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Abstract
DNA damage response, DNA repair and genomic instability have been under study for their role in tumor initiation and 
progression for many years now. More recently, next-generation sequencing on cancer tissue from various patient cohorts 
have revealed mutations and epigenetic silencing of various genes encoding proteins with roles in these processes. These 
findings, together with the unequivocal role of DNA repair in therapeutic response, have fueled efforts toward the clinical 
exploitation of research findings. The successful example of PARP1/2 inhibitors has also supported these efforts and led to 
numerous preclinical and clinical trials with a large number of small molecules targeting various components involved in 
DNA repair singularly or in combination with other therapies. In this review, we focus on recent considerations related to 
DNA damage response and new DNA repair inhibition agents. We then discuss how immunotherapy can collaborate with 
these new drugs and how epigenetic drugs can rewire the activity of repair pathways and sensitize cancer cells to DNA 
repair inhibition therapies.
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Introduction

The DNA repair machinery has evolved to cope with the 
endogenous and exogenous insults against the DNA of the 
cell. Faithful DNA repair is vital for maintaining cell and 
tissue homeostasis, which is evident by the fact that loss-
of-function mutations in DNA repair factors cause genetic 
disorders and increased susceptibility to cancer. A complex 
network of sensors, transducers and effectors, coordinates 
the repair of DNA damage and ensures DNA replication 
fidelity.

Sensor proteins detect all types of DNA structural altera-
tions, including nicks, gaps, double-strand breaks (DSBs), 
and replication lesions. Signal transducers are enzymes that 
control the activity of the cell cycle checkpoints and DNA 
repair pathways initiating signaling cascades to adjacent 

nucleoprotein structures. Effectors repair DNA damage and 
block progression through the cell cycle.

Defects in DNA repair pathways facilitate the accumula-
tion of genomic alterations that contribute to their prolifera-
tion and survival of cancer cells. Nonetheless, tumors rely on 
residual DNA repair capacities to repair the damage induced 
by replication and genotoxic stress. Mammalian cells 
employ at least nine distinct pathways to repair a multitude 
of different genotoxic lesions: mismatch repair (MMR), base 
excision repair (BER), nucleotide excision repair (NER), 
translesion synthesis (TLS), homologous recombination 
(HR), non-homologous end joining (NHEJ), alternative end 
joining (alt-EJ), the Fanconi anemia (FA) and the O6-meth-
ylguanine DNA methyltransferase (MGMT). However, these 
pathways are neither completely independent of one another 
nor mutually exclusive processes handling different types 
of lesions in distinct cell cycle phases. Instead they form a 
precisely regulated network of multifunctional DNA repair 
hubs, which are involved in multiple DNA repair pathways. 
Multiple components of the repair network are deficient in 
cancer cells due to inactivating mutations or transcriptional 
silencing, affecting the functionality of different repair hubs 
and, therefore, the overall capacity for repair in conventional 
chemotherapeutic treatment.
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Next-generation sequencing has uncovered the frequency 
of mutations and copy number alterations across different 
cancer types and demonstrated that alterations of DNA 
repair mechanisms are common events in carcinogenesis. 
However, cancer types show different preferences for inac-
tivation of specific DNA repair processes. For instance, 
mutations in HR genes appear to be enriched in breast and 
ovarian cancer as well as in bladder cancer, cutaneous skin 

melanoma and chronic lymphocytic leukemia. On the other 
hand, certain subgroups of stomach and colorectal adenocar-
cinoma as well as uterine endometrial carcinoma that harbor 
alterations in MMR present a hypermutator phenotype with 
low aneuploidy. Figure 1 presents examples of genomic and 
transcriptomic data of four tumor types showing distinct pro-
files in DNA repair components involving HR and MMR [1]. 
Other cancer types are characterized by enrichment of DNA 

Fig. 1  Genomic and transcriptomic meta-analysis of different solid tumors. TCGA (Pancancer Atlas) mutation, expression and copy number 
alterations were processed using the cbioportal.org platform
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repair deficiencies in more than one pathway. For example, 
prostate cancer accumulates inactivating mutations within 
the HR and NER pathways. Similarly, epigenetic deregula-
tion and promoter DNA methylation cause transcriptomic 
silencing in different components of repair hubs across dif-
ferent cancer types. With increasing understanding of the 
mutational landscape and epigenetic/transcriptional profile 
of cancer genomes and the emerging role of DNA repair in 
tumorigenesis, there has been a shift toward the develop-
ment of drugs that target specific components of the repair 
machinery. Cancer cells that harbor repair deficiencies in 
one DNA repair pathway/component often become hyper-
dependent upon remaining repair pathways for survival and 
proliferation. Therefore, knowing the profile of deregulated 
components of DNA repair networks can help us target 
specifically the compensatory DNA repair pathways in can-
cer cells. Next-generation sequencing that permits whole-
genome mutational analysis brings forth the dawn of pre-
cision medicine, offering the opportunity for personalized 
treatment strategies based on the deficiencies of patient’s 
DNA repair networks (Fig. 2).

DNA damage response (DDR)

DDR involves recognition of double-strand breaks (DSBs) 
or single-strand breaks (SSBs), followed by initiation of an 
extended network of signaling cascades to promote DNA 
repair. These signal cascades can also activate cell cycle 
checkpoint arrest and apoptosis, and influence the aspects of 
DNA repair [2, 3]. These two aspects of DDR, DSB repair 
and checkpoint arrest cooperate to protect genomic integrity 
and their concomitant loss has a critical impact at the early 
steps of tumorigenesis. Defective DNA repair increases the 
mutational load and the genomic instability, whereas mal-
functioning cell cycle checkpoints allow cells with DNA 
damage to proliferate.

DNA‑PKs, ATM, ATR: initiation and activation of DDR

Like many intra-cellular signaling cascades, DNA dam-
age signaling is driven by protein phosphorylation. Three 
kinases, ATM, ATR and DNA-PKs, have a principal role 
in activating DDR. These large proteins share similarities 
in domain organization and structure. Their kinase activity 
is located in the C-terminus and is very similar to that of 
the phospholipid kinase PI3K, with a specific preference 
to serine or threonine residue (Ser/Thr) phosphorylation 
[4–7]. ATM, ATR, and DNA-PKcs must be tightly regu-
lated to prevent aberrant activation. Each kinase requires 
a specific protein co-factor for stable recruitment to DNA 
damage sites. DNA-PKc is recruited and activated at DSB 
ends by a Ku80-Ku70 heterodimer which plays a central 

role in the non-homologous end-joining (NHEJ) DSB repair 
pathway ([8, 9]. ATM is activated and recruited to DSBs by 
the MRE11-RAD50-NBS1 (MRN) complex [10]. ATR is 
recruited to replication protein A (RPA)-coated single strand 
DNA (ssDNA) by its stable binding partner ATRIP [11].

Loss of DDR components is an early event 
in carcinogenesis

In pre-cancerous cells, deregulation of cell cycle control and 
increased replication stress induce stalling and collapse of 
DNA replication forks, which in turn leads to DSB forma-
tion. This continuous formation of DSBs activates TP53 
and DDR components such as ATM and ATR. While this 
activation represents a barrier to tumor progression, the loss 
of one or more DDR pathways and TP53 by mutations in 
early steps of carcinogenesis removes this barrier [12]. This 
is indeed supported by mutational data across major types 

Fig. 2  Diagnostic profiling of defects associated with DNA repair in 
tumors. a Tools used for the molecular and histological characteriza-
tion of tumor cells. b Known genetic alterations associated with com-
promised genome integrity in cancer cells
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of solid tumors. TP53, ATM and ATR are highly mutated 
in bladder cancer (50%, 11.2% and 4.1%), lung adenocar-
cinoma (51.8%, 7.9% and 5.7%) and colorectal adenocar-
cinoma (58.6%, 5.7% and 2.1%, respectively) [13]. Defects 
in ATM and ATR genes significantly contribute to cancer 
initiation and progression via accrual of driver mutations 
and generation of tumor heterogeneity on a background of 
genomic instability.

The concept of synthetic lethality

As mentioned above, inactivating mutations in DNA repair 
components are common and often lead to certain DNA 
repair deficiencies. Cancer cells thus become hyperdepend-
ent on remaining repair pathways for survival and prolifera-
tion. Inhibiting the rescue pathway with a specific chemical 
agent can provide a context for synthetic lethality [14, 15]. 
Synthetic lethality, a concept first described in the 1920s 
[16–18], refers to the event where two viable gene muta-
tions lead to cell death when they co-occur. This concept is 
particularly compelling for cancer therapy, because it allows 
specific targeting of cancer cells that carry a gene mutation 
that is not found in normal cells which are therefore spared.

Targeting PARP1

Targeting BRCA1/2-deficient cancers using poly (ADP-
ribose) polymerase (PARP) inhibitors (PARPi) is a model 
example of synthetic lethality [19]. Rucaprib (Clovis), 
Olaparib (AstraZeneca) and Niraparib (Tesaro Inc.) are 
PARP inhibitors that have been FDA approved for the main-
tenance treatment of recurrent gBRCAm epithelial ovarian, 
fallopian tube and primary peritoneal cancer (henceforth 
referred to as ovarian cancer) which are in a complete or 
partial response to platinum-based chemotherapy. Impor-
tantly, these inhibitors are the first clinically approved drugs 
to exploit a synthetically lethal interaction in cancer therapy. 
More recently, Olaparib and a new PARP inhibitor, Talazo-
parib, were approved for the treatment of gBRCAm recur-
rent breast cancer (OlympiAD; EMBRACA) and Olaparib 
was approved as first-line maintenance treatment in ovarian 
cancer patients that respond to platinum-based chemother-
apy (SOLO-1).

Accumulated evidence indicates that PARP1 functions as 
an important DNA damage sensor protein that recognizes 
both SSBs and DSBs and catalyzes the formation of lin-
ear chains of ADP-ribose residues (PAR chains). The PAR 
chains form a platform to recruit DNA repair proteins via 
their PAR-binding domains at the sites of DNA damage [20, 
21]. Therefore, it is considered that PARylation can prime 
the activation of the DNA repair cascades via recruitment 
of DNA damage response factors to the region near DNA 

lesions. Upon inhibition, the PARP enzymes which bind to 
DNA lesions are unable to form signaling scaffolds and dis-
sociate from the DNA [22–24]. These trapped PARP mol-
ecules add up to the existing lesions and increase the DNA 
damage burden of the cell [19, 25].

Homologous recombination (HR)-deficient cells, such 
as cells with BRCA1/2 mutations, are overly reliant (or 
“addicted”) to other pathways for DNA repair, such as the 
NHEJ and alt-EJ [26]. The alternative modes of end join-
ing require PARP1 to take place [27]. Therefore, when 
PARPs are inhibited in HR-deficient cells, there are more 
DNA lesions, compromised signaling activity and inability 
to utilize a vital DNA repair pathway. Importantly, PARPi 
has clinical benefit in non-BRCAm ovarian cancer patients 
which can be attributed to either unidentified HR deficiency, 
such as mutations in other HR genes, or to PARP1 actions 
which are independent of the alt-EJ.

Ongoing clinical trials using PARP1 inhibitors

Ongoing clinical trials examine the efficacy of licensed 
PARP inhibitors in various solid and hematopoietic malig-
nancies and in combination with DNA damaging agents, 
and DDR, cell cycle and immune checkpoint inhibitors. The 
therapeutic strategies, for the most part, fall into one of the 
two main categories: exploitation of DNA repair defects in 
tumors using PARPi monotherapy or augmentation of the 
activity of other agents by combining them with PARPi to 
treat patients regardless of HR status.

The first category includes trials that use HR deficiency 
as a stratification biomarker for PARPi therapy through 
mutations in proteins directly associated with HR such as 
BRCA1/2 (NCT03344965 and NCT02952534), or other 
biomarkers suggestive of HR deficiency such as IDH muta-
tions (NCT03561870) [28]. Among the most promising tri-
als are POLO, in which Olaparib treatment shows benefit 
in BRCAm pancreatic cancer patients who responded to 
platinum-based chemotherapy, and TRITON2, in which pre-
liminary results show that rucaparib monotherapy benefits 
BRCAm recurrent prostate cancer patients and is currently 
at phase III.

The second category of trials examines the efficacy of 
PARPi as part of a main course of combination treatment 
(Fig.  3). Traditionally, PARPi drug combinations have 
focused on DNA damaging agents and this is why the major-
ity of combinations in current trials are with crosslinking 
agents, topoisomerase inhibitors and irradiation. Addition-
ally, a number of trials aim to determine synergy of PARP 
inhibitors with other emerging therapeutic agents such as 
immune checkpoint inhibitors and angiogenesis inhibitors. 
The potential of immunotherapy to synergize with PARPi 
was demonstrated in recent literature on genomic instability 
and immune response [29]. Ongoing trials include ATHENA 
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and FIRST in ovarian cancer, and KEYLYNK-010 in pros-
tate cancer patients. On the other hand, synergism with 
angiogenesis inhibitors is based on their negative effect on 
HR, which in turn sensitizes cells to PARPi [30, 31].

A large number of trials examine novel PARP inhibitors 
in monotherapy as well as in combination with other agents. 
Veliparib has currently reached phase III in multiple trials 
(NCT02470585, NCT02163694 and NCT02264990) in 
combination with paclitaxel/carboplatin for the treatment of 
recurrent ovarian, breast and lung cancer patients. Notably, 
another promising PARP inhibitor, Iniparib, which in combi-
nation with gemcitabine/carboplatin reached phase III trials 
in breast and lung cancer (NCT00938652, NCT01082549), 
was reported to have significant off-target effects which 
halted further testing [32].

DDR network and exploitation of synthetically 
lethal interactions with PARP

Due to extensive crosstalk between pathways involved in 
DNA damage sensing, repair and cell cycle checkpoint acti-
vation pathways, therefore, are ideal candidates for exploi-
tation of synthetically lethal interactions. To this direction, 
small molecule inhibitors have been designed against ATM, 
ATR and DNA-PKs and tested in phase I or II clinical trials 
either as single agents or in combination with chemotherapy 
or radiotherapy [33, 34].

After DNA damage, sensor proteins such as PARP1, 
H2AX and sensor complexes including the Ku70/80 and 
MRN (MRE11/RAD50/NBS1) directly recognize the 
structure of DSBs and SSBs and recruit ATM, ATR and 

DNA-PK proteins at the break sites. Like PARP1, the Ku 
complex, consisting of Ku70 and Ku80 subunits, functions 
as a DNA sensor protein, binding DSBs after DNA damage. 
However, PARP1 and Ku complexes mediate DSB repair 
pathway choice independently and through distinct mecha-
nisms. Binding of the Ku complex to DSBs recruits and 
activates the DNA-PK catalytic subunit, which facilitates 
NHEJ [35], whereas the binding of PARP1 promotes alt-
EJ [36]. Thus, the antagonism between PARP1 and the Ku 
complex at DSBs may play an important role in determining 
repair choices. In addition to PARP1 and Ku proteins, the 
MRN complex acting as a DNA sensor protein has the abil-
ity to bind DNA ends, recruiting and activating ATM [37]. 
ATM is the main kinase responsible for phosphorylation of 
H2AX, which is one of the earliest steps for the recruitment 
of additional DDR factors [38, 39].

ATM‑deficient cells exhibit enhanced sensitivity 
to PARPi

As mentioned above, the rationale for using PARP inhibi-
tors to treat HR-deficient cancers in the clinic is based on 
the high sensitivity of BRCA1- and BRCA2-defective cells 
to small molecule PARP inhibitors. As such, ATM inacti-
vation, a known cause of HR deficiency [40], has been also 
shown to cause sensitivity to PARP inhibition [41]. Recent 
preclinical studies have focused on the functional intercon-
nection between ATM and PARP1, which also appears to 
contribute to enhanced PARPi sensitivity [42]. Consistent 
with these findings, although knockout of PARP-1 and ATM 
individual does not lead to embryonic lethality, double-null 
mice die early in embryogenesis [43]. Genome-wide stud-
ies have revealed that in patients with metastatic castration-
resistant prostate cancer (mCRPC), somatic ATM altera-
tions are detected at a high frequency (5–10%) [44]. In a 
49-patient phase II clinical trial, treatment with the PARP 
inhibitor olaparib of patients whose prostate cancers were 
no longer responding to standard treatments and who had 
defects in DNA repair genes (BRCA1/2, ATM, Fanconi’s 
anemia genes, and CHEK2) led to a high response rate [45]. 
However, preliminary results from another clinical trial 
(TRITON2) indicate that mCRPC patients harboring ATM 
and CDK12 mutations seem to benefit less from the PARP1 
inhibitor rucaparib compared to patients with BRCA1/2 loss 
[46].

Pairing ATR and PARP inhibitors

The partial responses to PARP inhibitors, even in BRCA1/2-
mutant tumors, indicate the existence of intrinsic or acquired 
resistance mechanisms [47]. Such resistance mechanisms 
may include secondary mutations or promoter demethylation 
in the BRCA1/2 genes which partially restore HR activity 

Fig. 3  Strategies for the combinatorial use of DDR inhibitors with 
known anticancer therapies
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in cancer cells. Other resistance mechanisms include point 
mutations in PARP1 and drug-efflux pumps affecting drug 
pharmacokinetics. To overcome such resistance mechanisms 
as well as to treat non-HR-deficient tumors, the pairing of 
PARP inhibitors with other DDR pathway inhibitors, such 
as ATR inhibitors, is ongoing.

Approximately, 50% of high-grade serous ovarian can-
cer (HGSOC) has defects in genes involved in HR repair 
[48]. Olaparib monotherapy has modest clinical benefit in 
recurrent BRCA1/2-mutant HGSOCs, as it results in a 40% 
response rate, following first-line carboplatin–taxane chem-
otherapy [49]. Recent studies, however, have shown that 
PARPi increases the dependence on ATR activity for fork 
stabilization, and combination of PARPi with ATR block-
ade is more effective than PARPi alone BRCA-mutant ovar-
ian cancer [50, 51]. Larger prospective studies are clearly 
needed to confirm or refute these preliminary findings.

Synthetic lethality beyond PARP1

There is a functional crosstalk between ATM, ATR and 
DNA-PKs in response to DNA damage.

Whereas ATM is primarily activated in response to DSBs, 
ATR is mainly activated by SSBs, and for this reason older 
models of DNA repair placed ATM and ATR in separate 
and distinct repair pathways. The current model proposes 
that both kinases cooperate for DSB repair during ionizing 
radiation (IR) or genotoxic stress. Recent studies have dem-
onstrated that ATM and the nuclease activity of Mre11 are 
both required for the processing of DSBs to generate the 
RPA-coated ssDNA that is needed for ATR recruitment and 
Chk1 activation at S and G2 cell cycle phase [52–54].

ATM-mediated phosphorylation of DNA-PKs at Thr2609 
is critical for DNA-PKs function in DNA repair and repre-
sents another example of functional crosstalk between DNA 
damage response proteins [55]. It has also been proposed 
that ATM phosphorylation at Ser1981 can be driven by ATR 
following replication fork stalling or UV treatment [56]. The 
survival of tumor cells with impaired ATM or ATR func-
tion after DNA damage is compromised and, therefore, the 
crosstalk between ATM, ATR and DNA-PKs can offer a 
chance for synthetic lethality when one of these kinases is 
inactivated (by mutation, deletion or transcriptional repres-
sion) in cancer cells.

Targeting the ATM deficiency with ATR inhibitors is an 
emerging antitumor strategy based on the high frequency 
of ATM dysregulation in cancer. Somatic mutations in the 
ATM gene are found in many solid tumors (breast, ovarian, 
colorectal, and prostate) [57–59]. Regarding hematological 
malignancies, inactivating mutations of ATM are present 
in about half the patients with mantle cell lymphoma and 
T cell prolymphocytic leukemia [60, 61]. There is now sig-
nificant preclinical evidence supporting that ATM-deficient 

tumors are sensitive to ATR inhibitors and, therefore, ATM 
has a synthetically lethal relationship with ATR in chronic 
lymphocytic leukemia [62], mantle cell lymphoma [63] and 
mammary cancer cells [64]. Importantly, ATR has also been 
shown to mediate replication fork stability [65]. This broad 
role of ATR in many aspects of genome integrity is likely 
one of the reasons for the success of its inhibitors in the 
clinic, much like PARPi. The putative clinical significance 
of inhibiting DNA repair proteins is highlighted by the num-
ber of ongoing clinical trials with the use of small molecule 
inhibitors in monotherapy settings, the majority of which 
tumors with known DNA repair deficiencies are selected for 
treatment (Table 1).

Recent studies based on CRISPR/Cas9-mediated knock-
out and RNAi screens revealed that RecQ DNA helicase 
WRN is selectively essential in MSI models. Inactivation 
of WRN in microsatellite instable cells leads to lethality 
in vitro and in vivo, while it has no effect in microsatel-
lite-stable cells, highlighting a new example of previously 
undocumented synthetically lethal interaction between 
MMR and the replication machinery [66, 67]. WRN is a 
multifunctional enzyme for genome integrity as it is involved 
in resolving complex DNA structures at replication forks 
or as a result of HR recombination. Such DNA structures 
are very common in MMR-deficient cells explaining the 
dependence of these cells to WRN activity [68].

DDR, genotoxic stress and cell cycle 
progression

Radiotherapy and chemotherapy with DNA-crosslinking 
agents that damage DNA are commonly used to treat cancer. 
Cisplatin, carboplatin, oxaliplatin and other similar plati-
num-based drugs make up a broad class of DNA-crosslink-
ing agents that target rapidly dividing cancer cells by form-
ing inter-strand crosslinks (ICLs) and disrupting DNA 
replication. IR used in radiotherapy causes multiple types 
of DNA damage, including DSBs and SSBs. IR also causes 
the formation of reactive oxygen species (ROS) which, in 
turn, promote the production of oxidized nucleotide adducts, 
such as 8-oxoguanine [69].

DDR defects in cancer can modulate 
the effectiveness of chemotherapy 
and radiotherapy

Chemotherapy and radiotherapy rely on the induction of 
DNA damage which is more cytotoxic for proliferating cells. 
Unlike normal cells, cancer cells are already burdened by 
genomic instability, replication stress and, by frequently 
malfunctioning DNA repair pathways, defects that cause 
genome-wide DNA damage. Because the apoptosis safety 
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check is often inactivated, cancer cells need to repair any 
DNA damage to continue to proliferate. DNA damaging by 
chemotherapy/radiotherapy exploits this principle and this is 
why they have been the cornerstone of first-line therapeutic 
schemes for many unresectable or metastatic malignancies 
for decades now. Although dysregulation of the DNA dam-
age response is associated with cancer initiation and progres-
sion, it can also result in hypersensitivity or resistance of 
tumors to genotoxic cancer therapy.

For instance, ovarian cancer patients with hereditary 
mutations in BRCA1 or BRCA2 genes that impair HR 

activity are more sensitive to platinum agents [70]. Nota-
bly, the appearance of compensatory mutations in BRCA1 
and BRCA2 that restore HR functionality in initially cispl-
atin sensitive tumors is able to develop cisplatin resistance 
[71]. In bladder cancer, patients with impaired NER pathway 
due to somatic ERCC2 mutations or low ERCC1 expression 
are more sensitive to platinum agents [72]. Furthermore, 
genomic alterations in ATM and FANCC genes predict 
response and clinical benefit after cisplatin-based chemo-
therapy for muscle invasive bladder cancer [73]. NSLC 
patients with ERCC1-negative tumors appear to benefit 

Table 1  DDR inhibitors in monotherapy clinical trials

a BRCA mutated
b Homologous recombination deficient
c IDH mutated

Agents Target Selected clinical trials Disease Selection factors therapeutic regimen Phase

FDA approved
 Olaparib PARP1/2 NCT02184195 (POLO) Metastatic pancreatic 

cancer
Platinum sensitivity; 

 BRCAma
Single agent; mainte-

nance
III

NCT03786796 
(ORCHID)

Metastatic renal cell 
carcinoma

HRDb Single agent II

NCT03561870 (OLA-
GLI); PARADIGM-2

High-grade glioma IDHmc Combination with low-
dose chemotherapy

II

 Rucaparib PARPi NCT02975934 (TRI-
TON3)

Metastatic castration-
resistant prostate cancer 
(mCRPC)

HRD Single agent III

NCT02505048 (RUBY) Metastatic breast cancer HRD Single agent III
NCT03140670 Pancreatic adenocarci-

noma
Platinum sensitivity; 

HRD
Single agent II

 Niraparib PARP1/2 NCT02655016 Advanced ovarian cancer Platinum sensitivity Single agent; mainte-
nance; 1st line

III

NCT03709316 Advanced ovarian cancer Platinum sensitivity Single agent; mainte-
nance; 1st line

III

NCT03601923 Advanced pancreatic 
cancer

Platinum sensitivity; 
HRD

Single agent II

NCT03925350 Metastatic melanoma HRD Single agent II
 Talazoparib PARP1/2 NCT01945775 (EMB-

RACA)
Advanced breast cancer Platinum sensitivity; 

BRCAm
Single agent III

NCT02034916 
(ABRAZO)

Advanced breast cancer Platinum sensitivity; 
BRCAm

Single agent II

Under evaluation
 Veliparib PARP1/2 NCT02163694 Her2-negative advanced 

breast cancer
BRCAm Combination with chemo-

therapy; 1st-2nd line
III

 AZD6738 ATR NCT03878095 Solid tumors IDHm Combination with 
olaparib

II

 SRA737 CHK1 NCT02797977 Solid tumors DNA repair deficiency Combination with low-
dose chemotherapy

I/II

 LY2606368 CHK1/2 NCT02203513 High-grade serous ovar-
ian cancer (HGSOC), 
fallopian or primary 
peritoneal cancer or 
triple-negative breast 
cancer (TNBC)

BRCAm Single agent II

NCT02873975 Solid tumors HRD or replication stress Single agent II
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from postoperative cisplatin-based chemotherapy, whereas 
patients with ERCC1-positive tumors do not [74]. Similarly, 
patients with ERCC1-negative locally advanced esophageal 
cancers benefit from preoperative chemoradiotherapy [75]. 
On the contrary, high ERCC1 expression has been positively 
correlated with cisplatin resistance in several human neo-
plasms including bladder [76], colorectal [77], gastric [78], 
head and neck [79–81] and ovarian cancers [82]. MMR defi-
ciency due to mutations or downregulation of MSH2, MSH6 
and MLH1 proteins has also been correlated with acquired 
cisplatin resistance. Functional MMR proteins recognize 
cisplatin adducts on DNA [83] and initiate proapoptotic 
signals [84] or generate gaps and strand breaks that lead 
to cell death [85]. Therefore, loss of MMR rescues cancer 
cells from apoptosis or cell death upon cisplatin treatment. 
Consistent with these observations, methylation-dependent 
silencing of MLH1 has been shown to predict poor survival 
in ovarian cancer patients [86]. In addition, patients with 
stages II and III MMR-deficient colon cancer do not benefit 
from fluorouracil-based adjuvant therapy [87].

Interestingly, defects in MLH1 and MSH6 are associated 
with increased level of translesion synthesis, which effi-
ciently permits DNA synthesis in the presence of cisplatin 
adducts [88]. Replicative bypass of adducts by translesion 
synthesis is mediated by the coordinated activity of a spe-
cific group of DNA polymerases including POLH, POLK, 
and POLZ [89]. The activity of POLH and POLZ has a 
pivotal role on the replicative bypass of GpG adducts and 
is associated with cisplatin resistance [89, 90]. Defects in 
POLH and REV3L subunit of POLZ have been linked to 
increased sensitivity to cisplatin in multiple tumor cell lines 
[91], whereas POLH expression levels predict the survival 
of NSLC patients treated with platinum-based chemother-
apy [92] and of metastatic gastric adenocarcinoma patients 
treated with oxaliplatin-based chemotherapy [93].

Despite the fact that platinum-containing chemotherapy 
and radiotherapy have been used in clinic for the treatment 
of a wide variety of solid tumors for many decades, intrin-
sic or acquired resistance during treatment cycles and high 
toxicity in patients are major obstacles that severely limit 
the clinical benefit.

Targeting of DDR components modulates cell cycle 
checkpoint activity

In the context of their role in genome integrity, ATM, ATR 
and DNA-PKs facilitate communication between damage 
recognition proteins and the cell cycle checkpoints (G1/S, 
intra-S and G2/M) to temporarily arrest the cell cycle and 
increase the opportunity for DNA repair before moving to 
the next stage of cell cycle. In cases of extensive DNA dam-
age, cells permanently exit the cell cycle (senescence) or 
undergo programmed cell death (apoptosis) [94].

The G1/S checkpoint is believed to be controlled primar-
ily by ATM rather than ATR. By contrast, both ATM and 
ATR contribute to the establishment and maintenance of 
the intra-S and G2/M checkpoints. The G1/S checkpoint 
allows the repair of DNA damage prior to the start of DNA 
replication, whereas the intra-S phase checkpoint can delay 
replication origin firing, providing time for DNA repair [95]. 
The G2/M checkpoint represents the last major barrier that 
prevents DNA damage from being transferred into mitosis 
which would lead to mitotic catastrophe and cell death [96].

Whereas ATM signals DSBs through the Chk2 check-
point kinase, activated ATR in SSBs or in replication-
linked DSBs signals through the Chk1 checkpoint kinase. 
In response to DSBs, the MRN complex recruits ATM to 
DSB sites. Once activated, the ATM/Chk2 pathway phos-
phorylates Cdc25A and p53 simultaneously within minutes 
promoting p53 stabilization, p21 upregulation, S-phase cell 
cycle arrest and activation of the p53-associated G1/S-phase 
checkpoint [97]. DSBs in the G2 can directly activate ATM, 
and indirectly, via ATM-dependent strand resection, ATR 
[54]. The G2/M checkpoint is initiated by the ATM/ATR-
driven phosphorylation of CHK1 and CHK2 checkpoint 
kinases. In turn, these kinases mediate by phosphorylation 
(Ser216) the inhibition of Cdc25C. This prevents dephos-
phorylation of CDK1–cyclin B, which is required for pro-
gression into mitosis [98].

In response to SSBs at sites of DNA damage or stressed 
replication forks, RPA-coated ssDNA activates ATR and its 
binding partner ATRIP [11, 99, 100]. The kinase CHK1 is 
the key downstream regulator of the ATR response and is 
phosphorylated by ATR on Ser317 and Ser345 [65]. Acti-
vated CHK1 promotes by phosphorylation the proteaso-
mal degradation of CDC25A and CDC25C which leads to 
a decrease in the CDK activity in S and G2/M cell cycle 
phase, thereby causing activation of intra-S and G2/M-phase 
checkpoints [101].

Chemical inhibition of ATM ATR, CHK1, CHK2 and 
Wee1 is a promising and attractive avenue for anticancer 
therapy because inhibition of these proteins can lead to cell 
cycle checkpoint abrogation (S and G2) in cancer cells. 
Checkpoint abrogation under genotoxic stress is associated 
with cell death due to excessive unrepaired DNA damage 
that is accumulated by rapid and unregulated cell cycle pro-
gression. In this direction, potent inhibitors of ATR, ATM, 
CHK1, CHK2, and WEE1 are under clinical evaluation. 
This family of compounds has been poorly tolerated in early 
monotherapy clinical trials [102, 103].

Combinatorial targeting of DDR and the G2/M 
checkpoint

Unrepaired DNA damage can be resolved before entering 
mitosis through activation of the G2 cell-cycle checkpoint. 
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Abrogation of the G2 checkpoint allows cells with unre-
paired DNA damage to enter into premature mitosis result-
ing in mitotic catastrophe [104–106]. A strong rationale 
exists for combined therapy with ATR and WEE1 inhibitors. 
Given that ATR inhibitors promote origin firing, replication 
stress and DSB generation [107–111], the parallel WEE1 
inhibition can abrogate the G2 arrest in these cells allowing 
chromatin with unrepaired DNA damage to enter into mito-
sis and undergo mitotic catastrophe [112, 113].

Similarly to ATRi, PARPi also induces replication stress 
and DNA damage [114]. Combined WEE1 and PARP inhi-
bition has demonstrated antitumor activity in a number of 
preclinical models [115, 116]. However, overlapping WEE1i 
and PARPi toxicity profiles hinders the development of com-
binations, which has been largely confirmed in early clinical 
trials [117]. Interestingly, the sequential administration of 
PARP and WEE1 inhibitors seems to maintain efficacy while 
ameliorating toxicity [118].

DNA repair deficiencies and immunotherapy

Advances in immunotherapy have changed the treatment 
landscape in many cancers. Immune checkpoint inhibitors 
such as anti-CTLA4 and anti-PD1/PD-L1 antibodies have 
demonstrated successful clinical effect in a wide range of 
cancers. The anti-PD-1 monoclonal antibodies, nivolumab, 
atezolizumab and pembrolizumab, have been shown com-
pared to standard systemic chemotherapy, to improve overall 
survival in head and neck cancer, advanced melanoma, non-
small cell lung cancer, and urothelial cancer [119–122]. The 
development of predictive biomarkers is needed to optimize 
patient benefit, minimize risk of toxicities and guide com-
bination strategies. Significant therapeutic responses have 
recently been observed in patients presenting tumors with 
high mutational burden that produce substantial levels of 
neoantigens [123–125]. Previous studies have shown that 
tumor mutation burden (TMB) is associated with increased 
T cell cytolytic activity supporting the notion that neoanti-
gens can drive cytotoxic T cell responses [126].

Tumor mutation burden correlates with predicted 
neoantigens and immune infiltration

DNA repair safeguards genomic stability and the func-
tional loss of components involved in this process can lead 
to high mutational burden due to the accumulation of DNA 
damage. Therefore, DNA damage defects are associated 
with acquired somatic mutations resulting in generation 
of neoantigens. Neoantigens are able to trigger the activa-
tion of cytotoxic T-cells [127] and make cancer cells more 
immunogenic. Since the cellular response to DNA damage 
determines the mutational load of cancerous cells, it has 

become clear that DNA damage and DNA repair activity 
have a major impact on the interaction between the tumor 
and the immune system and, furthermore, that the DNA 
damage and repair landscape have important therapeutic 
implications in the context of immunotherapy. A sche-
matic representation of the crosstalk between DNA repair 
and immunological response is shown in Fig. 4.

Previous studies have reported that specific defects in 
DNA repair proteins could be potential predictive bio-
markers of clinical response to immune checkpoint inhibi-
tors in a wide spectrum of tumors. The most robust cur-
rent evidence supporting the association between DNA 
repair deficiency, the TMB and the efficiency of immune 
checkpoint blockade (ICB) comes from tumors with loss 
of MMR function. Tumors with MMR deficiency (dMMR) 
have high response rates to ICB, and the FDA recently 
approved pembroluzimab for treatment of microsatel-
lite instability-high (MSI-H) colorectal tumors [128]. In 
microsatellite-unstable endometrial cancer, due to muta-
tions in the exonuclease (‘proofreading’) domain of pol-
ymerase DNA polymerase ε (POLE), there is increased 
mutation burden and, as a result, a higher number of 
cytotoxic T tumor-infiltrating lymphocytes (TILs), com-
pared with microsatellite-stable tumors [129]. Clinical and 
immunological response to immune checkpoint inhibition 
with pembrolizumab has been also demonstrated in hyper-
mutated glioblastoma with POLE mutations [130].

Several reports have also linked somatic mutations 
(BRCA1/2, RAD51, ATM, ATR, PTEN) leading to HR 
repair deficiency with higher neoantigen levels and ICB 
response [131–134]. Similarly, in urothelial cancer, tumors 
harboring alterations in DNA damage response genes 
ATM, POLE, FANCA, ERCC2, and MSH6 were corre-
lated with high TMB and improved clinical outcomes to 
ICB [135].

In human cancers, a deficiency in a DNA repair path-
way can result in dependence on a compensatory DNA 
repair pathway [136]. HR-deficient tumors are hyperde-
pendent on polymerase θ (POLQ)-mediated repair. POLQ 
appears to channel DNA repair by antagonizing HR and 
promoting PARP1-dependent alt-EJ repair [137]. POLQ 
and alternative end-joining activity have been described to 
be intrinsically mutagenic [138, 139], explaining the high 
neoantigen levels of HR-deficient tumors.

BRCA1/2-mutated ovarian tumors have been associ-
ated with higher neoantigen loads, higher T cell infiltration 
and improved overall survival compared to HR-proficient 
tumors [134]. Patients with BRCA2 mutated melanoma 
were found to have better response to anti-PD-1 treatment 
[132]. Furthermore, microsatellite-unstable tumors harbor-
ing mutations in MMR genes are characterized by TMB 
and enhanced response to immune therapy [124, 140].
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DNA repair defects that generate intratumoral 
heterogeneity may confer to immune escape

An important aspect of defective DNA repair and cell cycle 
checkpoints is persistence of unrepaired DSBs during M 
phase, which lead to mis-segregation of chromosomes and 
chromosomal instability (CIN) [141–143]. CIN is character-
ized by an increased rate of gains and losses of fragments or 

whole chromosomes, leading to aneuploidy, and is a princi-
pal driver of tumor heterogeneity [144, 145]. Heterogeneous 
tumors contain multiple subclones and under selection pres-
sure, such as chemotherapy or immunotherapy, subclones 
with either intrinsic or acquired resistance can survive the 
pressure and potentially drive disease progression.

Although ICB induces significant responses in many 
patients, response rates vary significantly both within and 

Fig. 4  Therapeutic targeting of the DNA repair–immune response interconnection in cancer. Approved and under evaluation anticancer agents 
targeting distinct components of the DNA repair machinery as well as modulators of the immunological response
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across tumor types. The use of next-generation sequenc-
ing and single-cell sequencing from different sites within 
the same tumor (multi-region analysis) has revealed a high 
degree of genetic heterogeneity within the same tumor 
(intratumoral heterogeneity) [146–149]. Comparative anal-
ysis of tumor subclones between the primary tumor and 
distant metastases from the same patient has also revealed 
differences, arising either from evolution of subclones that 
were either present at the primary tumor or through emer-
gence of subclones that represent new branching points dur-
ing the evolutionary process and the Darwinian selection. 
DNA repair defects and epigenetic alterations in tumor pro-
gression have a crucial role in sub-clonal evolution.

Due to intratumoral heterogeneity, PD-L1 expression 
levels may vary among different tumor subpopulations 
and, therefore, clones with low PD-L1 expression can drive 
immune escape. In clinic, a substantial number of patients 
with PD-L1 positivity (at least 40–50%) do not achieve 
objective response to anti-PD-1/PD-L1 therapies [150].

Oncogenic mutations may also drive immunotherapy 
resistance in specific subclones. Activation of the canonical 
WNT-β-catenin signaling pathway in melanoma cells has 
been shown to correlate with suppression of the chemokine 
CCL4, reduced T cell infiltration and resistance to anti-PD-
L1 and anti-CTLA-4 mAb-based therapy [151]. Oncogenic 
activation of the PI3-kinase pathway due to PTEN loss 
in melanoma cancer cells can also promote resistance to 
immune therapy [152]. Similarly, activation of the epidermal 
growth factor receptor (EGFR) pathway has been associated 
with immunosuppression in lung adenocarcinoma [153].

There is growing evidence that intratumoral neoantigen 
heterogeneity is associated with low response to ICB ther-
apy. Recent studies in non-small cell lung cancer (NSCLC) 
have demonstrated that tumors with high levels of clonal 
neoantigens have improved responses to ICB and that the 
loss of clonal neoantigens due to elimination of tumor sub-
clones or through deletion of chromosomal regions can lead 
to ICB resistance [154, 155]. In addition, genomic instability 
can lead to evolution of immunotherapy resistant subclones 
that harbor somatic copy number loss of neoantigens that are 
critical to immune response [156]. An analysis of more than 
5000 TCGA tumors across 12 tumor types demonstrated that 
high levels of somatic copy number alterations (SCNAs) are 
associated with reduced expression of cytotoxic immune cell 
markers [157].

DNA repair targeting agents and immunotherapy

Previous reports have shown that DNA damage that arises 
from genotoxic stress can activate the STING pathway, an 
innate immune pathway activated by cytoplasmic DNA 
[158]. Cyclic guanosine monophosphate (GMP)-AMP syn-
thase (cGAS) is a DNA sensor that triggers innate immune 

responses through production of the second messenger cyclic 
GMP-AMP (cGAMP), which binds and activates the adap-
tor protein STING. Activated STING triggers phosphoryla-
tion and nuclear translocation of IRF3 which in turn activates 
transcription of inflammatory genes [159, 160]. cGAS is con-
sidered to detect DNA damage derived by the formation of 
micronuclei during mitotic progression and leakage of DNA 
into the cytosol [161]. Activation of the cGAS/STING path-
way leads to expression of interferons and chemokines and has 
been shown to attract and activate immune cells in the tumor 
microenvironment [162, 163].

Recently, Dunphy et al. showed that detection of genotoxic 
stress-induced DNA damage by ATM and PARP1 can activate 
the DNA sensor adaptor STING independently of the cyto-
solic DNA receptor cGAS and cGAMP production through a 
non-canonical pathway. According to this alternative pathway, 
the non-canonical STING signaling complex that includes the 
tumor suppressor p53 and the E3 ubiquitin ligase TRAF6 pro-
motes the activation of an NF-kB-dependent transcriptional 
program [164].

There is pre-clinical evidence that DDR inhibitors, such 
as PARP inhibitors, activate the STING pathway and the 
type I IFN signaling in BRCA1 or ERCC1-deficient cancer 
cells, stimulating augmented cytotoxic-T cell infiltration [165, 
166]. In addition, it has been proposed that PARP inhibition 
promotes adaptive overexpression of cell surface PD-L1 in 
these cells [167, 168]. Based on the biological evidence for 
the immunomodulatory function of DDR inhibitors, various 
ongoing clinical trials investigate the efficiency of combinato-
rial treatment with PARP inhibitors and immune checkpoint 
inhibitors targeting the PD-1 and/or PD-L1 (NCT03834519, 
NCT03851614, NCT03602859, NCT03308942).

In vitro and in vivo mouse experiments in pancreatic cancer 
showed that combination of ATM inhibition with radiation 
enhanced antigen presentation and type I interferon signaling. 
Furthermore, ATM silencing increased PD-L1 expression and 
increased the sensitivity of pancreatic tumors to PD-L1 block-
ing antibodies in association with increased tumoral CD8+ 
T cells and established immune memory. Interestingly, low 
ATM expression was inversely correlated with PD-L1 expres-
sion in clinical samples of patients with pancreatic tumors in 
the same study [169]. Further work is needed to uncover the 
mechanisms by which PARP inhibitors or other DNA repair-
directed agents (such as ATM, ATR, or DNA-PKcs inhibitors) 
modulate the immune response and sensitivity to IC blockade.
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Epigenetic factors and chromatin 
remodelers as components of the DNA 
repair machiner: the chromatin context

Recent advances in epigenetics have shed light onto the 
dynamic changes of chromatin modifications after DNA 
damage, supporting a model where specific chromatin-
remodeling factors are essential components of the repair 
network [170]. The study of how these epigenetic and chro-
matin-remodeling factors modulate the chromatin dynam-
ics and cooperate with DNA repair proteins in response to 
genotoxic stress is important for the identification of new 
synthetically lethal interactions. Therefore, pharmacological 
targeting of these epigenetic factors could be a new approach 
to enhance the efficacy of DDR inhibitors in producing DSB 
cytotoxicity and mitigate drug resistance.

Chromatin‑remodeling and epigenetic factors 
mediate dynamic alterations of chromatin structure 
that facilitate DSB repair

Regulating the accessibility of damaged DNA to repair com-
plexes requires a high degree of coordination between DSB 
repair machineries and chromatin-modifying enzymes. One 
of the best characterized changes in chromatin organization 
is the rapid formation of open chromatin structures at DSBs. 
The response to DSBs requires localized chromatin expan-
sion to facilitate the assembly of repair complexes. A large 
number of studies, based on biochemical approaches, high-
light that the chromatin expansion at the sites of damage is 
characterized by density loss of core and linker histones. 
This chromatin decompaction is thought to facilitate access 
of the repair machinery to damaged DNA. In this direction, 
recent work in human cells showed that the CHD2 remod-
eling activity promotes euchromatin expansion at IR-induced 
DSBs and the recruitment of NHEJ factors. Interestingly, 
recruitment of CDH2 at the sites of damage is directed by 
PARP1 catalytic activity [171].

Several groups have also demonstrated that the rapid for-
mation of open chromatin is driven by an increased acetyla-
tion of histone H4 (H4K16ac) on nucleosomes, a modifica-
tion that extends for many kilobases away from the break, 
following the spreading pattern of γH2AX [172–175]. The 
N-terminal tail of histone H4 interacts with the acidic patch 
on the surface of H2A-H2B dimers of adjacent nucleosomes. 
Disruption of this interaction by acetylation of histone H4 
at DSBs promotes chromatin unpacking and formation of 
open, relaxed chromatin structures detected at DSBs [176]. 
Acetylation of H4K16 at DSBs is carried out by the histone 
acetyltransferase TIP60 and its inactivation is sufficient to 
block chromatin decompaction during DNA damage [175].

The chromatin state has also been shown to influence 
DNA repair pathway choice. After DNA damage and ATM 
activation, γ-H2AX recruits a number of repair factors to 
DNA damage sites. Among these are the E3 ubiquitin ligases 
RNF8 and RNF168 which generate ubiquitin marks on his-
tones near the breaks. RNF8 promotes K63-linked poly-
ubiquitylation of H1 linker histones [177, 178]. This poly-
ubiquitylation is a recruitment signal for RNF168, which 
in turn ubiquitylates H2A-type histones at K13/K15 [177, 
179, 180]. TP53BP1, a DSB pathway choice protein that 
actively promotes NHEJ and inhibits BRCA1-mediated HR, 
is strongly dependent on RNF8/RNF168-mediated chroma-
tin ubiquitylation and binds to monoubiquitylated H2A-K15 
[179].

The role of H3K36me3 histone marks in DNA 
mismatch repair

MMR maintains genome stability primarily by correcting 
single nucleotide misincorporations, and small insertion/
deletion loops (IDLs) created by the DNA polymerase, 
improving replication fidelity [181]. In human cells, these 
mismatches are recognized by hMSH2–hMSH6 (hMutSα) 
and hMSH2–hMSH3 (hMutSβ) protein complexes. The 
MSH2–MSH6 complex primarily recognizes single base 
pair mismatches and 1–2 base IDLs while MSH2–MSH3 
recognizes larger IDLs. Both MSH6 and MSH3 harbor a 
conserved N-terminal PIP (PCNA-interacting protein) 
motif and interact with the proliferating cell nuclear anti-
gen (PCNA) in replication forks recognizing errors. Defec-
tive expression of components of these complexes leads 
to a mutator phenotype and MSI. Recently, it was demon-
strated that H3K36me3 marks, generated by the histone 
methyltransferase SETD2, facilitate the binding of hMutSα 
complex to the chromatin [182]. Consistent with this, cells 
depleted of SETD2 fail to recruit hMutSα to chromatin and 
display a mutator phenotype characterized by MSI [182]. 
Lines of evidence have also highlighted a role for H3K36 
dimethylation (H3K36me2) on the choice for NHEJ repair 
pathway [183].

Epigenetic context and nuclear architecture 
components impact heterochromatin DSB repair

In eukaryotic cells, euchromatin (EC) that contains the 
majority of the transcribed genes is loosely packed com-
pared to heterochromatin (HC). Centromeres, pericentro-
meric regions, telomeres and repetitive elements comprise 
the constitutive heterochromatin, while developmentally 
silenced genes constitute the facultative heterochromatin. 
Constitutive heterochromatin contains histones that are 
hypoacetylated and hypermethylated at histone H3 lysine 
9 (H3K9me2/3) and lysine 27 (H3K27me3). These histone 
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marks are associated with anchoring to nuclear lamina [184]. 
The writing and maintenance of these histone modifications 
require a large number of epigenetic factors including the 
histone methyltransferases SETDB1, SUV39 (H3K9 meth-
ylation) and histone deacetylases 1 and 2 (HDAC1/2) [185]. 
The H3K9me2/3 histone marks are specifically recognized 
and bound by the heterohromatin protein 1 (HP1) which 
recruits other proteins such as the KAP-1 and the SMAR-
CAD1. The KAP1 protein recruits epigenetic factors that 
maintain the chromatin compaction (SETDB1, HDAC1, 
HDAC2), while the SMARAD1 facilitates the deacetylation 
of newly assembled histones during replication to maintain 
gene silencing [186]. In response to DNA damage, the chro-
matin compaction in heterochromatin and the dense array 
of proteins that bind its domains present a barrier for DSB 
repair factors to access the sites of damage. Furthermore, the 
presence of repetitive DNA elements within heterochroma-
tin can initiate aberrant homologous recombination events 
during repair, such as sister chromatid exchanges or inter-
chromosomal recombination, leading to deletions, duplica-
tions, translocations, and formation of dicentric or acentric 
chromosomes. Therefore, heterochromatin DSB repair 
requires a more stringent control of HR to prevent inap-
propriate recombination events. Upon formation of hetero-
chromatic DSBs, ATM phosphorylates the HP1-interacting 
protein Kap1 (KRAB-associated protein-1), thus reducing 
the strength of Kap1 interaction with damaged heterochro-
matin, and promoting the release of the chromatin modifier 
CHD3.1 (Chromodomain Helicase DNA binding protein 3). 
The release of CHD3.1 drives chromatin relaxation which 
provides access to repair complexes [187, 188].

Recent studies in Drosophila and mouse cells have shown 
a relocation of heterochromatin DSBs to anchoring points 
at the nuclear periphery. This relocation ensures safe and 
precise HR while preventing aberrant recombination, by 
isolating the DSBs and their templates away from ectopic 
sequences before strand invasion [189]. Notably, SUMO and 
the SUMO E3 ligases dPIAS and Nse2 are required to relo-
calize DSBs to the nuclear periphery [190, 191].

The role of chromatin remodelers in BER and NER

In eukaryotes, BER is the major pathway for the repair 
of alkylatively and oxidatively generated lesions such as 
8-oxoguanine (8-oxoG). BER is initiated by a glycosylase, 
which cleaves the glycosidic bond that attaches the lesion 
to the sugar-phosphate backbone and generates an abasic 
site. Eleven glycosylases have been identified in humans and 
are categorized based on their structural architecture [192]. 
The apurinic/apyrimidinic sites are bound by the endonu-
clease APE1, which cleaves the DNA backbone on the 5′ 
side of the abasic deoxyribose phosphate, creating a nick in 
the DNA [193]. The synthesis step of BER employs either 

repair polymerase Pol β which adds a single nucleotide, or 
one of the processive polymerases Pol δ or Pol ε, adding up 
to 13 nucleotides to the 3′ hydroxyl group of the nucleotide 
5′ of the nick [194]. The remaining deoxyribose phosphate 
is removed by the dRPase activity of Pol β, whereas the 
5′ stretch of nucleotides when added by Pol δ or Pol ε is 
cleaved by the flap endonuclease FEN-1 [195]. The final step 
of BER is ligation of the nicked strand by DNA ligase IIIα 
in a complex with its partner protein XRCC1.

For execution of this multi-step process, it is necessary 
that DNA is accessible to all components of BER. Each step 
of BER requires access to DNA for its enzymatic activity. 
A number of studies in cells have demonstrated an inverse 
correlation between the level of chromatin compaction and 
BER activity [196]. Several in vitro studies also indicate 
that chromatin remodeler activity is sufficient to dramati-
cally increase the BER efficiency. In vitro experiments 
showed that purified members of SWI/SNF subfamily and 
purified ISW1 and ISW2 chromatin remodelers significantly 
facilitate the glycosylase, APE-1 and polymerase synthesis 
step during BER [197–199]. It is considered that chroma-
tin remodelers provide accessibility to BER repair proteins 
by either remodeling, or combined remodeling and sliding 
mechanisms.

NER is the major pathway for repair of bulky DNA 
lesions caused by UV, environmental mutagens and cancer 
chemotherapeutic drugs. Two distinct DNA damage recogni-
tion cascades can activate NER, depending on the location 
of DNA damage. Genome NER (GG-NER) is activated by 
helix distortions associated with DNA lesions anywhere in 
the genome. The main damage sensor in GG-NER is the 
XPC–RAD23B–CETN2 protein complex. Transcription-
coupled NER (TC-NER) is activated by stalled RNA Pol 
II during transcript elongation by a lesion in the template 
strand [200].

Similarly to BER repair pathway, numerous in  vitro 
NER assays have shown that the nucleosome structure can 
be a barrier to efficient NER function and purified SWI/
SNF complexes increase accessibility of damaged DNA and 
stimulate NER repair were found to be within in vitro recon-
stituted mononucleosomes [201, 202]. However, it is not 
clear yet whether SWI/SNF complexes are involved in early 
NER steps facilitating XPF recruitment and lesion detection, 
or are recruited by XPF and promote the binding of late NER 
factors XPG and PCNA. The latter is supported by experi-
ments showing that knockdown of chromatin remodelers 
BRG1, BRM and ARID1A/B has no effect on XPC recruit-
ment but can impair the recruitment of late NER factors 
ERCC1 and XPA [203, 204].

Given the broad role of SWI/SNIF complexes in 
NER and BER repair pathways and the high incidence 
of mutations in family members across different cancer 
types, the exploitation of SWI/SNF deficiency-induced 
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susceptibilities is crucial for the development efficient and 
precise therapies for SWI/SNF-mutated cancers.

Histone methyltransferases KMT2C/D and stalled 
fork stability

KMT2C and KMT2D belong to the family of mammalian 
mixed-lineage leukemia (MLL) genes that encode histone 
methyltransferases, responsible for monomethylation at 
H3K4 at a subset of active gene promoters and enhancers 
[205]. The distribution of H3K4me1 marks across cis-reg-
ulatory elements is characteristic of accessible enhancer 
regions and, therefore, KMT2C/D activity in enhancers 
is positively correlated with transcriptional activation of 
neighbor genes. Recent studies that focus on enhancer reg-
ulation also indicate that KMT2C/KMT2D can promote 
transcription independently of their methylation activity 
[206, 207]. Cancer genome sequencing studies have identi-
fied the histone methyltransferases KMT2C and KMT2D 
among the most frequently mutated genes across differ-
ent types of solid tumors [13]. Besides the inactivation of 
these genes by loss of function mutations, their expression 
is significantly downregulated across different cancer types 
[208].

Recent studies have also uncovered an important role 
of KMT2C and KMT2D proteins in genome stability and 
in precise control of DNA repair. Chaudhuri and col-
logues showed that recruitment of MRE11 nuclease to 
stalled replication forks in HR-deficient cells is mediated 
by KMT2C/KMT2D [209]. Stalled replication forks are 
featured by exposed DNA ends in the form of ssDNA or 
dsDNA, which makes them susceptible to various cel-
lular nucleases that generate HR substrates during DSB 
repair, including MRE11, which promote 3′–5′ short-range 
resection during initial steps of homologous recombina-
tion repair. The MRE11 nuclease activity at the sites of 
replication stress is tightly control to prevent excessive 
fork degradation by BRCA1/2 and RAD51. More spe-
cifically, during replication stress, BRCA1 and BRCA2 
proteins relocate to stalled replication forks and promote 
the formation of stable RAD51 nucleoprotein filaments, 
thereby suppressing deleterious fork degradation medi-
ated by the MRE11 nuclease [210, 211]. In BRCA1/2-
deficient cells, stalled replication forks are unprotected 
from MRE11 activity and, therefore, these cells are char-
acterized by increased genomic instability and chemosen-
sitivity [212–214]. However, KMT2C/D inactivation in 
BRCA1/2-deficient tumors decreases MRE11 recruitment 
to stalled forks, which in turn restores fork stability, and 
renders BRCA1/2-deficient cells resistant to cisplatin and 
PARP inhibitors [209], indicating a general resistance 
mechanism to genotoxic stress.

Dysregulated epigenome as a driver for DNA 
methylation and transcriptional silencing of DNA 
repair genes

Comprehensive analyses of human cancer genomes over the 
past decade have revealed that epigenetic factors and chro-
matin-remodeling complexes are highly mutated in cancer. 
Since epigenetic factors regulate precisely gene transcrip-
tion, mutations on these factors in cancer cell offer an adap-
tive plasticity to the transcriptome. Dysregulated epigenome 
in cancer is often associated with altered chromatin context 
in enhancers and promoters of DNA repair genes, which 
favors DNA methylation and transcriptional silencing. DNA 
methylation represents the epigenetic biomarker with the 
highest translational potential due to its stable nature.

Methylation of lysine 27 on histone 3 (H3K27me), a mod-
ification associated with gene repression, is a focal point of 
epigenetic deregulation in cancer [215]. The genetic basis 
of H3K27me deregulation may include either components 
of the H3K27 methyltransferase complex PRC2 (Polycomb 
repressive complex 2) and associated proteins or the H3K27 
demethylase UTX [216]. Several studies have demonstrated 
that H3K27me3-marked genes are targets for aberrant DNA 
methylation in cancer cells [217, 218].

MSI has been reported in 15% of sporadic colorectal 
cancer cases which represent a distinct molecular subtype 
characterized by hypermutator phenotype and global CpG 
methylation [219]. Most tumors in this subtype have lost 
expression of the MLH1 DNA mismatch repair gene due 
to acquired DNA hypermethylation of the MLH1 promoter 
region [220]. As a result, tumors of this subtype are deficient 
for DNA mismatch repair (MMR) and exhibit a hypermut-
able phenotype.

BRCA1 and BRCA2 proteins play a basic role in the reg-
ulation and promotion of HR. Germline mutations in these 
genes are the most important causes of hereditary breast 
and ovarian cancer [221]. In addition to germline muta-
tions, somatic mutations and epigenetic silencing of these 
genes occur in a variety of cancers in the general population. 
BRCA1 methylation is observed in approximately 11–14% 
of breast cancers and 5–31% of ovarian cancers [222]. 
BRCA1 methylation has also been detected in 18.6% and 
12.1% of non-small cell lung (NSCLC) and bladder cancer 
(BLCA), respectively [223, 224]. BRCA2 methylation has 
been reported in NSCLC [225].

ATM is also epigenetically silenced in primary head and 
neck and breast cancers by aberrant methylation in promoter 
region [226, 227].

Individuals with Fanconi anemia (FA) are predisposed to 
develop ovarian cancer than those without FA; this is largely 
contributed to promoter methylation of the FANCF gene and 
subsequent disruption of the FA–BRCA pathway [228, 229]. 
Epigenetic inactivation of FANCF has also been proposed 
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as a mechanism of sensitization to platinum chemotherapy 
[230].

In bladder cancer (BLCA), the excision repair cross-com-
plementing group 1 (ERCC1) gene, encoding a key enzyme 
of the nucleotide excision repair (NER) pathway, and the 
RBBP8/CtiP gene that has an important role in HR repair 
exhibit a tumor-specific promoter methylation in up to 17% 
and 45% of BLCA patients, respectively [231]. It, therefore, 
is evident that epigenetic status is sufficient to cause DNA 
repair defects and should, therefore, be considered in patient 
selection for targeted therapies.

Transcriptional silencing of HR DNA repair genes 
due to epigenetic deregulation as predictive 
biomarker for response to PARP1 inhibition

Methylation of DNA repair genes seems to represent a good 
predictive biomarker for response to PARP inhibitors. For 
instance, in high-grade serous ovarian carcinoma (HGSOC), 
patient-derived xenografts (PDXs) with homozygous meth-
ylation of BRCA1 alleles have been found to respond to 
PARP1 inhibitor rucaparib. Moreover, clinical data from 
HGSOC patients who participated to ARIEL2 Part 1 clini-
cal trial indicate a correlation between high levels of BRCA1 
methylation in homozygous status and response to PARP 
inhibitors [232]. Experiments with breast cancer cell lines 
have also demonstrated that the status of BRCA1 methyla-
tion is correlated with sensitivity to PARP1 inhibition. In 
these experiments, BRCA1 silencing as well as PARPi sen-
sitivity was abolished by the demethylating agent 5-azacy-
tidine [233].

Recently, the DNA methyltransferase inhibitors (DNMTi) 
and PARP inhibitors (PARPi) have been reported to act syn-
ergistically inducing cell death in acute myeloid leukemia 
(AML), breast and ovarian cancers [234, 235]. The most 
widely used DNMTis are the cytosine analogs 5-azacytidine 
(Aza) and 5-aza-2′-deoxycytidine (Decitabine). These ana-
logs are incorporated into DNA during replication leading 
to the formation of DNMT-DNA adducts that inhibit the 
catalytic activity of DNMT1 leading to global DNA demeth-
ylation [236, 237]. Besides epigenetic effects, the DNMTis 
are also able to increase the PARP-1 trapping at the DNA 
damage sites, enhancing the DSBs cytotoxic effects induced 
by PARP inhibitors [238].

There is accumulated evidence that deregulation of epi-
genetic factors that promote open chromatin conformation 
in promoters of HR genes can confer to their transcriptional 
silencing in a subset of cancers. Previous studies have dem-
onstrated the involvement of the histone methyltransferase 
EZH2 in inducing epigenetic silencing of RAD51 [239, 
240]. Moreover, EZH2 expression was shown to be associ-
ated with the activation of RAF1–MEK signaling and expan-
sion of breast cancer stem cells [240].

Recently our group showed that KMT2C binds the 
promoter region of BRCA1/2 and other HR repair genes 
controlling their transcription in bladder cancer cell lines. 
KMT2C silencing in these cell lines leads to BRCA1/2 hypo 
expression, HR deficiency and increased sensitivity to PARP 
inhibitor olaparib. Meta-analysis of TCGA RNA-seq data 
showed that KMT2C downregulation is associated with 
BRCA1/2 downregulation in bladder, head and neck, lung 
and colon cancer [208].

HDAC and BET inhibitors can suppress 
the expression of HR genes and synergize 
with PARPi

HDAC activity has been linked to histone deacetylation 
that is often associated with chromatin condensation and 
gene repression. They are also part of complexes involved in 
transcription silencing [241, 242] and it has been proposed 
that in cancer, HDACs activity mediates the transcriptional 
repression of tumor suppressor genes [243, 244]. Pharma-
cological inhibition of these enzymes by HDAC inhibitors 
causes global changes to the chromatin acetylation land-
scape, re-shaping the boundaries between transcriptionally 
active and quiescent chromatin. This results in transcrip-
tome changes including re-expression of silent genes and 
repression of highly transcribed genes [245]. Interestingly, 
recent studies have shown that the expression of repair fac-
tors that are critical components of HR repair pathway is 
sensitive to HDAC inhibition. More specifically, the HDAC 
inhibitor vorinostat has been shown to suppress the tran-
scription of DNA damage repair proteins, such as RAD50 
and MRE11, and induce DNA DSBs in human prostate 
cancer cells (LNCaP), and human lung adenocarcinoma 
cells (A549) [225]. The ability of HDACs inhibitors to 
suppress HR repair leads to sensitization of cancer cells 
to PARP inhibition [246, 247] and to the DNA damaging 
agents doxorubicin and cisplatin [248, 249]. Combination 
of chemo/radiotherapy with HDACi in phase I and phase II 
clinical trials has been well tolerated and showed encour-
aging efficacy [250–252], while investigation of HDACi in 
combination with PARPi is also underway in a phase I trial 
(NCT03742245).

The bromodomain and extraterminal domain (BET) 
family comprises four members (BRD2, BRD3, BRD4, 
and BRDT) and is the best characterized class of acetyla-
tion readers. These proteins bind hyper-acetylated chro-
matin regions as active promoters or enhancers and serve 
as scaffolds for the recruitment of transcription factors 
that promote the transcription of target genes [253, 254]. 
BRD4 is the best characterized member of this family 
and has been heavily implicated in transcriptional regu-
lation and tumorigenesis [255]. BRD4 localizes on both 
gene promoters and enhancers and has been shown to 
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accumulate specifically on regulatory regions termed 
“super-enhancers” [256]. BET inhibitors have been shown 
also to impair the HR pathway by directly downregulat-
ing BRCA1 and RAD51 expression. This finding has 
provided a rationale to use BET inhibitors to sensitize 
cancer cells to PARPi, showing preclinical efficacy in 
breast and ovarian cancer models [257–259], and is now 
being further investigated in the clinic (NCT03901469). 
Figure 5 outlines basic aspects of epigenetic regulation of 
DNA repair and possible therapeutic implications, while 
Table 2 summarizes the clinical trials with the use of 
DNA repair inhibitor in combination with targeted and 
conventional anticancer therapies.

Concluding remarks

For many years, the study of DNA repair was fueled by 
the early findings indicating a tumor suppressor role for 
the BRCA1/2 proteins, which were commonly mutated in 
gynecological primarily cancers. With the identification 
of mutations of other DDR and DNA repair proteins in 
cancer, the field expanded. Nevertheless, the primary focus 
of these studies was the role of DDR and DNA repair pro-
teins in early steps of carcinogenesis and particularly the 
resulting genomic instability. Genomic instability leads to 
mutagenic events which are rightfully considered to drive 
carcinogenesis as well as contribute to tumor heterogene-
ity, a feature that we know now is crucial for therapeu-
tic resistance. We now know that the response of cells to 
DNA damage is a complex mechanism involving multiple 

Fig. 5  Therapeutic implications of the epigenetics of DNA repair. a Epigenetic regulation of HR repair components by histone modifiers, histone 
binding proteins and DNA modifying enzymes. b Direct involvement of epigenetic regulators in different DNA repair processes
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Table 2  Combinatorial schemes of DDR inhibitors in clinical trials

Agents TARGET Selected clinical trials Disease Therapeutic regimen PHASE

FDA approved
 Olaparib PARP1/2 NCT03150576 (PARTNER) Triple-negative breast cancer Combination with chemother-

apy; neoadjuvant
II/III

NCT02446600, NCT02502266 Platinum-sensitive high-grade 
ovarian cancer

Single agent and combination 
with angiogenesis inhibition

III

NCT03834519 (KEY-
LYNK-010)

Metastatic castration-resistant 
prostate cancer (mCRPC)

Combination with immuno-
therapy

III

NCT03851614 (DAPPER) Advanced colorectal or pancre-
atic cancer or leiomyosarcoma

Combination with immuno-
therapy

II

NCT03742245 Breast cancer Combination with HDAC 
inhibition

I

 Niraparib PARP1/2 NCT03602859 (FIRST) High-grade non-mucinous ovar-
ian cancer

Single agent and combination 
with immunotherapy; switch 
maintenance

III

NCT03308942 Advanced non-small cell lung 
cancer

Single agent and combination 
with immunotherapy

II

NCT03574779 (OPAL) High-grade ovarian cancer Combination with immuno-
therapy and angiogenesis 
inhibition

II

 Rucaparib PARP1/2 NCT03476798 Cervical or endometrial carci-
noma

Combination with angiogenesis 
inhibitor

II

 Talazoparib PARP1/2 NCT03642132 (JAVELIN 
OVARIAN PARP100)

High-grade serous ovarian 
cancer

Maintenance after 1st line 
chemotherapy; single agent or 
combination with immuno-
therapy

III

NCT03672773 Small cell lung cancer Combination with low-dose 
chemotherapy

II

NCT03901469 Triple negative breast cancer Combination with BET inhibi-
tion

II

NCT02878785 AML or R/R AML Combination with DNA dem-
ethylating agent

I/II

Under evaluation
 Veliparib PARP1/2 NCT02264990 Advanced non-small cell lung 

cancer
Combination with chemother-

apy; 1st line
III

NCT02470585 High-grade serous ovarian 
cancer

Combination with chemother-
apy; 1st line and maintenance

III

 AZD6738 ATR NCT03740893 (PHOENIX) Triple-negative breast cancer Single agent; neoadjuvant and 
adjuvant

II

NCT03682289 Any solid tumor except ovarian 
cancer

Single agent or combination 
with olaparib

II

NCT03462342 (CAPRI) High-grade serous ovarian 
cancer

Combination with olaparib II

 M6620 ATR NCT03896503 Small cell lung cancer Combination with chemotherapy II
NCT02595892 High-grade serous ovarian 

cancer
Combination with chemotherapy II

NCT03517969 Metastatic castration-resistant 
prostate cancer (mCRPC)

Combination with chemotherapy II

NCT03641313 Gastric or GEJ adenocarcinoma Combination with chemotherapy II
NCT03787680 (TRAP) Metastatic castration-resistant 

prostate cancer (mCRPC)
Combination with olaparib II

 AZD1390 ATM NCT03423628 Brain tumor—GBM or Solid 
tumor metastasis

Combination with radiation I

 AZD0156 ATM NCT02588105 (AToM) Solid tumors Single agent or combination 
with olaparib or chemotherapy 
or other

I
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networks of proteins and interconnected functions which 
are responsible for damage detection, cell cycle regulation 
and DNA repair. In this process, other chromatin modi-
fiers and epigenetic regulators seem to play particularly 
important roles. Next-generation sequencing revealed that 
DNA repair proteins are frequently mutated in sporadic 
cancers from various anatomic sites. Moreover, for the first 
time we realized that epigenetic regulators are frequent 
targets of mutation events in cancer. Beyond mutations, 
there is accumulating evidence that gene downregulation 
as a result of epigenetic silencing is another mode of loss-
of-function events involving loci encoding proteins that 
function in the context of DNA repair and also epigenetic 
regulation.

Physicians have been exploiting therapeutically the 
defects ensuing from mutations in proteins involved 
in DNA repair. Challenging a system with DNA repair 
defects with additional damage induced by genotoxic 
agents has been particularly successful in certain cancers 
with DNA repair deficiencies. Yet, the complexity of the 
cellular machinery in charge of DNA repair and the large 
number of proteins involved in this process allow cells 
to develop resistance to therapy. At the time, however, 
this complexity allows the identification of additional 
targets which can be targeted therapeutically in cancers 
carrying silenced alleles or mutated proteins with roles 
in DNA repair. Cell or organismal death as a result of 
combinatorial mutations was first described in Drosophila 
100 years ago. This phenomenon, later coined as synthetic 
lethality, has been fueling research in the field of can-
cer for over a decade now. As novel inhibitors are devel-
oped and more synthetically lethal interactions are being 
described, promising avenues for anticancer therapy are 
being opened. Recent advances in our understanding of 
how DNA damage modulates the immune response and 
how repair is regulated by the epigenome have spurred 
interest in investigating novel drug combinations in treat-
ment of resistant disease. Molecular characterization of 
each and every single tumor will provide the ground for a 
more personalized therapeutic exploitation of novel ther-
apeutic options, hopefully leading to the highly praised 
Precision Medicine.
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