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Abstract
As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural prop-
erties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the 
phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, 
to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory 
signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. 
Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these 
pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system 
mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. 
The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular 
accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, 
we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathologi-
cal conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells 
and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it 
indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells 
to directly detect ECM-related changes in the tissues which they encounter.

Keywords Collagen endocytosis · Collagen receptors · ECM remodelling · Immune regulation · Fibrosis · Cancer · Defense 
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Introduction

Tissue injury, resulting from trauma or disease, leads to 
numerous actions of immune and inflammatory cells in a 
complicated interplay with the resident non-immune cells 
and the extracellular matrix (ECM) of the tissue in question. 
Depending on the type of injury, local conditions, and sys-
temic factors, these actions may contribute to injury repair 
or, conversely, they may exacerbate conditions through 
increased and sustained inflammation.

Since the ECM acts as a physical support of tissues and 
also takes part in the regulation of several cellular processes, 
alterations in the ECM strongly influence the consequences 
of injury. In many cases, the ECM becomes mechanically 
or enzymatically degraded, followed by cellular uptake of 
degradation products. In other cases, a net accumulation of 
ECM is part of the pathogenic events, leading to a central 
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role of matrix re-uptake processes that serve to counteract 
the excessive deposition [1].

The structural collagen types are the most abundant 
matrix constituents and their complicated pathways of 
degradation and cellular uptake are in the core of ECM-
associated pathological processes. The main focus of this 
article will be on processes related to the interstitial col-
lagens, which include collagen types I, II, and III [2]. We 
first review a number of features of the various collagen 
uptake processes and their associated receptors, and high-
light the influence which these receptors have on collagen 
levels in the ECM in pathological conditions such as cancer 
and fibrosis. By drawing on observations made in published 
in vitro studies and in studies of ECM-related diseases, we 
then discuss the implications of these collagen-degrading 
mechanisms in regulating cellular functions, with a strong 
focus on the control collagen can impose on the phenotypes 
of immune cells.

Collagen turnover in homeostasis and tissue injury

The turnover of collagens in tissues such as bone is not 
restricted to injury or pathological conditions but is also part 
of a healthy steady state condition with de novo deposition 
of collagen balancing collagen turnover. In both homeostasis 
and tissue injury, the same enzymatic and receptor-mediated 
collagen turnover processes seem to be operative. There-
fore, the major difference between homeostatic and trauma-
associated collagen turnover lies in the net balance between 
synthesis and turnover [3].

The initial cleavage of collagens in the extracellular envi-
ronment is undertaken by specialized members of the matrix 
metalloprotease (MMP) family and, in the bone compart-
ment, by osteoclast-derived cathepsin K. These proteolytic 
processes have been treated in several recent reviews (e.g., 
[4, 5]) and will not be covered in detail here. The cell types 
responsible for collagen degradation differ from tissue to 
tissue and between different physiological and pathologi-
cal conditions. In most cases, fibroblasts, macrophages, 
or specialized tissue-resident cells with a close relation to 
either fibroblasts or macrophages dominate. For instance, 
during homeostasis of skin and cartilage, both of which are 
tissues very rich in interstitial collagens, fibroblasts, or the 
fibroblast-like chondrocytes constitute the key players in col-
lagen degradation [6–8]. Likewise, osteoclasts, which derive 
from progenitors of a monocyte/macrophage hematopoietic 
lineage, constitute the major collagen-degrading cell type 
in bone homeostasis [9]. In pathologies such as cancer, col-
lagen degradation is mediated by the concerted action of 
cancer cells and stromal cells, but with stromal fibroblasts 
and macrophages being the major contributors [10, 11]. In 
other pathologies with a more anatomically distinct appear-
ance, cell types not related to macrophages and fibroblasts 

may, however, also facilitate collagen degradation. Examples 
of these include endothelial cells that facilitate collagen II 
degradation in the vitreous humour of the eye in proliferative 
diabetic retinopathy [12, 13] and vascular smooth muscle 
cells which degrade collagen III in the medial layer of the 
walls of blood vessels, when infiltrating the subendothelial 
space where they can form neointimal scar tissue [14, 15]. In 
the following, we will focus on the cellular collagen uptake 
mechanisms that constitute a crucial part of the degradation 
machinery, but which have been subject to less investigation 
(Fig. 1).

Two major pathways of intracellular collagen degradation 
have been identified: (1) a phagocytic uptake of particulate 
collagen and (2) a receptor-mediated endocytosis of pre-
solubilized collagen. Both of these pathways are likely to be 
preceded by one or several steps of collagen cleavage prior 
to collagen internalization. Importantly, however, collagen 
uptake is still a rate-limiting factor in turnover, because, in 
its absence, undigested collagen material accumulates in the 
extracellular space [16, 17].

Collagen phagocytosis

Fibroblasts are one of the principal cell types engaged in the 
phagocytosis of collagens. Thus, collagen fibrils, phagocy-
tosed from the extracellular space, can be observed in fibro-
blasts by electron microscopy [18]. Collagen-coated beads 
have been employed to study various details of the phago-
cytic process in this cell type. In gingival fibroblasts, this 
process is strongly dependent on the α2β1 integrin [19, 20], 
in accordance with the well-defined binding of collagen to 
this integrin [21]. Studying the same cell type, MT1-MMP 
was found to be the major protease responsible for collagen 
cleavage preceding phagocytosis [22].

The collagen-binding proteoglycan, decorin, has some 
regulatory function in collagen phagocytosis, since increas-
ing the binding of decorin to collagen leads to a decrease 
in the integrin-dependent phagocytosis of collagen-coated 
beads [23]. The role of fibronectin is less clear. The α2β1 
integrin-dependent, cellular uptake of collagen has indeed 
been shown to be increased under conditions where 
fibronectin-mediated stabilization of collagen I fibrils was 
inhibited [24], but this effect might both be related to col-
lagen phagocytosis and to the receptor-mediated endocytic 
process described below.

Receptor‑mediated collagen endocytosis

Clathrin-dependent endocytosis of collagens involves well-
defined endocytic receptors with collagen-binding specific-
ity of which two have been identified. These receptors are 
the urokinase plasminogen activator receptor-associated pro-
tein (uPARAP/Endo180), expressed on several mesenchymal 
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cell types and some macrophages, and the mannose receptor 
(MR, CD206), expressed on macrophage and dendritic cell 
subsets, and certain endothelial cells. uPARAP/Endo180 and 
MR are type-1 transmembrane proteins with a very similar 
domain organization [25–28], and they both bind to col-
lagens through their fibronectin type-II domain, the second 
domain from the NH2-terminus [29, 30].

uPARAP/Endo180 is expressed on activated fibroblasts 
during processes of ECM remodelling [17, 31] and on cer-
tain osteoblast-like cells, including lining cells [32, 33]. It 
is a constitutively recycling, clathrin-associated receptor, 
delivering its cargo to the endosomal system [34]. uPARAP/
Endo180 efficiently endocytoses collagens of many or all 
subtypes in a process that ultimately leads to lysosomal 
degradation of the endocytosed collagen and recycling of 
unliganded uPARAP/Endo180 to the cell surface [35–39]. 
Since the clathrin-dependent route of endocytosis would not 
allow the internalization of large collagen particles, one or 
several collagen cleavage steps must precede this cellular 
uptake. Accordingly, fibroblast-expressed MT1-MMP can 
act on a polymerized collagen matrix to generate fragments 
that are efficiently internalized by uPARAP/Endo180 for 
intracellular degradation in the same cells [40]. Although 
this consecutive reaction pattern resembles that observed 
for the phagocytic process above, these pathways are clearly 

distinct. Thus, uPARAP/Endo180 is not involved in collagen 
phagocytosis in fibroblasts [41, 42].

Although uPARAP/Endo180-deficient mice are viable 
and fertile [35, 36], deficiency of this receptor leads to a 
minor delay of bone growth in mice [43, 44]. In contrast, 
a pronounced bone defect is observed in “Belgian Blue” 
cattle carrying a null mutation in uPARAP/Endo180 [45, 
46], suggesting that the impact of uPARAP/Endo180-loss is 
species-specific. No human pathological condition has been 
ascribed to mutations in the uPARAP/Endo180 gene so far.

MR is a multi-ligand receptor, which can bind and inter-
nalize collagen in a manner very similar to that of uPARAP/
Endo180 [29, 47], and indeed, they are receptors belong-
ing to the same protein family. Although this protein fam-
ily includes a total of four endocytic receptors, uPARAP/
Endo180 and MR are the only collagen receptors in it [30].

The role of uPARAP/Endo180 and MR in collagen uptake 
and their relative contribution to this process in vivo has 
been investigated in several studies. When heat-denatured 
collagen is introduced into the blood stream of mice, this 
material is cleared by liver sinusoidal endothelial cells in 
a process that is strictly dependent on MR [48]. Collagen 
uptake has also been studied in detail in the skin [49, 50]. 
Here, M2-like macrophages were identified as a major cell 
type in collagen uptake, with a smaller contribution from 

Fig. 1  Collagen homeostasis is governed by cellular uptake of col-
lagen, extracellular collagenolysis, and synthesis of new collagen. 
Fibroblasts and macrophages are the principal cell types engaged in 
the maintenance and remodelling of collagen structures in the ECM. 
Collagens are broken down by extracellular proteases produced by 
these cells. Most of the proteases that degrade collagens belong to 
the MMP protein family. Larger pieces of collagen are taken up by 
macrophages through phagocytosis. Pre-fragmented collagens are 

endocytosed by macrophages via MR and by fibroblasts via uPARAP. 
Collagens engulfed through phagocytosis or taken up via recep-
tor-mediated endocytosis are subsequently degraded in lysosomes 
through the action of cysteine cathepsins. Fibroblasts also consti-
tute the main collagen-producing cells. Discoidin Domain Receptors 
(DDRs) and β1-integrins constitute other known collagen recep-
tors, but no role of these receptors in collagen homeostasis has been 
described
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fibroblasts, and both MR and uPARAP/Endo180 could be 
shown to contribute to the collagen clearance process, being 
expressed by distinct subpopulations of macrophages.

Collagen uptake in disease

Several human diseases feature pronounced perturba-
tions of collagen homeostasis, and in some of these, a net 

accumulation or an excessive degradation directly contrib-
utes to the pathogenesis.

Fibrosis

Collagen deposition is a hallmark of fibrosis, and in several 
fibrotic conditions, the extent of collagen uptake turns out 
to be critical for disease severity. In human cirrhotic liv-
ers, as well as in mice in which liver fibrosis was induced 
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by repeated exposure to  CCl4, a strong upregulation of 
uPARAP/Endo180 was observed in hepatic stellate cells 
and in activated fibroblasts adjacent to collagen deposition 
[17]. This upregulation of uPARAP/Endo180 was function-
ally important, as an increased net deposition of collagen 
was observed after ablation of the uPARAP/Endo180 gene 
(Fig. 2a). Similar studies in mice have shown that uPARAP/
Endo180 is upregulated in interstitial myofibroblasts in renal 
fibrosis, where it serves to counteract collagen deposition 
in the same manner, as shown in gene inactivation studies 
[51]. In the mouse lung, after treatment of mice with bleo-
mycin, the accumulation of collagen was likewise enhanced 
in uPARAP-deficient mice, but in this case, parameters such 
as alveolar permeability to fluorescent dextran were also 
affected by uPARAP/Endo180 deficiency [52]. The alveo-
lar macrophage glycoprotein, milk fat globule epidermal 
growth factor 8 (Mfge8), can bind to collagen accumulations 
in the lung and has been found to facilitate the re-uptake of 
this material, in this case undertaken by macrophages in 
the fibrotic lungs of bleomycin-treated mice, thus decreas-
ing the severity of the fibrotic condition [53]. Macrophages 
have also been shown to be critical for collagen degradation 
associated with liver fibrosis resolution, although the exact 

collagen-degrading mechanisms employed by the cells in 
this context is yet unknown [54].

Cancer

Cancer invasion invariably includes degradation of ECM, 
including the breakdown of existing collagen scaffolds, and 
remodeling of de novo tumor-generated ECM. However, 
since this matrix differs markedly between different tissues 
and tumors, and since the collagen-degrading components 
differ between different cancer types, the mechanisms of col-
lagen degradation are not uniform.

In the most common (carcinoma-type) cancers, the 
tumor cells themselves do not express endocytic colla-
gen receptors, in accordance with the epithelial lineage of 
these cancers (Review: [31]). However, a strong upregula-
tion of uPARAP/Endo180 occurs in tumor-associated non-
malignant cells of carcinomas. This has been studied in 
detail in human mammary carcinoma, where a pronounced 
expression of uPARAP/Endo180 was observed in cancer-
associated fibroblasts (CAFs) [55]. The upregulation of 
the receptor is functionally relevant, because studies in a 
genetic mouse mammary tumor model (the MMTV–PyMT 
model) showed increased accumulation of intra-tumor col-
lagen in mice with inactivation of the uPARAP/Endo180 
gene [16] (Fig. 2b). Furthermore, at least in some cases, the 
CAF-mediated uptake of tumor-associated collagen deposits 
appears to facilitate tumor progression, since the same study 
showed a delay in tumor growth in the uPARAP/Endo180-
deficient mice. A strong stromal upregulation of uPARAP/
Endo180 has also been observed in head-and-neck cancers 
[56] and several other carcinoma-type cancers (LH Engel-
holm, unpublished), although the contribution of uPARAP/
Endo180 to collagen turnover and tumor progression in 
these cancers remains to be established.

In some less common cancer types, uPARAP/Endo180 
may be expressed by the cancer cells themselves. This is 
the case in sarcomas including osteosarcoma [57], in the 
rare, and highly malignant, basal-like type of breast cancer 
[58] and in subsets of glioblastoma multiforme (GBM) [59]. 
In these cancers, uPARAP/Endo180 may prove useful as a 
pharmacological target, either through a functional block-
ing strategy [57] or as a mediator of targeted drug delivery, 
exploiting the capacity of uPARAP/Endo180 to efficiently 
internalize ligand [60].

Tumor-associated macrophages (TAMs) are also highly 
active in the uptake of collagen. This has been shown in 
mice carrying syngeneic Lewis lung carcinoma (LLC) cells, 
growing as subcutaneous tumors. In this model, TAMs were 
the dominant cell type in the uptake process, with MR being 
the responsible receptor and with the TAMs most likely 
originating from C–C chemokine receptor type 2 (CCR2)-
positive monocytes [10]. As shown for uPARAP/Endo180 

Fig. 2  Endocytic collagen receptors uPARAP/Endo180 and MR 
regulate collagens in disease. a uPARAP/Endo180 deficiency results 
in increased collagen accumulations after systemic  CCl4 treatment 
in a mouse model of liver fibrosis. In this study, collagen levels in 
tissue sections from control livers (isolated from vehicle-injected 
mice) or fibrotic livers from wild-type mice or uPARAP/Endo180-
deficient littermates injected with  CCl4 in the peritoneum twice a 
week for 6  weeks were determined using Picrosirius Red staining 
and computer-assisted image analysis. Reproduced with permission 
from Wiley [17]. b uPARAP/Endo180 deficiency results in increased 
accumulation of collagen in a genetic model of mouse mammary 
tumors. Collagen levels were determined using immunohistochemical 
staining for collagen type I on tissue sections from mammary tumors 
isolated from female mice carrying the MMTV–PyMT transgene. 
Tumors were isolated from uPARAP-expressing mice (representative 
image in top left panel) or uPARAP/Endo180-deficient littermates 
(representative image in bottom left panel). Scale bar: 500 µm. The 
level of endogenous collagen inside tumors was determined using 
histomorphometric analysis (right panel). Reproduced with permis-
sion from Rockefeller University Press [16]. c MR drives the cellular 
uptake of collagens by TAMs and MR-deficiency results in increased 
collagen accumulation in a transplanted LLC tumor model. Fluores-
cently-labelled collagen was injected into syngeneic LLC  tumors 
implanted in the subcutaneous space of C57BL/6 mice and the cellu-
lar uptake of collagen was visualized using confocal imaging of intact 
tumors isolated from wt mice (MRC1 + / + , upper left panel) and 
MR-deficient littermates (MRC1 −/−, upper right panel). The number 
of TAMs (F4/80 + CD11b +) with a high level of collagen uptake was 
quantified using flow cytometry-based analysis of single-cell suspen-
sions generated by mechanical and enzymatical digestion of tumors 
(lower left panel). Intratumoral collagen levels in tumors from wt 
mice and MR-deficient littermates were determined using Picrosirius 
Red stainings of tumor tissue sections (lower center panels) and com-
puter-assisted image analysis (lower right panel). Reproduced with 
permission from CellPress [10]

◂
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in the MMTV-PyMT mammary tumor model, ablation of 
MR in the LLC model also resulted in increased accumula-
tion of intra-tumoral collagen [Fig. 2c, compare wild-type 
(MRC1 +/+) and MR-deficient mice (MRC1 −/−)].

Collagen and cultured immune cells

The above-described studies of uPARAP/Endo180 and MR 
in fibrosis and cancer have documented a key function of 
these receptors in collagen clearance in normal physiology 
and in several disease processes. The regulation of collagen 
levels by the two receptors has a profound impact on the 
cells imbedded in and interacting with the ECM, as shown 
by the enhanced fibrosis and impaired tumor progression 
associated with the ablation of uPARAP/Endo180 and 
MR. In the following sections, we will review the literature 
describing a functional relationship between collagen and 
immune cells of different origin, and we will discuss how 
receptors engaged in collagen uptake directly and indirectly 
may regulate immune responses in pathological conditions.

The major evidence showing that the ECM, and in par-
ticular collagen, modulates the behavior of immune cells 
originates from studies of cultured immune cells in various 
in vitro assays. In these assays, immune cells have typically 
been exposed to soluble forms of collagen, or grown on 
2D collagen matrices or embedded in 3D collagen-based 
hydrogels. Although these model systems are highly simpli-
fied, they allow for ready manipulation of culture conditions 
and the effects of various types and densities of collagen 
can be evaluated. Already in 1976, Postlethwaite and co-
workers discovered that soluble collagen fibrils and colla-
gen fragmented into small peptides possessed the ability to 
attract cultured human monocytes, thereby providing some 
of the earliest evidence for collagen directly influencing 
immune cell function [61]. Since then, numerous examples 
of immune cell functions being affected by collagen have 
been reported. These studies include the demonstration that 
collagen type I can stimulate the differentiation of mono-
cytes into macrophages [62] and induce the acquisition 
of an M2-like macrophage phenotype [63]. In support of 
this, we recently described that 3D cultured macrophages 
become more immunosuppressive when surrounded by a 
high collagen density compared to a low collagen density 
[64]. Furthermore, collagen has also been shown to stimulate 
the differentiation of monocytes into dendritic cells [65] and 
enhance dendritic cell activation [66]. The ability of other 
ECM molecules in tumors to interact with myeloid cells of 
the immune system and affect their functions has recently 
been reviewed [67].

The ability of dense 3D collagen matrices to impose 
physical constraints on T cells or in other ways guide or 
direct their movement has been documented [68–70], but 

additionally, we have also recently demonstrated that col-
lagen can directly affect the activity of T cells [71]. Specifi-
cally, primary T cells that are 3D-cultured in collagen type 
I matrices of high density become less cytotoxically active 
compared to T cells cultured in a low collagen density. It is 
still unknown if this effect is related to the ability of T cells 
to sense changes in the stiffness of the surrounding matrix, 
although other groups have demonstrated that activation of 
the T-cell receptor can indeed be modulated by changes in 
substrate stiffness [72, 73].

Altogether, these in vitro studies indicate that collagen 
could promote the generation of an immunosuppressive 
tumor microenvironment by affecting myeloid cells as well 
as T cells.

Immune regulation by collagen in cancer

As a tumor develops, the gradual breakdown of local tissue 
ECM and the deposition of a new tumor-associated ECM 
generate a tumor-specific microenvironment with altered 
structural and cell-regulating properties [74, 75]. This 
tumor-specific ECM is typically very rich in collagen with 
a high degree of cross-linkage [76–80], which likely contrib-
utes to the increased tissue stiffness and density observed in 
different types of tumors.

Studies of breast cancer have so far provided the most 
insight into the impact of dense and stiff collagen structures 
on tumor progression, invasion, and metastasis. Breast tis-
sue density, in large parts caused by high levels of deposited 
collagen, is a strong and independent risk factor for breast 
cancer development [81]. In addition, collagen density and 
the degree of collagen fiber alignment are associated with 
poor overall survival [82–84]. The role of collagen in breast 
cancer progression has also been studied in transgenic mice 
with manipulated collagen properties or with altered colla-
gen degradation. In one such model, a knock-in mouse line 
expressing a mutated, collagenase-resistant form of collagen 
type I, known as the  Col1a1tm1Jae mouse line [85] or colla-
gen R/R mice, was combined with genetic mouse models of 
breast cancer [86, 87]. In another work, mice deficient for 
the collagenase, MMP-13, were studied in combination with 
a syngeneic, transplanted mammary cancer model [88], and 
in a third study, breast cancer models were combined with 
manipulation of collagen cross-linkage, either by inhibiting 
Lysyl oxidase (LOX) or by promotion of collagen cross-
linkage by increased expression of LOX in the tumor stroma 
[77]. Collectively, these studies demonstrated that increased 
stromal collagen levels and cross-linkage in tumors are asso-
ciated with enhanced tumor growth and metastasis. In many 
other human cancers, collagen density and stiffness has also 
been shown to correlate with invasion, disease aggressive-
ness, and clinical outcome [89–93].
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The means by which increased collagen density and stiff-
ness promote tumor progression in the above-mentioned 
studies are not well understood. But relevant to this open 
question, Pickup and co-workers have argued that all hall-
marks of cancer are potentially influenced by tumor-asso-
ciated changes to the ECM (review: [94]). Rooted in the 
increasing realization of the importance of immune regula-
tion in cancer and the ability of collagen to influence cell 
behavior, it is tempting to speculate that increased colla-
gen density and stiffness may be a pivotal mechanism for 
controlling immune cell phenotypes. In one likely scenario, 
an altered ECM may serve to ensure protection of tumors 
against immune destruction by cytotoxic T cells. In sup-
port of this hypothesis, studies of T cells in pancreatic and 
lung cancer suggest that dense stromal collagen structures 
impair T-cell migration and block these cells from coming 
into contact with tumor cells [70, 95]. This concept was also 
briefly reviewed by others in a context of immunotherapy 
efficacy, which may be negatively regulated by increased 
matrix density and stiffness [96].

Another immune cell type potentially influenced by the 
tumor-derived ECM is TAMs, with this question being par-
ticularly complicated in the light of the same cell type being 
directly involved in both the deposition and the degradation 
of collagen matrices in cancer [10, 97, 98]. In human lumi-
nal breast cancer lesions, increased deposition and stiffness 
of collagen has been reported in the invasive front. These 
differences in collagen correlated with an increased num-
ber of TAMs, when compared to the less collagen-rich core 
of the lesions or to non-invasive ductal carcinoma in situ 
[84]. In a study of the relationship between mammographic 
density, stromal collagen, and immune cells in prophylacti-
cally resected breast tissue from patients with high risk of 
cancer, regions of high mammographic density displayed 
increased levels of collagen and a reduced level of MR-
positive macrophages when compared to regions with low 
mammographic density [99]. Although these studies point 
to somewhat opposite effects, they both suggest an intimate 
relationship between macrophage numbers or phenotype 
and collagen density and stiffness. However, they do not 
provide any immediate answer to the question of whether 
macrophage biology is mainly modulated by the matrix or 
vice versa.

Finally, neutrophils have also been reported to be affected 
by collagen density in tumors. García-Mendoza and co-
workers combined the collagen R/R mice with a genetic 
breast cancer model and investigated the effects of depleting 
neutrophils using an antibody [100]. Neutrophil depletion 
did not affect breast tumors growing in wild-type mice, but 
both the burden of collagen-rich primary tumors and number 
of metastases were strongly reduced upon neutrophil deple-
tion in the collagen R/R mice. These observations led the 
authors to speculate that the progression of tumors may be 

mechanistically different when collagen density increases 
[100].

Immune regulation by collagens in fibrotic 
disease

A large number of reports have addressed the basic mecha-
nisms of fibrosis, the origin of collagen-producing myofibro-
blasts, and the events that lead to their activation, and excel-
lent reviews are available on these topics (including recent 
reviews by [101, 102]). Many different types of immune 
cells have also been reported as instrumental in driving the 
pathogenesis of fibrosis, including macrophages, monocytes, 
dendritic cells, neutrophils, B cells, and T cells [103–108]. 
Subsets of T cells, dendritic cells, and macrophages have 
also been shown to protect against and help resolve fibrosis 
[54, 109–111], clearly illustrating the complicated biology 
of this type of disease. Despite the unquestionable contribu-
tions of immune cells to the development of fibrotic disease, 
very little is known about how immune cells themselves 
respond to the accumulation of collagen in affected tissues. 
The same applies to the role this might play in either the 
sustained pathogenesis of fibrosis and in fibrosis resolution.

Two studies that may shed some light on this matter 
include the original report of the generation of a mouse line 
expressing a collagenase-resistant mutated form of colla-
gen type I [85] (see above) and a more recent report that 
characterizes a mouse line with a specific knock-out of the 
important collagenase, MMP-14/MT1-MMP, in dermal 
fibroblasts [6]. In these reports, the two mouse lines, which 
both have a reduced capacity for collagen degradation, pre-
sent with an increased accumulation of collagen in the der-
mis in the absence of any external stimuli or tissue damage. 
Importantly, neither of these studies reported any signs of 
increased dermal presence of inflammatory cells, indicating 
that an elevated collagen level does not in its own right lead 
to the recruitment and activation of immune cells.

The above studies were done in an otherwise healthy set-
ting. In the context of systemic sclerosis and various liver 
diseases, collagen, however, does appear to be able to mount 
an immune response, as evidenced by the detection of auto-
antibodies against collagen type I and IV, among others, 
in patient sera [112–114]. Interestingly, the level of anti-
collagen antibodies correlated with the degree of fibrosis 
[113]. Sawada et al. also reported that mononuclear cells 
from patients suffering from liver disease were sensitive 
to stimulation by collagens and that this property was not 
shared by cells from healthy subjects [114]. Providing addi-
tional evidence that the fibrotic ECM itself plays a role in 
maintaining and increasing a fibrotic response, decellular-
ized lung ECM from idiopathic pulmonary fibrosis (IPF) 
patients stimulated the upregulation of genes encoding ECM 
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proteins in primary fibroblasts, when compared to the effects 
of non-fibrotic lung ECM. This prompted the authors to sug-
gest that a positive feedback loop which promotes further 
ECM deposition exists in IPF [115].

Based on the above-mentioned in vitro studies addressing 
the effect of collagens on immune cells and the studies of 
fibrosis discussed here, we speculate that a feedback mecha-
nism in fibrosis may also encompass pro-fibrotic or anti-
fibrotic immune cells that become sensitized and primed 
for collagen-stimulation. Such a mechanism may involve 
signaling or signaling-inhibitory molecules such as the 
collagen receptors leukocyte-associated immunoglobulin-
like receptor 1 (LAIR-1) and osteoclast-associated receptor 
(OSCAR), known to be expressed by immune cells. These 
receptors (see section below) could potentially be induced or 
upregulated during fibrosis, thereby enabling immune cells 
to directly respond to changes in the ECM. It follows that 
any such response of immune cells would be highly sensitive 
to those mechanisms that regulate collagen turnover in the 
ECM, including endocytic cellular uptake of collagens [17, 
51, 52] or extracellular collagenolysis [116].

ECM‑sensing collagen receptors expressed 
by immune cells

For changes in collagen level or structure to be perceived 
directly by immune cells, signalling receptors recognizing 
collagens are presumably required to be expressed on these 
cells. The majority of known mammalian collagen receptors, 
including collagen-binding integrins (e.g., β1-integrins), dis-
coidin domain receptors (DDRs), and Glycoprotein VI, are 
mainly expressed on epithelial and mesenchymal cells, or 
on platelets (reviewed in [117]), although a few reports do 
suggest a role of DDRs in macrophage and T-cell movement 
in collagen matrices [118, 119]. Two collagen receptors with 
a more general immune-activating or immune-inhibitory 
potential have, however, been proposed. These are LAIR-1 
and OSCAR, which we review in the following.

LAIR‑1

The first immune regulatory receptor found to possess colla-
gen-binding activity was the inhibitory LAIR-1 [120, 121]. 
LAIR-1 is broadly expressed by immune cells (Fig. 3) and 
interacts with a wide range of both ECM and cell surface-
associated collagens [121–123]. The immune-inhibitory 
effects of LAIR-1 are exhibited through its two cytoplasmic 
Immune Receptor Tyrosine-based Inhibition Motifs (ITIMs) 
and have been thoroughly documented (reviewed in [124]). 
However, the potential of collagens to activate this receptor 
has been addressed in a limited number of in vitro stud-
ies only. These studies do include the recent demonstration 

that collagen type I fragments inhibit osteoclast formation 
through LAIR-1 in a negative feedback mechanism [125] 
and that soluble collagen type I and II blocks the activation 
of splenocytes and subsets of T cells via LAIR-1 [126].

Two research groups have generated and character-
ized LAIR-1-deficient mice [127, 128] and neither group 
reported severe phenotypes in unchallenged mice. Smith and 
colleagues [128] focused on unravelling a role of LAIR-1 
in platelet maturation, whereas Tang and colleagues [127] 
demonstrated that loss of LAIR-1 causes modest alterations 
in subsets of leukocytes in the spleen. However, in models of 
airway inflammation induced by respiratory syncytial virus 
infection or cigarette smoke exposure, a dramatic effect of 
LAIR-1 was found on neutrophil recruitment, with the recep-
tor-deficient mice having highly elevated levels of these cells 
present in the alveolar space, resulting in more severe dis-
ease progression [129]. In models of arthritis, LAIR-1-de-
ficient mice also developed a more severe disease, whereas 
mice in which LAIR-1 was activated using an antibody were 
protected from arthritis [126]. These animal studies confirm 
a potent inhibitory effect of LAIR-1 on immune cells, but, 
importantly, no studies have so far addressed the role of col-
lagens in inducing altered immune cell phenotypes through 
LAIR-1 in vivo.

A few studies have recently addressed the expression of 
LAIR-1 in human cancers, including ovarian cancer [130], 

Fig. 3  LAIR-1 and OSCAR and the regulation of immune cells by 
collagens. The collagen receptor LAIR-1 is expressed by the majority 
of immune cells, including T cells, B cells, neutrophils, macrophages, 
and monocytes. LAIR-1 generally functions as an immune-inhibitory 
collagen receptor, which, upon ligand binding, blocks the activa-
tion or differentiation of these cells. The collagen receptor OSCAR 
is expressed by human myeloid-derived immune cells, including 
osteoclasts, macrophages, monocytes, neutrophils, and dendritic cells 
(not shown). Opposite to LAIR-1, OSCAR functions as a stimula-
tory receptor, which activates immune cells through associations with 
FcRγ. In mice, the expression of OSCAR may be more limited and 
has so far only been demonstrated on osteoclasts
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hepatocellular carcinoma [131], cervical cancer [132], and 
oral squamous cell carcinomas [133]. These studies revealed 
a common picture in which LAIR-1 is upregulated in the 
tumor stroma as compared to normal tissues, and also 
showed a positive correlation between LAIR-1 expression 
levels and the pathological grade of disease [131–133]. 
However, any potential correlations with collagen status and/
or immune cell activity in tumors remain to be explored. 
Nonetheless, these studies in human cancers support that 
LAIR-1 may constitute a novel receptor that tumor cells can 
exploit to achieve immune evasion, a mechanism proposed 
as early as in 2010 [134]. With the successes of check-point 
inhibition-based cancer immune therapy in mind, explora-
tion of the immune regulatory functions of LAIR-1 in vivo 
may prove highly valuable in future cancer immunology 
research, including investigations into the potential of block-
ing the collagen–LAIR-1 interactions as an anti-cancer treat-
ment strategy.

OSCAR 

Another immune receptor with collagen-binding activity is 
OSCAR. OSCAR was originally identified as a regulator 
of murine osteoclastogenesis [135], and to date, osteoclasts 
appear to be the main OSCAR-expressing cells in mice. 
In humans, the expression of OSCAR is broader and this 
receptor has been demonstrated on most myeloid cells [136, 
137] (Fig. 3). In contrast to LAIR-1, OSCAR is an immune-
activating receptor, which is enabled by its association with 
the Fc receptor common γ (FcRγ) [138, 139]. The discovery 
that OSCAR is a receptor for collagens [138] was correlated 
nicely with its function in osteoclastogenesis. Barrow and 
colleagues [138] also generated OSCAR-deficient mice and, 
using these mice, confirmed the osteoclast-related functions 
of the collagen receptor in vivo. The OSCAR null mice dis-
played a decrease in osteoclast numbers and size as well as a 
reduced bone erosion surface and increased trabecular bone 
volume, but only when OSCAR deficiency was combined 
with the loss of the DNAX-activating protein of 12 kDa 
(DAP12), an osteoclastogenesis-promoting adaptor protein, 
in OSCAR/DAP12 double-deficient mice. This suggests a 
large degree of redundancy within osteoclastogenesis. In two 
more recent studies, OSCAR-blocking antibodies were used 
to demonstrate that the collagen–OSCAR interaction stimu-
lates a pro-inflammatory activation of human monocytes and 
monocyte-derived dendritic cells [65, 140]. Collagen type II 
was demonstrated to be especially potent in activating these 
immune cells. Combined with studies showing OSCAR 
expression in synovial tissue and fluids from patients suf-
fering from rheumatoid arthritis [140, 141], and a positive 
correlation between OSCAR expression and disease activity 
[141], these observations have prompted the suggestion that 
OSCAR promotes ongoing joint disease [140].

Unfortunately, similar to LAIR-1, there is still a lack of 
studies addressing a role of OSCAR in regulating immune 
cells in conditions such as fibrotic disease and cancer. 
However, with the proposed opposite roles of LAIR-1 and 
OSCAR in immune regulation outlined above, the expres-
sion and activation of one or the other on immune cells may 
be a decisive factor determining if inflammation progresses 
or becomes resolved in pathological situations in which the 
ECM and collagens are key players (Fig. 3).

Interactions of collagen receptors 
with defense collagens of the innate 
immune system

Within the last 5–7 years, a handful of independent studies 
have shown that ECM-derived structural collagens share a 
number of receptors with defense collagens, a designation 
used for a group of soluble collagen-like proteins, which 
contain short triple-helical collagen domains and have func-
tions in the innate immune system [142–145]. Collagen 
receptor/defense collagen couplings include the interactions 
between uPARAP, LAIR-1 and OSCAR with one or more of 
the defense collagens surfactant protein D (SP-D), mannose-
binding lectin (MBL), and C1q. An interesting aspect of 
these interactions is highlighted by the defense collagens’ 
short collagen-like triple helix. Although this segment com-
prises 60 Gly-X–Y triplets or less in the defense collagens 
vs. typically more than 300 Gly-X-Y triplets in structural 
collagens, this is sufficient to harbour one or more binding 
sites for cell surface receptors with very different collagen-
binding motifs. For example, uPARAP interacts with colla-
gen via its fibronectin type-II domain [30], whereas LAIR-1 
and OSCAR utilize distinct binding mechanisms involving 
extracellular Ig-like domains [146, 147]. However, regard-
less of differences in binding mechanism, each of these inter-
actions between collagen receptors and defense collagens is 
likely a part of an immune regulatory pathway.

uPARAP/Endo180 and the cellular clearance 
of defense collagens

The majority of collagen subtypes, including collagens type 
I, IV, and V, are ligands for uPARAP/Endo180 and MR. 
Moreover, the two receptors appear to utilize very similar 
binding mechanisms in their interactions with structural col-
lagens (see “Introduction”). Recently, we demonstrated that 
uPARAP/Endo180 is also active in the uptake and intra-
cellular degradation of several defense collagens, includ-
ing SP-D and MBL [142]. Surprisingly, this ability was not 
shared by MR. The uPARAP/Endo180-mediated uptake of 
defense collagens appears to be a mechanism by which acti-
vated fibroblasts, the main uPARAP/Endo180-expressing 
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cells, can directly regulate immune responses. Following 
tissue injury, MBL and SP-D are recruited to extravascular 
sites, where they may either promote or dampen the result-
ing inflammation. For example, SP-D protects against lung 
injury caused by inflammation induced by bleomycin [148, 
149], whereas MBL promotes injury induced by ischemia 
and reperfusion [150, 151]. Although the molecular mech-
anisms behind these functions of SP-D and MBL remain 
elusive, it is evident in both cases that their regulation and 
turnover are important for disease outcome. In this setting, 
the uPARAP/Endo180-mediated uptake and clearance of 
defense collagens constitutes a mechanism with the potential 
for both promoting and limiting inflammation [142].

LAIR‑1 and OSCAR as receptors for defense 
collagens

The classical functions of defense collagens include the acti-
vation of complement and agglutination or opsonisation of 
pathogens. The discovery that defense collagens are ligands 
of collagen receptors expressed by immune cells naturally 
suggests a range of new potential functions of these com-
ponents. C1q was the first defense collagen identified as a 
ligand for LAIR-1 [145], and not long after, SP-D was iden-
tified as a ligand of both LAIR-1 and OSCAR [143, 144].

In general, it seems that the effects of C1q and SP-D 
interacting with LAIR-1 and/or OSCAR are similar to the 
engagements of the two receptors with structural collagens 
(see above). C1q has been shown to bind LAIR-1 on the 
surface of human monocytes enriched from peripheral blood 
mononuclear cells and this interaction triggers LAIR-1 phos-
phorylation and a consequent immune suppression of these 
cells, which manifests as a reduced production of inflam-
matory cytokines and a block of differentiation [145, 152]. 
In a subsequent study, the same group suggested that the 
C1q–LAIR-1 interaction is part of a complicated inflamma-
tion-limiting mechanism by which monocytes can be differ-
entiated to acquire a more M2-macrophage like phenotype 
[153].

The effects of SP-D interacting with LAIR-1 have, so 
far, been investigated using a human myeloid leukemia cell 
line. In these cells, SP-D blocked the release of reactive 
oxygen species via LAIR-1, thereby acting as an inflamma-
tion-limiting stimulus [143]. A more surprising result was 
reported regarding the outcome of the interaction of SP-D 
with OSCAR. This interaction was found to potently stimu-
late the release of TNFα by inflammatory monocytes [144]. 
The latter observation does not immediately conform to the 
conception of SP-D being an inflammation-limiting factor 
in respiratory diseases [148, 149].

Based on the limited number of studies addressing the 
relationships between defense collagens and the receptors 
OSCAR and LAIR-1, and the narrow range of experimental 

model systems used to study the connections so far, it is diffi-
cult to interpret their impact on immune cells and inflamma-
tory processes in a general manner. However, with LAIR-1 
expressed by the majority of immune cells and OSCAR by 
human myeloid cells, and with a whole battery of known 
defense collagens as potential ligands, there is clearly a 
potential for functional links in several human pathologies.

Conclusions

Collagen structures can undergo changes during disease pro-
gression as a result of unbalanced collagen synthesis and 
collagen degradation. In the latter process, several cellular 
uptake mechanisms play an important role. These collagen-
related changes in the ECM have a strong potential for 
influencing the functions of resident cells imbedded in the 
matrix, and importantly, immune cells recruited as a result 
of injury. Immune cell movement can become physically 
restricted by increased collagen density, immune cells may 
become phenotypically activated by collagens or they may 
become inhibited. It is clear, however, that these processes 
are far from being completely understood. Future studies 
will provide answers to open questions such as how a dys-
regulated collagen homeostasis affects immune cell pheno-
type and gene expression at a more global level, if immune 
cell-associated collagen receptors become expressed in com-
plex pathological conditions, and, not least, how interfering 
with the collagen-immune cell interactions might affect the 
clinical outcomes in diseases like fibrosis and cancer.
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