bacteria in a way that does not appear to be 
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physiological for the infant. The formula-fed infant is there-
fore at a greater risk for post-natal pathologies and death, 
despite ingesting proper micronutrient and near-adequate 
macronutrients proportions [69].

Various immunoglobulins and immune cells are a com-
ponent unique to colostrum, the “first milk”, and are not 
present in mature breast milk. Consumption of colostrum by 
the infant is a well-known mechanism of passive immunity 
transfer from the mother, though consumption of colostrum 
may not be possible in the preterm neonate due to potentially 
underdeveloped feeding behaviors [73].

A physical, biochemical and immune barrier forms the 
intestinal mucosa and “gut closure” which refers to the per-
meability of the neonatal gut and is mainly characterized by 
(1) the passage of large molecules from the intestinal lumen 
to the blood through tight junctions; (2) active transport of 
immunoglobulin G and immune complexes from breastmilk 
into intestinal submucosae and (3) maternal microchimer-
ism, which allows the transference and nesting of maternal 
cells from breastmilk to infant mucosa when the intestinal 
permeability is high [74]. This transfer of maternal cells may 
help with immune responses, tissue repair, and regulation of 
the neonatal immune response and tolerance.

Maternal immunoglobulins play a critical role in shap-
ing neonatal immunity. The human newborn relies solely 
on maternal IgG for the first 3 months of life due to a lack 
of functional plasma cells [75]. Preterm infants were at 
one point thought to be compromised because the reduced 
developmental time in utero was thought to prevent adequate 
transfer of maternal IgG to the infant [76]. However, a recent 
study has shown that this is not the case, and that maternal 
antibodies from gestation are not responsible for the reduced 
immunity observed in human preterm infants [77].

Another major way the mother confers passive immunity 
to the neonate is through secretory IgA (sIgA) in the breast 
milk, which makes up over 90% of all antibodies present in 
the milk [78]. sIgA is known to shape the characteristics 
of the commensal bacteria and foster their symbiotic rela-
tionship with the host through selection pressure for sym-
biotic bacteria [79]. All newborns lack sIgA at birth, dur-
ing which time they are completely reliant on the mother’s 
milk for sIgA [78]. Deficiencies in sIgA are associated with 
a range of immune inadequacies in immunocytes isolated 
from human preterm infants [80]. By 2 weeks after birth, 
mice begin producing their own IgA from plasma cells in the 
Peyer’s patches (PP) and eventually mucosal lamina propria 
in a process known to be influenced by the gut microbiome 
[78, 81]. In piglet models, it has been shown that bacterial 
colonization drives the isotype switch from neonatal IgM 
to sIgA at the ileal PP, further supporting this view [82]. 
sIgA is known to prevent bacterial translocation by interact-
ing with intestinal M cells and enhancing agglutination of 
pathogenic bacteria [83].

We are beginning to understand the role of breast milk 
exosomes, which are nanovesicles containing immunologi-
cally relevant components that direct immune responses. In a 
study, rat milk was collected to determine the effect of milk-
derived exosomes on IECs [84]. Exosomes from the milk 
were found to enhance proliferation and stimulate intestinal 
stem cell activity. Furthermore, it has been demonstrated 
that human milk exosomes have the capacity to survive 
simulated digestion conditions of infants. Results of these 
studies indicate that nutritional HBM exosome biology in 
the neonate is worth investigating further [85].

The physiological state of the mother also impacts the 
health of the breast-fed infant via the composition of human 
breast milk. Mothers that bear premature infants have higher 
proportions of protein content in their colostrum than moth-
ers that bear term infants [86]. Human mothers that them-
selves have IBD have been shown to produce breast milk that 
is overall more potentially inflammatory than healthy moth-
ers’ milk, suggesting an inflammatory axis shared between 
mother and child [87]. HBM derived from healthy mothers is 
richer in protective sIgA, 2-aminobutyrate, and lactose [87]. 
Lactose, as discussed previously, is important for providing 
carbon for neonatal bacteria to produce beneficial short-
chain fatty acids (SCFAs), namely, acetate and propionate, 
which are critically important for maintaining gut integrity, 
promoting regulatory immune responses, and preventing 
excessive immune responses to commensal bacteria [88, 
89]. The HBM derived from mothers with IBD contained 
relatively higher levels of pro-inflammatory cytokines and 
higher putatively pro-inflammatory bacterial energy metabo-
lites lactate and succinate than milk from healthy mothers 
[90, 91].

Milk-derived cytokines, including TGF-B, IL-1B, Il-6, 
IL-10, IL-12, TNF-a, IFN-γ, and GM-CSF present in human 
colostrum, have been shown to survive digestion and mecha-
nistically modulate the piglet intestinal inflammatory envi-
ronment when consumed via milk from the sow, which is 
likely also the case in humans [92–94].

Breast milk also contains live microbes, which may play 
an important role in colonizing the neonate. Bacterial col-
onization of breast milk is thought to occur via bacterial 
translocation from the maternal intestine to lymph nodes to 
mammary glands to milk [95]. Infants fed their own moth-
er’s milk develop a different and potentially more protective 
microbiota than those fed pasteurized donor milk or formula. 
Pasteurization of donor or mother’s own breast milk, while 
preventing the growth of pathogens, results in loss of some 
biologically active components such as sIgA, lactoferrin, 
lysozyme, cytokines, lipase, cellular components, and live 
microbes [96]. UV-C radiation and high-pressure process-
ing have been explored as alternative ways to sterilize donor 
breast milk and preserve bioactive components, but human 
studies must be carried out before clinical conclusions and 
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therapeutic decisions are made about using them routinely 
[97, 98]. Pumping of breastmilk, compared to breastfeed-
ing, reduces its efficacy in beneficially modulating the infant 
microbiota [99]. The notion of sharing unpasteurized human 
breast milk has become increasingly popular recently, 
though doing so without a physician’s prescription is not 
currently recommended by the Food and Drug Administra-
tion (FDA) due to safety concerns [100, 101].

An overall summary of how mother’s milk promotes 
homeostatic mechanisms in the gastrointestinal tract is 
illustrated in Fig. 1. HBM significantly influences both the 
bacterial composition and intestinal immune response of the 
neonate, both of which are known to dictate disease risk 
throughout life [102, 103].

Neonatal immune system

Much like an army defends a nation against outside invad-
ers and a police force defends a nation from autoreactive 
citizens, the mucosal immune system in the preterm neonate 

must respond to foreign antigens and self in a targeted and 
selectively tolerant fashion from birth [104]. Immune devel-
opment begins in the womb. What is currently known about 
fetal immune ontogeny has been covered in an excellent 
review [65]. Our knowledge of this subject might expand 
further once we understand the likely substantial effects of 
uterine microorganisms and their components/metabolites 
on the fetus, both during steady-state and infection. For 
example, exposure to infection in utero is associated with 
an increased risk for NEC development in the subsequently 
born neonate, hypothetically by tuning the developing fetal 
immune system towards a pro-inflammatory state prior to 
delivery [105, 106].

Here, we focus on intestinal immune development into the 
neonatal period. The neonatal immune system is immature 
but rapidly developing. Animal models and in vitro/ex vivo 
experiments, despite not providing fully adequate replicas 
of the human neonate due to differences in rates of immune 
maturity and cellular milieu, are one of the primary ways 
causal relationships are determined pertaining to neonatal 
immune ontogeny. For example, murine studies consistently 

Fig. 1   Compositional factors in mother’s milk including live 
microbes promote production of bioactive molecules that are thought 
to protect the mucosal barrier, promote the growth of commensal 

bacteria, and provide a balance between pro and anti-inflammatory 
processes. MAMPS microbial-associated molecular patterns
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conclude that neonatal regulatory T cells (Tregs) are unable 
to suppress autoreactive cytotoxic cells, while Tregs isolated 
from human fetuses already functionally suppress T cell pop-
ulations expressing markers of early activation [107, 108]. 
This reflects the general trend that the intestinal integrity and 
mucosal immunity of mice born with normal gestation are 
much more immature than their human counterparts for which 
they serve as models [52]. Relying too heavily on these models 
may provide erroneous conclusions, but they still provide use-
ful information that we are not able to obtain from humans, so 
they will be utilized here.

Blood leukocytes from preterm human infants are of mark-
edly inferior composition and cell count than term counter-
parts, with results including diminished pattern recognition 
receptor (PRR) function, reduced bacterial elimination, and 
hindered endothelial adhesive rolling [109]. The human new-
born lacks adult levels of mature B cells and T cells, but its 
innate immune system, including intestinal dendritic cell and 
macrophage populations, is intact [52]. The human neonatal 
Th2 and Th17-type immune responses are equipped to han-
dle extracellular pathogens in the gut, but Th1 type defenses 
against intracellular pathogens are silent during homeostasis in 
early stages of neonatal development [110]. In cases of micro-
bial dysbiosis, the neonatal immune system may skew towards 
a more Th1-dominant response, leading to excessive inflam-
matory responses to commensals, though it is still debated 
whether this skew is the case in NEC [27].

At birth, cytokines IL-23, IL-12, IL-1B, Il-6, and TNF-α 
are the main pro-inflammatory messengers of the innate 
immune system, but they are largely suppressed in preterm 
infants due to reduced toll-like receptor 4 (TLR4) function 
and epigenetic modifications associated with premature birth 
and diseases of prematurity [109, 111]. Platelet-activating 
factor (PAF) also plays a role in the inflammatory intestinal 
milieu associated with prematurity, putatively increasing 
luminal expression of TLR4 and contributing to NEC based 
on association studies from humans and causal findings in 
mouse models [112, 113]. Treg-derived IL-10 is the main 
anti-inflammatory cytokine at this stage, though it cannot 
effectively counteract exacerbated inflammatory responses 
originating from platelet-activating factor (PAF) and TLR4-
signaled NFκB in diseases such as NEC [55, 114]. Human 
studies have found increased serum IL-10 levels to be cor-
related with NEC, further suggesting that high IL-10 levels 
represent the body’s futile attempt to tone down the destruc-
tive inflammation seen in NEC [115].

Toll‑like receptors

The innate Toll-like receptor (TLR) response is compro-
mised in preterm infants [111]. Molecular patterns expressed 
and concealed on the bacterial cell surface can stimulate 

IECs, dendritic cells, and lymphocytes to prompt PRRs such 
as TLRs on their cell surface to induce an acute inflam-
matory response to block penetration of pathogens into the 
epithelium.

Murine studies, if serving as accurate models for disease, 
are best employed to elucidate mechanisms of neonatal 
immunity, so information derived from them will be used 
here. TLRs communicate their signal to the newborn’s den-
dritic cells (DCs) and initiate immunological cascades. Spe-
cific TLRs in the neonate epithelium are centrally involved 
in the microbiota-mediated mucosal development. TLR2, 
responsible for detecting and clearing coagulase-negative 
staphylococci that are often involved in neonatal LOS, is 
expressed at adult levels in preterm infants, just as it is in 
term infants. TLR4, responding to lipopolysaccharide by 
signaling production of pro-inflammatory NFκB and other 
products, is regulated during neonate development, dysfunc-
tional in preterm infants, and is implicated in the pathology 
of NEC. In brief, lipopolysaccharide (LPS) from gram-
negative bacteria interacts with TLR4 receptors through the 
adapter protein MYD88 to induce a transduction cascade 
through NFκB, which is a transcription factor that stimulates 
general pro-inflammation, including the transcription and 
translation of the chemokine IL-8, which in turn induces 
migration of neutrophils to the site of infection. TNF-α is 
subsequently released to activate an inflammatory response. 
This process, gone awry, is involved in the pathology of 
NEC [116, 117].

TLR4 overactivation is thought to be a major factor in 
the destruction of intestinal integrity observed in NEC. Pre-
maturity leads to enhanced expression of PAF and reduced 
expression of the enzyme that degrades it, PAF-AH, in 
human neonates [113]. Enhanced PAF has been shown to 
increase intestinal TLR4 expression in rodent models and 
is therefore thought to contribute to NEC development in 
human preterm infants [112]. TLR9, based on observa-
tions from human neonates and mechanistic studies on fetal 
mice, responds to DNA rich in cytosine–phosphate–guanine 
(CpG) islands and is thought to counteract TLR4 activation 
and tone down excessive TLR4-driven inflammation [118]. 
In cases of human NEC, TLR9 and PAF-AH expression is 
low while PAF and TLR4 expression is abnormally high 
[118]. While these factors are thought to be important in the 
pathophysiology of NEC, there are many others at play as 
we still do not fully understand the disease.

Neonatal innate lymphoid cells

Neonates express markedly higher cell lineage marker nega-
tive innate lymphoid cell (ILC) frequencies in the thymus 
than they do later in life [119]. Murine studies indicate that 
the neonatal mouse thymus is uniquely dominated by Group 
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3 ILCs (ILC3s), which are strongly involved in regulating 
pathogenic and commensal microorganism abundance in the 
intestine, and in the case of lymphoid tissue inducer (LTi) 
ILC3 cells, assisting in the developing gut-associated lym-
phoid tissue (GALT) of the neonate [119]. ILC3 develop-
ment is driven by maternal microbiota-derived aryl hydro-
carbon receptor ligands, which are found in the placenta and 
breast milk [120]. This phenomenon is neonate specific, as 
neonate development after birth results in a rapid loss of 
ILC3s, which are largely replaced with a more dominant 
ILC2 population that remains throughout the rest of life.

Neonatal B and T lymphocytes

The adaptive immune system in neonates is underdeveloped, 
which leaves them vulnerable to critical viral and bacterial 
infections. B lymphocytes are present at birth in the human 
neonatal intestine, but their functional maturation into sIGA 
secreting plasma cells does not complete until 1 year after 
birth, during which time the neonate relies on the sIgA pro-
vided from colostrum [121]. In human newborns, PPs have 
begun to develop during gestation but PP germinal centers, 
necessary for B cell proliferation, differentiation, isotype 
switching, and mutation of antibody-related genes, are not 
fully developed [122, 123]. Thus, functional immaturity of 
B lymphocytes and associated cells and tissues is observable 
at birth in humans.

The abundant yet immature naive T lymphocytes in the 
periphery of the newborn express higher levels of intestine-
homing integrins at this stage of development than they will 
ever express in adult life, indicating the increased priority 
for T cell activity at the GALT and PP of the newborn. T 
lymphocytes, only at the neonatal stage of life, are able to 
respond to TLR4 ligand lipopolysaccharide (LPS) and TLR5 
ligand flagellin by differentiating towards activated memory 
cells [124].

Neonatal immune responses to γ-proteobacteria dysbiosis 
are characterized by excessive pro-inflammatory responses 
to commensal intestinal flora. There is confusion about the 
precise nature of the response to this dysbiosis, especially in 
conditions such as NEC. Some investigators have concluded 
that the response is dominated by a pathogenic Type 1 T 
helper (TH1) and IL-12 response, while others conclude that 
there is not enough evidence to observe a skew towards any 
of the T helper subtypes [125]. A more thorough understand-
ing of the T helper response in neonatal intestinal inflam-
mation is needed.

Term and preterm neonatal Tregs both have a diminished 
ability to prevent dendritic cell (DC) and effector T cell 
aggregation and activation compared to adult Tregs [126]. 
Hallmark adult regulatory T cell products, including IL-10 
and TGF-B, are markedly lower in neonates compared to 

adults (but similar between term and preterm neonates), 
resulting in an enhanced potential for relatively unchecked 
pro-inflammatory sequelae in neonates [127]. High IL-10 
levels do not necessarily indicate homeostasis, as levels of 
IL-10 in cases of human NEC are elevated, which likely rep-
resents a futile attempt to tone down the destructive inflam-
matory response to commensals common to all classical 
cases of NEC [115]. A better immunological indicator of the 
pro-inflammatory state inherent to human NEC appears to be 
an increased ratio of Th17 to Treg cells as well as the pres-
ence of a dysfunctional Treg cell subset that resembles Th17 
cells in their IL-17 production [128]. Despite this dimin-
ished neonatal Treg function, these cells are still thought 
to contribute to resisting, though not entirely preventing, 
potentially disastrous exacerbated neonatal effector T cell 
responses to commensals at PPs. These findings highlight 
the unique yet reduced roles of B and T cells in neonatal 
mucosal immunology.

Diseases of prematurity: necrotizing 
enterocolitis and late‑onset sepsis

Among the diseases associated with prematurity and 
deaths in preterm infants, NEC and LOS are highly preva-
lent. Deaths from both conditions are increasing in some 
regions, despite progress in combatting respiratory prob-
lems and other issues associated with prematurity. One of 
the major problems is not having a clear definition of either 
one of these diseases [129, 130]. On one hand, the classic 
form of NEC [131] represents a hyperactive immune system 
that damages the host in response to commensal bacteria, 
whereas infection and LOS occur due to the immune system 
not reacting strongly enough and being overrun by bacterial 
pathogens. We will, therefore, focus on both NEC and LOS 
in the preterm neonate and examine the role of the immune 
system and microbiota in each of these conditions.

Necrotizing enterocolitis

NEC is a devastating disease affecting primarily premature 
infants, most of which are very-low-birthweight (VLBW). 
NEC has been the subject of decades of research, but its eti-
ology and definition remain poorly understood. Its incidence 
in preterm infants varies between 3 and 15% [131, 132], with 
a mortality rate as high as 30% in infants requiring surgery. 
Other risk factors besides prematurity are formula feeding 
and microbial dysbiosis [133, 134]. We have not learned 
how to prevent or effectively treat this disease, and it con-
tinues to cause great mortality and morbidity.

The greater the degree of prematurity of the infant, the 
longer it takes to develop NEC. Thus, the time from birth to 
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the onset of NEC is inversely proportional with the length of 
gestation [135]. The key factors associated with the patho-
genesis of NEC are intestinal immaturity, enteral feeds, the 
intestinal microbiome, inflammation, local ischemia, and 
reperfusion injury. The development of NEC peaks around 
29–32 weeks postmenstrual age [132, 136–138].

To evaluate specific mechanisms for the pathophysiology 
of NEC, reliance on studies in human infants is suboptimal. 
Cell lines and animal models have been utilized in attempts 
to more clearly delineate the potential mechanisms impli-
cated in NEC pathogenesis. Commonly used cells to evalu-
ate intestinal epithelium include the immortalized colon 
cancer cell line, Caco-2. Human fetal non-transformed cell 
lines such as the H4 line have also been employed [139]. 
Another model that shows promise is the use of intestinal 
stem cells that produce enteroids or organoids [140]. These 
have some advantages over many other cell lines in that they 
can be derived from humans, can grow relatively long-term 
in culture, and simulate characteristics of epithelial cells 
growing in vivo [141].

Animal models have been developed with the intent to be 
utilized to better understand prevention, pathophysiology, 
and treatment for NEC. Unfortunately, the gastrointestinal 
tract and immune system of the animals differ from humans. 
Most commonly, rodents and piglets are used to model NEC. 
In rodents, the gut is in a less advanced stage of development 
at birth. Piglets transfer immunoglobulins across their GI 
tract after birth, whereas in humans the transfer is mostly 
via the placenta.

In the rodent models commonly used, formula feeds, cold 
stress, and hypoxia induce damage to the gastrointestinal 
tract. The rationale for the use of these models is based on 
studies in the 1970s when it was thought that hypoxia was a 
major antecedent of NEC [142]. However, a hypoxic event 
is not characteristic for the development of NEC. There is no 
temporal association found clinically between hypoxia and 
NEC [143], thus use of this model may result in erroneous 
interpretations if the major initiating event is the pathogenic 
inflammation. Therefore, the lack of a suitable animal model 
is a major barrier to clearly study NEC. However, when ani-
mals are used carefully as models of intestinal injury rather 
than direct models of NEC, we may be better able to deline-
ate discrete candidate components of the pathophysiologic 
cascade implicated in NEC.

Numerous risk factors are implicated in the pathogenesis 
of NEC. Among these, premature birth is the major risk 
factor. Other commonly cited risk factors include intesti-
nal dysbiosis, impaired mucosal protective mechanisms, 
altered immune responses, modified mucosal development 
with subsequent increases in permeability, formula feeds, 
antibiotics, H2-blockers, altered gut perfusion, transfusion 
associated-gut injury, and dysmotility. Here we will discuss 
a few of these.

Intestinal dysbiosis likely plays a significant role in the 
development of NEC. A harmonious intestinal microbiota 
is known to control gut homeostasis through numerous pro-
tective pathways. The concept of dysbiosis being a major 
factor in NEC pathogenesis has been considered for many 
years [144], but identification of specific causative microbes 
or metabolites remains elusive [145]. Intriguingly, although 
C-section babies can have markedly different microbiota, 
they are not at an increased risk for NEC development [146]. 
It is very important to mention the role of multi-omics inves-
tigations when looking into the pathophysiology of NEC; 
the interaction between host genetics, the environment, and 
how the host responds to the metabolism of the microbes 
will help us understand disease mechanisms in an integrative 
way, and at same time could give us a better understanding 
on how to develop treatment strategies in the future [147, 
148].

Antibiotics are known to alter the microbial ecology of 
the preterm neonatal gastrointestinal tract, resulting in com-
plex resistomes that we are only beginning to understand 
[149]. Use of antibiotics for “rule out sepsis” workups has 
been standard of care in the treatment of infants delivered 
preterm. Recent studies suggest an increased risk for NEC 
in infants receiving antibiotic treatment in the absence of 
sepsis. The risk of developing NEC increases significantly if 
the exposure to antibiotics is prolonged to more than 10 days 
[150]. This finding has been seen in other studies as well 
[151–153]. Alternatives to prophylactic antibiotics, such as 
bacteriophage therapy, might prove to be promising solu-
tions [154, 155].

Multiple studies involving a relatively low number of 
patients failed to identify consistent bacteria as culprits. 
We found in NEC cases an increase in γ-proteobacteria and 
decrease in Firmicutes, as well as a low diversity index, with 
regional variation in the Bacteroidetes load [156, 157]. A 
systematic review and meta-analysis of sequence data from 
several different studies support the concept of an increase 
in Proteobacteria and decreases in Firmicutes and Bacteroi-
detes prior to the development of NEC in preterm infants 
[137]. However, there is regional variability of Bacteroidetes 
levels during the week of diagnosis, a trend inherent to most 
microbiome studies.

Human milk feeding in preterm infants was shown almost 
three decades ago to be associated with a lower incidence of 
NEC [158]. Numerous additional studies support this pro-
tective role of mothers’ milk, but none are prospective and/
or randomized. The mechanism through which human milk 
confers protection against NEC is not fully understood. It 
is, most likely, the result of an additive effect of multiple 
bioactive components with immune, microbial, or nutritional 
properties.

There are potential prevention and therapeutic strategies 
for NEC reflected in recent studies, either involving the 
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TLR4 inflammatory signaling pathway, repair of intestinal 
barrier function, probiotics, antioxidative stress, breastfeed-
ing and immunomodulators, but large and good-quality tri-
als are needed in order to elucidate if any of the mentioned 
strategies are valid [134].

Neonatal late‑onset sepsis

LOS is a life-threatening organ dysfunction caused by an 
impairment of host response to infection. In the US, posi-
tive blood culture sepsis is present in 2 of every 1000 births 
and the incidence of LOS is remarkably higher in premature 
infants, especially VLBW infants of less than 1000 g, com-
pared to term infants and those with birth weight greater 
than 1000 g [159].

As an important cause of morbidity and mortality in the 
newborn preterm population, it is vital to mention that neo-
natal LOS is different from adult sepsis because the immune 
response is managed largely by the innate immune system 
[160]. Pathogenic bacteria like Salmonella typhimurium or 
Campylobacter jejuni modify host responses and disrupt 
intestinal microbiota in order to colonize and cause more 
damage [161]. These bacteria interfere with host cell recep-
tors, such as the epidermal growth factor (EGF) receptors 
in epithelial cells. They also delay recognition by TLR4 
and inhibit inflammatory responses like those promoted by 
NFĸΒ. Such mechanisms favor pathologic bacterial trans-
location [162] in the premature neonatal immune system.

The gut microbiome has been implicated in the develop-
ment of neonatal LOS [163]. A cohort study analyzing stool 
samples from LOS preterm infants used combined -omics to 
evaluate associations between the microbiome and metabo-
lome, and found that the same strains of dominant bacteria 
in gut of LOS preterm infants were also isolated from their 
blood, which supports bacterial translocation from the intes-
tine as a key for development of LOS [62, 163].

In vitro studies [164] show that intestinal bacteria can use 
either transcellular or paracellular mechanisms for bacte-
rial translocation. Bacteria can use either a zipper or trigger 
mechanism to enter the IEC. After inflammation is induced, 
there is an increased expression of zonulin proteins (ZO-1, 
ZO-2, ZO-3, and occludin) [165, 166] inducing the disrup-
tion of tight junctions leading to a predisposition to bacterial 
translocation. At the level of the enterocyte, TLRs aim for 
identification of such bacteria but at the same time mobi-
lize phagocytes and translocation of bacteria through the 
intestinal barrier [167]. Once the tight junctions between 
enterocytes have been destroyed by exacerbated responses to 
toxins like flagellin, endotoxin, and exotoxins, opportunistic 
pathogens can then utilize paracellular mechanisms to enter 
circulation. After bacteria penetrate mucus and epithelial 
barriers, a cytokine-induced anticholinergic pathway will 

occur via the vagus nerve in which intestinal macrophages 
will attempt protection against bacterial translocation using 
M cells [168].

Proteobacteria, the same phylum of bacteria associated 
with intestinal dysbiosis and NEC development in humans, 
appear to enhance resistance to polymicrobial sepsis via 
increased serum IgA when part of the microbiota of mice 
[169]. Perhaps the enhanced immune response to proteo-
bacteria to prevent sepsis in the body comes at the expense 
of an increased risk for NEC. This highlights the delicate 
balance the immune system plays in working to prevent LOS 
and NEC.

State of the science: preventing NEC and LOS

Our understanding of how to prevent and effectively treat 
both of these conditions is currently inadequate. While feed-
ing of mother’s own milk appears to be protective toward the 
development of NEC, LOS, and overall mortality in preterm 
infants, the prophylactic potential of any specific milk com-
ponent in isolation, such as lactoferrin, antibodies, HMOs, 
and putatively probiotic milk bacteria, has been either nega-
tive or contradictory in humans [170–176].

Lactoferrin, a major human milk protein found to have 
antimicrobial, antioxidant, antifungal, and immunomodu-
latory properties, has been debated for its use in the pre-
vention of LOS and NEC in preterm infants. A 2018 study 
concluded that prophylactic use of lactoferrin does indeed 
reduce the incidence of NEC and LOS as well as hospital-
acquired infection in preterm infants, but with low-quality 
evidence [174]. A Cochrane review [177] that considered the 
aforementioned study in its search criteria did not find any 
eligible randomized trials properly evaluating lactoferrin for 
treatment of sepsis or NEC, implying that the study did not 
meet high quality standards, and concluded that there is no 
high-quality evidence to either support or refute the use of 
enteral lactoferrin by late 2018. Subsequently, a more suf-
ficiently powered, well-executed, randomized placebo con-
trolled trial published in Lancet in early 2019 demonstrated 
that administering enteral bovine lactoferrin to very preterm 
infants (less than 32 weeks of gestation) at or before 72 h 
after birth does not reduce the risk of late-onset sepsis, any 
other morbidities, or mortality, relative to a sucrose control 
[176]. Therefore, the best evidence suggests that isolated 
lactoferrin has no prophylactic role in preterm infants.

Other administered milk components in isolation have 
yielded similarly negative results. Despite many small 
or poorly designed studies claiming that probiotics may 
have prophylactic potential for preterm infants, when put 
to the test in high-quality trials, putatively probiotic milk-
derived bacteria such as Bifidobacterium breve in isola-
tion fail to consistently prevent sepsis, NEC, and death 
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in preterm infants [178, 179]. Maternal sIGA analysis in 
human preterm infant stools provides interesting associa-
tions, but the most recent Cochrane review on the subject 
fails to show any prophylactic efficacy of administered 
antibodies in preterm neonates, though no studies have 
thoroughly investigated specific isotypes and subclasses 
of prophylactic antibodies, including sIGA specifically, in 
preterm infants [175, 180]. While there is some evidence 
to suggest that infant formula supplemented with specific 
HMOs is both safe and beneficial for infant health, no 
adequately powered RCTs to date have provided results 
about the prophylactic role of HMOs toward NEC, LOS, 
and mortality in formula-fed preterm infants [181].

While it is probable that most or all of these breast 
milk components play important physiological roles in 
protecting the health of the breastfed neonate, current 
human studies have been unable to convincingly reca-
pitulate their protective prophylactic roles in isolation.

Future directions and conclusion

This review summarizes the recent findings related to the 
intertwined preterm neonatal intestinal immunity and com-
mensal microbes of the intestinal tract. The inflammatory 
and microbial signatures of the fetal and neonatal periods 
have lasting consequences throughout life. It is during 
these periods that the microbiome and immune systems co-
develop and are most susceptible to intervention. There is 
potential during these stages to set the course for immune 
homeostasis, just as there is vulnerability to be set astray 
towards pathogenic inflammation, dysbiosis, and chronic 
disease. What is currently thought about the former is sum-
marized in Fig. 1, while our best concept of the latter of 
these conditions is summarized in Fig. 2. With better under-
standing and implementation of principles outlined in this 
review, it is our hope that preterm neonates will receive 
improved therapies and subsequent outcomes in the future.

Public health initiatives involving proper pregnancy 
practices and breastfeeding should continue to be a top pri-
ority for the improvement of neonatal intestinal mucosal 

Fig. 2   Pathogenic neonatal intestinal microenvironment leading to NEC and sepsis, especially in the vulnerable preterm infant
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immunity and health outcomes in the US. Beyond public 
health approaches, an increased multi-omics-based under-
standing of cross-talk between the neonatal preterm intes-
tinal microbiota and the associated mucosal immunity will 
serve to educate future interventional strategies to treat and 
prevent diseases such as necrotizing enterocolitis and neona-
tal late-onset sepsis, which currently have progress stymied 
for lack of effective new approaches. Novel strategies might 
include practices that currently lack enough understanding 
for implementation, such as improved infant formula, donor 
breast milk supplementation, engineered bacteriophage 
treatment, altered antibiotic and steroid use, birthing prac-
tices, and more. Learning to engineer microbial community 
compositions of preterm infants and specific individual gut 
microbes and phages within them for therapeutic use might 
prove to be a promising approach toward remedying the 
imbalance of incoming basic science to the relative dearth 
of applied translational therapies involving the neonatal 
microbiome.

Improvements in culture methods might further our 
understanding of the “in utero” microbiome more than the 
current bacterial DNA harvested from healthy placenta sam-
ples. As evidence mounts, the questions investigators ask 
may extend past “Is the womb sterile?” Finally, improved 
models for necrotizing enterocolitis and neonatal late-onset 
sepsis, such as innovations of more realistic organoid and 
murine models, will further our understanding of the root 
causes of pathophysiological mechanisms along with novel 
therapeutics that target them. Only time will tell what out-
comes may come of these avenues.
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