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Abstract
The centromere is a specialized region on the chromosome that directs equal chromosome segregation. Centromeres are usu-
ally not defined by DNA sequences alone. How centromere formation and function are determined by epigenetics is still not 
fully understood. Active centromeres are often marked by the presence of centromeric-specific histone H3 variant, centromere 
protein A (CENP-A). How CENP-A is assembled into the centromeric chromatin during the cell cycle and propagated to the 
next cell cycle or the next generation to maintain the centromere function has been intensively investigated. In this review, 
we summarize current understanding of how post-translational modifications of CENP-A and other centromere proteins, 
centromeric and pericentric histone modifications, non-coding transcription and transcripts contribute to centromere func-
tion, and discuss their intricate relationships and potential feedback mechanisms.

Keywords Centromere · Post-translational modifications · Histone modifications · Non-coding transcription · Centromeric 
transcript · Pericentric heterochromatin

Introduction

The centromere is a specialized region on the chromosome, 
where kinetochore proteins assemble into a complex that 
mediates chromosome attachment to microtubules. Cen-
tromeres that appear as one primary constriction on the 
mitotic chromosomes are called monocentromeres, which 
can be sub-divided into point and regional centromeres. 
Point centromeres, which are unique for budding yeast 
species, are short and occupy only one nucleosome [1]. 
Regional centromeres occupy a larger domain, but have 
widely variable sizes among humans, mice, chickens, frogs, 
fruit flies and fission yeast. Some algae, plants, insects and 
nematodes contain polycentromeres that have multiple pri-
mary constrictions or even holocentromeres that occupy the 
entire poleward faces of the chromosomes. In this review, 
most studies described were carried out in regional cen-
tromeres; while, a few examples from other centromere 
organizations were used for comparisons.

Centromeric DNA is the DNA sequence where canoni-
cal, endogenous centromeres form on. Centromeric DNA 
sequences are drastically different among species, despite 
having certain common characteristics (See [2] for an over-
view of the centromeric sequence diversity). Centromeric 
DNA of regional centromeres is flanked by highly con-
densed chromatin domains, which are called pericentric het-
erochromatin, that facilitate sister chromatid cohesion [3–7]. 
Both centromeric and heterochromatic DNA in regional 
centromeres consist of repetitive sequences. For example, 
in humans, arrays of α-satellite sequences constitute both 
the centromeric (mainly High Order Repeat (HOR) arrays) 
and pericentric regions (mainly monomeric α-satellites) (See 
[8] for a comprehensive discussion on human centromere 
sequences). In mice, the minor satellite DNA and the major 
satellite DNA form the centromere and pericentric hetero-
chromatin, respectively.

In budding yeast species, point centromeres are origi-
nally thought to be mainly DNA sequence dependent. In 
organisms with regional centromeres, forming a cen-
tromere does not always require the exact endogenous cen-
tromeric DNA sequence, and having the centromeric DNA 
sequences does not always guarantee the formation of cen-
tromeres. Occasionally centromeres are found to reposition 
to regions outside of the canonical centromeric DNA, and 
the resulting functional, ectopic centromeres are referred 
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to as neocentromeres. Cases of neocentromeres have been 
reported in human patients, who have lost the original cen-
tromeric sequences, or who have undergone centromere 
inactivation with their α-satellite DNA remaining intact on 
their chromosomes [9, 10] (See [11] for more clinical cases 
of human neocentromeres). On the other hand, in human 
patients with a dicentric chromosome, which can arise from 
fusion of chromosome fragments, either one of the two cen-
tromeres can become inactivated and the other can function 
as a monocentric chromosomes [12]. Neocentromeres have 
also been observed or induced experimentally in different 
organisms, e.g., by selecting for surviving cells after remov-
ing the original centromere [13] (See [14] for a comprehen-
sive review of neocentromeres). The above examples sug-
gest that centromere activity can be established or abolished 
epigenetically.

Most functional centromeres are marked by a centro-
meric-specific histone H3 variant centromere protein A 
(CENP-A) [12]. CENP-A plays a critical role in centromere 
specification, centromere maintenance and kinetochore 
assembly. CENP-A and the other constitutive centromere-
associated network (CCAN) components, including CENP-
C and CENP-T, are required for recruitment of the other 
kinetochore proteins, including the KMN network (the 
KNL-1, MIS-12 and NDC-80 complexes) [15]. Studies in 
human and fly regional centromeres showed that CENP-A is 
interspaced with H3. Like other canonical histones, CENP-A 
is diluted in half during DNA replication. However, unlike 
other canonical histones, which are often replenished in S 
phase, CENP-A replenishment is independent of DNA rep-
lication, though it also occurs only once every cell cycle at 
various times among organisms [16]. On the other hand, 
in budding yeast with point monocentromeres and in the 
nematode Caenorhabditis elegans with holocentromeres, all 
or most CENP-A on chromatin is turned over during each 
cell cycle [17, 18].

The molecular mechanism of recruiting new CENP-
A to the correct position on the chromosome, and hence 
maintaining the centromere through cell cycles and gen-
erations has become clearer in the last decade [19]. In gen-
eral, replenishment of new CENP-A at centromere involves 
licensing, deposition and stabilization. First, the original 
centromere position is primed by licensing factors, e.g., 
Mis18 complex (Mis18α, Mis18β, and Mis18BP1/KNL-
2) in human cells [20], before CENP-A loading. Second, 
pre-nucleosomal CENP-A is deposited onto the primed 
centromeric chromatin, assisted by the CENP-A chaper-
one, which is HJURP in humans [21, 22], Scm3 in bud-
ding yeast and fission yeast [23, 24], CAL1 in Drosophila 
[25], and potentially RbAp46/48p55/LIN−53 in Drosophila 
and C. elegans [26, 27]. The CENP-A assembly by HJURP 
induced the removal of Mis18BP1 from human centromeres 
[28]. S. pombe RbAp46/48Mis16 binds to CENP-ACnp−1-H4 

tetramer and Scm3, and then forms a complex with Mis18 
[29]. Third, CENP-A-containing chromatin is stabilized by 
a maturation process, e.g., CENP-A monoubiquitination in 
Drosophila [30], or else CENP-A would be removed from 
the chromatin [31–33].

Besides the centromeric epigenetic marker CENP-A, 
there are multiple epigenetic mechanisms to regulate cen-
tromere activity. In this review, we summarize the current 
knowledge of epigenetic regulations on centromere function, 
focusing on post-translational modifications on CENP-A, 
histones, other centromeric and kinetochore proteins, the 
transcription process and the corresponding transcripts at 
centromeric and pericentric regions. We discuss the rela-
tionships and interdependencies of these epigenetic regula-
tions, their feedback regulatory mechanisms and evolution-
ary origins.

Post‑translational modifications (PTMs) 
of CENP‑A

In the past decade, various post-translational modifications 
of CENP-A have been identified by mass spectrometry 
and characterized (Fig. 1 and Table 1). These modifica-
tions include methylation, acetylation, ubiquitination, and 
sumoylation. Modifications on CENP-A are dynamic during 
the cell cycle and contribute to CENP-A’s localization and 
function.

Proper timing of CENP‑A deposition

CENP-A is loaded in late mitosis to G1 phase in verte-
brates [34]. The cell cycle-dependent phosphorylation 
state of CENP-A is proposed to be critical for timely 
CENP-A deposition. Human CENP-A serine 18 (S18) is 
phosphorylated by Cyclin E1/CDK2 from G1 to S phase 
[35] and serine 68 is phosphorylated by CDK1 in early 
mitosis [36]. Both phosphorylations at CENP-A S18 and 
S68 prevent CENP-A’s premature recognition by HJURP 
and CENP-A loading onto the centromere [35, 36]. Over-
expressed phosphomimicking S68E CENP-A cannot asso-
ciate with HJURP; whereas, overexpressed non-phospho-
rylatable S68A CENP-A can associate with HJURP, but 
it is occasionally mislocalized to non-centromeric regions 
[36–38]. On the other hand, LacI-fused non-phosphoryl-
atable S68Q CENP-A has reduced HJURP recruitment to 
the lacO array at an ectopic site outside the context of the 
centromere, as compared to wild-type CENP-A [39]. Non-
phosphorylatable S68Q CENP-A mutant can localize to 
centromeres, and expression of this mutant by retrovirus 
at endogenous level can rescue cell lethality of CENP-
A-null cells, suggesting that S68 phosphorylation is dis-
pensable for centromere maintenance [39]. During mitotic 
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exit, CENP-A S68 is dephosphorylated by Protein Phos-
phatase 1 alpha (PPla), so that CENP-A can be loaded onto 
the centromere [36]. Drosophila and Xenopus also load 
CENP-A at late mitosis to G1 phase, using similar tempo-
ral regulation by phosphorylation [40, 41]. Further studies 

are needed to determine whether phosphorylations also 
control the CENP-A loading time outside of late mitosis 
to G1 phase in other species (e.g., budding yeast CENP-
ACse-4 loading occurs in S phase [17]), and in species that 
have complete CENP-A turnover every cell cycle.

Table 1  Post-translational modifications of centromere proteins and their functions

Protein Modification Responsible enzyme Species Function Reference

CENP-A Phosphorylations
 Serine 7 phosphorylation Aurora A/B Humans Is required for cytokinesis com-

pletion and correct Aurora B, 
14–3-3, PP1γ1, and CENP-C 
localization

[54, 56–58]

Non-phosphorylable mutant can 
bind centromere, does not affect 
CENP-C localization, nor long-
term survival

[59]

 Serine 16/18 phosphorylation ? Humans Compacts CENP-A nucleosomal 
array

[51]

 Serine 18 phosphorylation CDK2 Humans Inhibits CENP-A localization to 
centromere

[35]

 Serine 68 phosphorylation CDK1 Humans Inhibits HJURP association and 
CENP-A premature loading

[36, 38]

Expression of non-phosphorylable 
mutant can rescue CENP-A null 
cells

[39]

 Serine 50 phosphorylation ? Maize ? [60]
Methylations
 Glycine 1 tri-methylation RCC1? Humans Interacts with DNA [51, 61]
 Lysine 124 monomethylation ? Humans ? [50, 60]
 Arginine 37 methylation ? Budding yeast Recruits inner and linker kine-

tochore proteins
[42, 61]

Ubiquitinations
 Lysine 124 ubiquitination CUL4A-RBX1-COPS8 Humans Localizes to centromere [30, 47]
 Polyubiquitination Psh1 or Slx5 Budding yeast Targets CENP-A for proteolysis [42, 43, 51]

Monoubiquitination CUL3/ RDX Fruit flies Stabilizes CENP-A [30, 51]
Others
 Lysine 124 acetylation HAT p300? Humans Increases nucleosome accessibil-

ity to chromatin remodelers and 
disrupts C-terminal binding to 
CENP-C

[49, 50]

 Sumoylation Siz1/Siz2 Budding Yeast Primes CENP-A for polyubiquit-
ination-related degradation

[42, 50]

HJURP  Serine 412, 448 and 473 phos-
phorylation

CDK1 Humans Weakens interaction with M18β [62, 63]

M18BP1  Serine/threonine 24 phosphoryla-
tion

CDK1/2 Humans Prevents premature CENP-A 
loading

[64]

 Threonine 40 & serine 110 phos-
phorylation

CDK1 Humans Prevents M18α:Mis18β binding [65]

 Threonine 653 phosphorylation CDK1/2 Humans Inhibits Mis18BP1 centromere 
localization

[28]

 Phosphorylation ? (Not CDK1/2) Xenopus Inhibits Mis18BP1 interaction 
with CENP-A in metaphase

[68]

Mis18 complex Phosphorylation Plk1 Humans Localizes Mis18 complex and 
loads CENP-A

[67]
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Eliminating mislocalized CENP‑A

Ubiquitination of CENP-A helps to further ensure that 
CENP-A’s distribution is exclusively on the existing cen-
tromeres in budding yeast and Drosophila. In budding 
yeast, ectopically localized CENP-ACse4 is first subjected to 
sumoylation by E3 ligases Siz1 and Siz2, followed by poly-
ubiquitination mediated by E3 ubiquitin ligase Slx5, and it is 
then targeted for proteolysis [42]. When CENP-ACse4 is over-
expressed, another budding yeast E3 ubiquitin ligase, Psh1, 
polyubiquitinates mislocalized CENP-ACse4 [43]. The pres-
ence of CENP-ACse4 chaperone Scm3 reduces CENP-ACse4 
ubiquitination by Psh1 in vitro, suggesting that Scm3 pro-
tects CENP-ACse4 from degradation [44]. In Drosophila, E3 
ubiquitin ligase  SCFPpa destabilizes CENP-ACID and regu-
lates CENP-ACID chromatin localization [45]. A recent study 
in human cells revealed that CENP-A can localize to chro-
mosome arm regions that are transcriptionally active before 
S phase [46]. CENP-A not bound by CENP-C is stripped 
off from the nucleosome when the DNA is replicated [46]. 
Whether CENP-A ubiquitination and the DNA replication 
machinery coordinate to evict CENP-A is not clear.

Effects on CENP‑A nucleosomal structure

While polyubiquitination removes ectopically loaded CENP-
A, monoubiquitination is found to stabilize CENP-A on 
the centromere in Drosophila and human cells [30, 47]. In 
Drosophila, CENP-ACID is stabilized by E3 ligase CUL3/
RDX-mediated monoubiquitination in a CAL1-dependent 
manner, potentially when CAL-1 forms a pre-nucleosomal 
complex with CENP-ACID during mitosis [30]. In humans, 
CENP-A monoubiquitination on the highly conserved lysine 
124 (K124) residue by E3 ligase CUL4A-RBX1/ROC1 pro-
motes CENP-A dimerization, increases CENP-A’s affinity 
to HJURP, and is required both for the maintenance of old 
CENP-A and the recruitment of newly synthesized CENP-A 
[47]. However, in another study, the CENP-A K124R mutant 
is still competent for centromere maintenance [39, 47, 48]. 
Ubiquitination on additional residues on CENP-A might also 
be involved in maintaining CENP-A stability.

Interestingly, different modifications can be found on 
human CENP-A lysine 124. CENP-A K124 acetylation, 
which tightens the histone core, was suggested to mediate 
nucleosome sliding and increase centromere accessibility 
before DNA replication [49, 50]. In early S phase, CENP-
A K124 was found to be monomethylated, which is pro-
posed to avoid over-replication of centromeric DNA [50]. 
Therefore, even the same residue, e.g., K124, on CENP-A 
can undergo modification transitions to tailor for specific 
functions at different cell cycle stages, adding complexity 
to epigenetic regulations by PTMs.

Several other post-translational modifications on human 
CENP-A were also implicated in directly affecting CENP-A 
nucleosomal structure. For instance, CENP-A glycine 1 tri-
methylation was suggested to aid the interaction of CENP-A 
with the underlying α-satellite centromeric DNA, and serine 
16 and 18 phosphorylations are proposed to form a local 
secondary salt bridge structure that compacts the CENP-A 
nucleosomal array [51].

Localization of other kinetochore proteins 
and mitotic progression

One of the main functions of CENP-A is recruiting kine-
tochore proteins to the centromere. The kinetochore recruit-
ment requires both CENP-A targeting domain (CATD) and 
either the carboxyl- or amino-terminal tail of the CENP-A 
protein in humans. H3 chimeras containing the CENP-A 
CATD domain, with either CENP-A amino-terminal tail 
(residues 1–29) or carboxyl-terminal tail (residues 135–140), 
were sufficient to recruit and maintain kinetochore proteins 
on human endogenous centromeres or on neocentromeres 
[52, 53]. This result suggested that kinetochore proteins are 
redundantly recruited and maintained by the tails of CENP-
A together with the CENP-A CATD domain. For the short 
CENP-A carboxyl-terminal tail outside the conserved his-
tone-fold domain, no specific post-translational modification 
has been reported to date. CENP-A amino-terminal tail dele-
tion causes serious mitotic defect, but this can be rescued 
when CENP-A amino-terminal tail is substituted with that 
of H3, which is also phosphorylatable [54]. At the amino-
terminal tail, phosphorylation of human CENP-A serine 7 
by Aurora A and Aurora B appears in prophase, peaks in 
metaphase, and levels off in anaphase [55, 56]. Overexpres-
sion of serine 7 non-phosphorylatable CENP-A mutant has 
been shown to cause chromosome misalignment at meta-
phase [56], sister chromatid cohesion defects [57], reduced 
localization of CENP-C [54] and a phospho-binding protein, 
14–3–3, from the centromere [54], dispersed Aurora B local-
ization away from the inner centromere to chromosome arms 
in prometaphase [56, 57], and dispersed PP1γ1 from the 
midbody to the anaphase chromatids as well [58]. Moreo-
ver, overexpression of serine 7 phosphomimicking CENP-A 
mutant has abolished PP1γ1 localization at the midbody in 
anaphase [58]. CENP-A phosphorylated at serine 7 has been 
shown to bind 14–3–3, which is proposed to bridge CENP-A 
to CENP-C [54]. However, the importance of S7p remains 
elusive as a recent study using auxin-induced degradation 
(AID) and gene editing system revealed the opposite result, 
in which cells with only S7A CENP-A mutant do not display 
any abnormalities in centromere function, including CENP-
C recruitment, nor long-term survival defects [59]. Barra 
et al. attributed the previous reported S7A defects to hav-
ing a suboptimal level of CENP-A [59]. In maize, serine 50 
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phosphorylation of CENP-A has a similar kinetics as CENP-
A S7 phosphorylation in humans, with a sharp reduction at 
metaphase–anaphase transition, but the function of S50 in 
maize is not well understood [60]. Moreover, budding yeast 
CENP-ACse4 methylation at arginine 37 may be involved 
kinetochore recruitment and centromere function, as the 
absence of this methylation (Cse4-R37A mutant) results in 
slightly reduced levels of kinetochore proteins (Mtw1 and 
Ame1) on the centromere in cbf1 deletion background [61]. 
Cse4-R37A mutant also results in an increased plasmid loss 
rate in cells with plasmid lacking CDEI element, and syn-
thetic lethality or growth defect when combined with COMA 
(Ctf19-Okp1-Mcm21-Ame1) mutants or cbf1 mutant [61].

Post‑translational modifications on other 
proteins important for CENP‑A centromere 
targeting

Many proteins involved in the CENP-A chromatin assem-
bly process are also post-translationally modified (Table 1). 
CENP-A chaperone HJURP serine 412, 448 and 473 phos-
phorylations by CDK1 weaken the interaction between 
HJURP and Mis18β [62], and a non-phosphorylatable 
HJURP mutant precociously deposits CENP-A on to the 
centromere [63]. CDK1 and CDK2 also phosphorylate 
the centromere licensing factor Mis18BP1 to suppress its 
centromere localization during S, G2, and M phase [64]. 
Phosphorylation of Mis18BP1 at T653 prevents prema-
ture centromere targeting at G2 [28]. Phosphorylation of 
Mis18BP1 at T40 and S110 reduces its affinity to Mis18α 
and Mis18β, and a phosphomimicking mutant prevents new 
CENP-A recruitment [65, 66]. The inhibition of HJURP 
and Mis18BP1 localization to centromere in turns restricts 
the centromere licensing time to late mitosis or early G1, 
and prevents premature CENP-A chromatin assembly. In 
contrast, Polo-like Kinase 1 (PLK1) phosphorylates human 
Mis18 complex to promote its centromere localization in 
early G1, contributing to CENP-A deposition [67]. Tak-
ing these results together, CENP-A deposition, at least in 
humans, is likely to be controlled by integrated phospho-
rylation and dephosphorylation signals from CDK1, CDK2 
and PLK1. In Xenopus, phosphorylation of Mis18BP1 also 
inhibit its association with CENP-A nucleosomes during 
metaphase, but this phosphorylation is independent of CDK 
[68]. It is worth to note that many of the above findings are 
yielded from organisms like humans and Drosophila, which 
have their CENP-A loaded in late G1 or anaphase [34, 40]. 
As the loading time of CENP-A varies among species, it will 
be interesting to further investigate whether the CENP-A 
loading mechanisms, as well as their regulations, are con-
served in different species.

Histone modifications important 
for centromere function

Centromeric and pericentromeric histones H3 
and H4 acetylation status

Many centromeric histone modifications have been iden-
tified as pertinent to centromere functions (Table  2). 
Histone acetylation, as commonly found at actively tran-
scribed regions in euchromatin, neutralizes the positive 
charge in histones, weakening histone–DNA interactions, 
thereby opening up the chromatin [69]. One of the earliest 
studies in barley has shown that centromeric histones H3/
H4 are hypoacetylated in mitosis [70]. In fission yeast, 
centromeric histones H3/H4 are maintained in hypoacety-
lated states by RbAp46/48Mis16 and Mis18 [20]. In budding 
yeast, H4 in the CENP-ACse4 nucleosome is hypoacetylated 
at K16 by Sir2, and this hypoacetylation is required to 
maintain kinetochore integrity and accurate chromosome 
segregation [71]. In humans and Drosophila, the repetitive 
centromeric chromatin also contains hypoacetylated H3/
H4 [3]. The general hypoacetylated state at the centromere 
is consistent with the cytological observation that the cen-
tromeres are the more condensed part of the chromosomes.

On the other hand, H4 lysine 5 and lysine 12 acetyla-
tions, which were dependent on RbAp48-HAT1 complex 
but not Mis18, were found to be enriched in non-repeti-
tive centromeres in chicken DT40 cells [72]. Consistently, 
H4 acetylations (at lysine 5, 8, 12, and 16) were found 
in rice centromeres where active genes are present [73]. 
H4 acetylation mediated by the human Mis18 complex 
was suggested to prime or license the centromere prior 
to CENP-A deposition [74]. A study in barley has shown 
that centromeric H4 lysine 5 acetylation is dynamic across 
the cell cycle, in which H4 lysine 5 deacetylation in meta-
phase is proposed to promote condensation of centromeric 
chromatin [75] (See [76, 77] for reviews focusing on the 
dynamics of histone modifications).

Histone modifications at centromeric core 
versus pericentric heterochromatin

As mentioned in the introduction, CENP-A-contain-
ing centromeric core in regional centromeres is usu-
ally flanked by pericentric heterochromatin. Multiple 
approaches, including high-resolution imaging of stained 
chromatin fibers, pull-down of nucleosome using CENP-A 
antibody, and chromatin immunoprecipitation (chIP), have 
allowed us to distinguish the centromeric (CEN) chromatin 
from the pericentric heterochromatin by having distinct 
histone modification patterns. For example, in humans 



2905Epigenetic regulation of centromere function  

1 3

and Drosophila, while their CEN chromatin contains H3 
lysine 4 dimethylation (H3K4me2), the pericentric het-
erochromatin consists of H3 lysine 9 di- or trimethyla-
tion (H3K9me2 or H3K9me3) [3, 78]. These modification 
patterns are consistently reported in other model organ-
isms like the flowering plant Arabidopsis thaliana, fis-
sion yeast and maize [79–82]. A study in human artificial 
chromosomes (HACs) has demonstrated that H3K4me2 
is required for targeting HJURP to the centromere and for 
kinetochore maintenance [83]. Mitotic-specific H3K9me3 
at pericentric heterochromatin is crucial for mitotic pro-
gression and kinetochore–microtubule interaction in 
human cells [84, 85]. However, such distinct centromeric 
and pericentric histone modification pattern seems to be 
less obvious in chicken. In chicken DT40 cells, in which 
the centromeric chromatin are also mostly repetitive, 
H3K9me3 was robustly observed flanking the CENP-A 
subdomains on stretched chromatin fibers, but only low 
levels of H3K4me2 were detected in CEN chromatin by 
super-resolution microscopy [6]. Despite the difference 
in H3K9me3 pattern in human and chicken DT40 peri-
centric chromatin, one similarity among them is histone 
H4 lysine 20 monomethylation (H4K20me1) in CENP-A 
nucleosomes. H4K20me1 is usually associated with active 

transcription and is required for kinetochore assembly, 
probably through CENP-T binding [88, 89].

While H3K9me3 is enriched on chicken DT40 repetitive 
centromeres, it is not enriched on non-repetitive centromeres 
(Chromosome 5, 27 and Z) or neocentromeres [13]. In fact, 
the absence of H3K9me3 at non-repetitive neocentromeres 
has also been reported in a human cell line IMS13q [86]. 
On the other hand, on centromere 8 (Cen8) in rice, which 
contains a low abundance of highly repetitive satellite DNA, 
CENP-A centromeric chromatin is embedded in a larger 
H3K9me2 region [73, 87]. This whole H3K9me2 region, 
including CENP-A chromatin, is low in H3K4me2 [87], 
which is different from that in humans, flies and HACs.

Other than methylations, histone phosphorylations have 
also been reported. In maize, H3 serine 28 phosphorylation 
(H3S28P) occurs at pericentric chromatin from prometa-
phase to anaphase, and is proposed to function in sister chro-
matid cohesion [60]. In fission yeast pericentric chromatin, 
mitotic histone kinase Haspin phosphorylates H3 threonine 
3 (H3T3P) [90], while spindle checkpoint kinase Bub1 phos-
phorylates H2A serine 121 (H2AS121P) [91]. These two 
phosphorylations are important for recruiting components 
in the chromosomal passenger complex (CPC), including 
Aurora B, and the cohesin protector, Shugoshin, to mediate 

Table 2  Histone modifications of centromeric core chromatin and pericentric heterochromatin

Location Modifications Function Species Reference

Centromeric and 
Pericentro-
meric

H3/H4 hypoacetylation Promotes condensation of cen-
tromeric chromatin in barley; 
maintains kinetochore integrity 
and accurate chromosome segre-
gation in budding yeast

Barley, fission yeast, budding 
yeast, humans, Drosophila

[3, 20, 70, 71]

Centromeric H3 lysine 4 di-methylation Targets HJURP to the centromere 
and maintains kinetochore

Humans, Drosophila, Arabidopsis, 
fission yeast, chicken, rice

[6, 73, 78, 79, 83]

H3 lysine 9 di- or tri-methylation ? Rice, chicken [6, 87]
H3 lysine 27 tri-methylation ? C. elegans [18]
H3 threonine 3 phosphorylation Recruits CPC via Survivin bind-

ing and important for Aurora B 
function

Fission Yeast [90, 92, 93]

H2A serine 121/ threonine 120 
or 133 phosphorylation

Localizes CPC component Shu-
goshin to centromere in fission 
yeast

Fission yeast, maize, wheat, rice, 
barley, L. elegans, humans

[91, 94–97]

H4 acetylation Primes the centromere prior to 
CENP-A deposition in humans

Rice, humans [73, 74]

H4 lysine 5 and 12 acetylations Are required for CENP-A deposi-
tion

Chicken [72]

H4 lysine 20 monomethylation Is required for CENP-T binding Humans, chicken [88]
Pericentric H3 lysine 9 di or tri-methylation Is crucial for mitotic progression, 

sister chromatids cohesion, 
and kinetochore–microtubules 
interaction; Is required for 
heterochromatin formation (see 
Table 4)

Humans, Drosophila, Arabidopsis, 
fission yeast, maize

[3, 4, 79–82, 84, 
85, 149, 164, 
166]
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sister chromatid bi-orientation and cohesion [92, 93]. In 
humans, the corresponding modification of H2AS121P is 
H2A threonine 120 phosphorylation (H2AT120P), which 
is also recognized by Shugoshin at the pericentric hetero-
chromatin [94]. The corresponding phosphorylation in other 
plant species is either H2AT120P or H2AT133P [95–97]. 
In barley and Luzula elegans, H2AT120P is present on the 
centromeres, with a gap in between the sister chromatids, as 
shown by structured illumination microscopy [97]. Despite 
its different distribution and unclear function in cohesion in 
plants, this H2A modification represents a common epige-
netic mark for centromeric chromatin in both monocentric 
(e.g., tomato, barley, rye, tobacco) and holocentric plant spe-
cies (e.g., L. luzuloides and L. elegans)[96].

For the nematode C. elegans, which also have holocen-
tromeres, CENP-AHCP−3 domains are positively correlated 
(r = 0.64) with heterochromatin mark H3K27me2/3, and 
negatively correlated (r = − 0.6) with actively transcribed 
mark H3K36me3, but the causal relationships between these 
histone modifications and CENP-AHCP-3 localization and 
their functions on the centromeres are not clear [18]. Taken 
together, some histone modification patterns at centromeric 
chromatin and pericentric heterochromatin are conserved 
among organisms, while some are unique. Their exact roles 
in specific species deserve further investigation.

Centromeric transcription

As a constricted region on the mitotic chromosome bound by 
kinetochores [98], the centromere was first conceived to have 
minimal transcriptional activity. Surprisingly, as opposed 
to this early speculation, transcription at the centromere is 
found to be compatible with centromere’s function in many 
species.

Centromeric transcripts as a structural 
and regulatory component for the centromere

Transcripts from the centromere have been detected, and 
are found to be required for centromere function in bud-
ding yeast [99, 100], fission yeast [101, 102], mammals 
[103, 104], insects [105, 106] and plants [73, 107]. The 
centromere-derived RNAs found in different organisms are 
heterogeneous in terms of their size, stability and the cell 
cycle timing in which they are transcribed (Table 3). RNAs 
originated from centromere can be as short as 21–23 nt for 
short interfering (si)RNAs in fission yeast, or over 5 kb for 
long non-coding (lnc) RNAs in humans [100, 105, 107, 
108]. (See [109, 110] for reviews on the classifications of 
centromeric transcripts and their potential functions).

Centromeric ncRNAs may serve a structural or scaffold-
ing role in the assembly of the kinetochore complex or in 

centromere targeting (Fig. 2d). The lncRNAs were found to 
associate with soluble HJURP and CENP-A, and the asso-
ciation is required for CENP-A centromere targeting [108]. 
A recent study also revealed that the α-satellite lncRNAs 
are cis-acting [111]. On the other hand, human centromeric 
RNAs have been found to bind and keep kinetochore pro-
teins in the nucleolus [112]. The authors proposed that cen-
tromeric RNAs facilitate the preassembly of kinetochore 
proteins at the nucleolus, prior to their localization at the 
centromere. Centromeric RNAs’ structural role is likely 
conserved in other species. Maize centromeric ncRNAs 
co-precipitated with CENP-A chromatin [107]. CENP-C 
requires centromeric ncRNAs for its localization to maize, 
Drosophila and human centromeres [106, 112, 113].

Centromeric non-coding RNAs may also serve a regula-
tory role in the activity of Aurora B kinase in CPC (Fig. 2e). 
Human α-satellite RNAs suppress Aurora B’s kinase activity 
[104]. In contrast, mouse minor satellite RNAs and Xeno-
pus egg extracts’ centromeric non-coding transcripts fcr1 are 
required for Aurora B’s kinase activity [114, 115]. Despite 
the observed opposing effects on Aurora B function, knock-
down of centromeric RNAs in humans, mice and Xenopus 
all leads to improper spindle attachments and chromosome 
missegregation [103, 104, 116]. Yet, further investigations 
are needed to reveal the exact role of centromeric RNAs in 
regulating centromeric protein activity and understand the 
mechanistic differences among organisms.

Transcription‑coupled chromatin modifications

In line with the discovery of centromere transcripts, the pro-
cess of transcription itself may have a role in centromere 
function. According to the characterization of the promoter 
sequence, the 5′ cap structure and the 3′ poly-A tail of the 
centromeric and pericentric RNAs, RNAPII is found to be 
responsible for their production in fission and budding yeast, 
beetles, and humans [99, 105, 117–120]. In humans, Bub1 
recruits RNAPII to the centromeres, and the resulting tran-
scription is important for the accumulation of Shugoshin 
[94]. Elongating RNAPII (phosphorylated at Ser2), RNAPII-
specific transcription factor Carboxyl-terminal domain phos-
phatase 1 (CTDP1), and a FACT subunit Structure Specific 
Recognition Protein (SSRP1) are found to localize at the 
centromere on human mitotic chromosomes [119, 121]. 
RNAPII inhibition by α-amanitin reduces centromeric tran-
scription and compromises kinetochore function in humans 
and beetles [105, 119]. Nonetheless, how RNAPII transcrip-
tion functions at the centromere remains obscure. Poten-
tially, RNAPII may serve as a platform to recruit chroma-
tin modifiers, or stall to shape the chromatin environment 
(Fig. 2a). Alternatively, transcriptionally compatible chro-
matin may promote histone exchange by associating with 
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Fig. 2  Proposed mechanisms of centromere regulation via transcrip-
tion. (Top) Transcription process is proposed to introduce chromatin 
modifications by opening up chromatin, facilitating chromatin modifi-
ers binding, and promoting histone exchange. a Centromeric RNAPII 
is associated with different stalling factors (see table), which may 
maintain an open chromatin state. b FACT is found on the centromere 
in human, chicken DT40 cells, and Drosophila [122–124]. In DT-40 
cells, chromatin remodeling factor CHD1 is associated with FACT 
[123]. In Drosophila, FACT is required for new CENP-ACID loading 
[124]. In budding yeast, CENP-A degradation by E3 ubiquitin ligase 
requires FACT [126]. In fission yeast, FACT represses ectopic CENP-
A localization [125]. c Histone exchange during transcription process 
is proposed to deposit new CENP-A or to remove ectopic CENP-A. 
Human transcription coupled H3.3 chaperone ATRX/DAXX is asso-
ciated with ectopic centromere in human cancer cells [135]. (Bottom) 
Transcripts originated from centromeric or non-centromeric region 
have different forms and diverse effects in different organisms. d 
Long or short non-coding RNAs at the centromere are required for 
the targeting of some centromeric proteins (see table). e Centromere 
transcripts help to modulate Aurora B activity. The Aurora B kinase 
activity is promoted by cenRNAs in mouse and frog [114, 115], and 
is suppressed by cenRNAs in human cells [104]. f Non-coding RNAs 
are processed into short interfering RNAs (siRNAs) by the RNAi 
silencing complex (RISC), which can guide Argonaute binding onto 
the nascent transcript. In fission yeast, the AGO-1 RNAi machinery 
is involved in the recruitment of histone methyltransferase Clr4 for 
H3K9 methylation. H3K9me3 is then recognized by HP1 homolog, 
Swi6 [139, 149–152]. Swi6 is important in establishing pericentric 
heterochromatin and facilitating initial CENP-ACnp1 establishment 
in de novo centromeres. (G) In nematodes, the active transcribed 
regions are anti-correlated with the CENP-AHCP-3 localization [18]. 
CSR-1 RNAi pathway produces 22G-RNAs from germline mRNAs 
[160], which may facilitate chromatin modifications and inhibit 
HCP-3 binding. Related sections are highlighted for detailed descrip-
tions and references

◂the corresponding histone chaperones to facilitate CENP-A 
loading.

FACT associated with RNAPII was shown to facilitate 
centromere protein recruitment. FACT binds to the histone-
fold domain of CENP-W directly, and stimulates CENP-T/W 
complex deposition at the centromere region in human cells 
[122] (Fig. 2b). In chicken DT40 cells, CENP-H recruits 
SSRP1 and its interacting chromatin remodeling factor 
CHD1 to the centromeres, which together facilitates the 
deposition of new CENP-A [123]. In Drosophila, FACT is 
recruited by the CENP-ACID chaperone, CAL-1, to promote 
RNAPII transcription, which destabilizes H3 nucleosomes 
and facilitates new CENP-ACID loading [124]. In fission 
yeast, FACT deletion induces the deposition of CENP-ACnp1 
onto ectopic sites only, but does not affect CENP-ACnp1 on 
the endogenous centromeric regions, suggesting that FACT 
may act by promoting the correct localization of histone H3 
in the genome [124, 125]. Consistently, in budding yeast, 
the degradation of CENP-ACse4 by E3 Ubiquitin ligase Psh1 
requires FACT [126].

Evidences suggested that RNAPII may be stalled at cen-
tromeres. Depletion of RNAPII transcription restart factor 
Ubp3 or TFIIS leads to increased CENP-ACnp1 deposition 
onto fission yeast centromeres, suggesting that restart fac-
tors normally restricts CENP-ACnp1 deposition [127]. Poten-
tial transcription elongation repressors, including BRCA1, 
KDM2A, Dicer, and DNMT3B were found to localize to 
vertebrate centromeres [128–131] (Fig. 2a). The retention 
of RNAPII at the centromere may open up the centromeric 
DNA and facilitate the recruitment of CENP-A deposition 
factors or chromatin modifiers.

Transcription-coupled histone exchange is important for 
the turnover of some histone variants that are replication 
independent, such as CENP-A [132]. As DNA is being tran-
scribed, histones are temporarily removed and reassembled, 
providing a chance to reload histones and incorporate spe-
cific variants with the help of chaperones that are associated 
with the RNA polymerase [133]. Centromeric chromatin is 
proposed to be pre-occupied by histone variant H3.3 after 
DNA replication and prior to new CENP-A loading [134]. 
This placeholder, H3.3, is loaded independent of replica-
tion, but is coupled to transcription [109, 134]. Besides, 
ectopic CENP-A domains in human cancer cells are found 
to be associated with transcription-coupled H3.3 chaperones 
ATRX/DAXX [135] (Fig. 2c). Whether transcription facili-
tates the replacement of H3.3 by CENP-A at a specific cell 
cycle stage remains to be determined.

Regulation of centromeric transcription

The transcription of centromeric RNAs has to be maintained 
but kept at a low level. At human centromeres, there is tran-
scriptionally permissive mark H3K4me2, but not H3K4me3, 

which is a strong transcription histone mark [83]. Knocking 
down histone H3 lysine 4 demethylase KDM5A reduced 
α-satellite RNAs levels by half and resulted in genomic 
instability in humans [136]. Moreover, tethering a tran-
scription suppressor to HAC α-satellites destabilizes the 
HAC, accompanied by a loss of H3K4me2 and a gain of 
H3K9me3 [83, 137]. This inactivation of HAC centromere 
can be rescued by p65-induced, H3K9ac-associated tran-
scription [138]. Thus, the centromeric transcription level can 
be regulated by the landscape of histone modifications on 
the chromatin. In budding yeast, blocking centromeric tran-
scription by lacI binding to lacOs flanking the centromere 
resulted in increased minichromosome loss [100]. These 
studies suggest that a low level of centromeric transcription 
is favorable for centromere function.

On the other hand, centromere function seems to be 
incompatible with strong centromeric transcription. Neocen-
tromere formation repressed the expression of nearby genes 
in fission yeast [139, 140]. Conversely, induced expression 
of proximal genes repositioned the neocentromere in the 
yeast Candida albicans [141]. Therefore, the activity of 
the centromeres and nearby transcription may affect each 
other. Overexpression of the centromeric transcripts caused 
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by adding a strong promoter [103, 142, 143], tethering a 
transcriptional activator to the centromere [137, 144], or 
removal of DNA methylation by DNMT3B depletion [83] 
also leads to chromosome missegregation. Even for bud-
ding yeast centromeres, which are originally thought to be 
genetically regulated, induced overexpression of centromeric 
RNAs reduces chromatin association of kinetochore pro-
teins [145]. Overexpression of centromeric RNAs by dele-
tion of centromeric transcription repressor, H2A.ZHtz1 or 
Cbf1, leads to reduced levels of centromeric CENP-ACse−4, 
CENP-CMif2 and  AuroraBIpl[100]. It was proposed that the 
overexpressed centromeric RNAs may titrate centromeric 
proteins away and rendered their mislocalizations [103]. 
Knocking down centromeric RNAs in htz1 or cbf1 deletion 
mutant partially rescues minichromosome loss, suggesting 
a balanced level of centromeric RNAs is needed for cen-
tromere function [100]. In addition, centromeric transcript 
level was found to be up-regulated under stress conditions 
and in human cancer cells [131, 146]. The accumulation 
of centromeric transcripts may result from defects in RNA 
processing by exosome, as some centromeric RNAs, such 
as those in fission yeast, are known to have a high turnover 
rate [147, 148].

Transcription at pericentric heterochromatin

Non-coding transcription at the pericentric region remod-
els the chromatin to form heterochromatin and facilitate 
gene silencing. In fission yeast, Argonaute-bound, pericen-
tromere-derived siRNAs recruit histone methyltransferase 
Clr4 to methylate H3 at lysine 9 [139, 149–152]. H3K9me 
in turn is recognized by the heterochromatin protein 1 (HP1) 
homolog, Swi6, which sets the boundary for pericentric and 
centromeric regions [81]. The pericentric heterochromatin 
is required for the initial establishment of CENP-ACnp1 
domain, but not for its maintenance in fission yeast [81, 
153] (Fig. 2f).

The links between the non-coding transcripts, the RNAi 
pathway, and heterochromatin formation may be conserved 
in other organisms. In mouse and chicken–human hybrid 
DT40 cells, knockdown of an RNAi component has resulted 
in an accumulation of long transcripts, destabilization of 
HP1 and reduction of H3K9 methylation at the pericen-
tromere [128, 154, 155]. Pericentric heterochromatin for-
mation is required for CENP-A loading in mice and Dros-
ophila, but is dispensable in chicken–human hybrid cells, C. 
albicans, and C. elegans, suggesting that heterochromatin 
is not a universal prerequisite for centromere function [128, 
141, 156–158, 160]. However, other siRNAs that originate 
from centromeric or pericentric chromatin may be involved 
in regulating centromere function (Table 4).

Relationship of the centromere with other 
RNA interference pathways

In holocentric C. elegans, CENP-AHCP−3 domains are 
inversely correlated with the transcribed regions in the ger-
mline, which are loci targeted by antisense 22G-RNAs gen-
erated by the Argonaute CSR-1 RNAi pathway [18, 160]. 
CSR-1 protects its targets from being silenced by other 
RNAi pathways and optimizes the target transcript levels 
[161, 164]. Disruption of CSR-1 RNAi pathway leads to 
chromosome missegregation, which is proposed to be caused 
by its target expression level changes [160]. However, CSR-1 
and 22G-RNAs may potentially also affect CENP-AHCP−3 
organization at the chromatin level (Fig. 2g).

Conclusion

Since the identification of CENP-A as a fundamental mark 
at the centromere, efforts have been made to unravel the 
mechanism that replenishes CENP-A after DNA replica-
tion, and hence maintains the centromere identity in every 
cell cycle. While many protein factors directly interacting 
with CENP-A have been identified, the post-translational 
modifications, chromatin environment, and transcriptional 
status that regulate precise temporal and spatial centromere 
assembly and function are just beginning to be understood.

Post-translational modifications of centromeric proteins, 
centromeric and pericentric histones are involved in gov-
erning the centromere function. These modifications can be 
highly dynamic with respect to the cell cycle phases. Phos-
phorylation on CENP-A and centromeric proteins often 
controls their physical interactions and deposition timing. 
Ubiquitination on CENP-A is crucial for its stability and 
restricting its localization. Methylations, acetylations and 
phosphorylations on specific centromeric histone proteins 
can influence the localization of other centromeric proteins.

While the functions of many histone modifications on 
the centromere are not completely clear yet, they can reg-
ulate centromeric transcription. Non-coding centromeric 
transcription event has been shown to be essential in sev-
eral organisms. Most of the centromeric RNAs are tran-
scribed by RNAPII at a tightly controlled, relatively low 
level. The transcription activity may function to recruit 
chromatin modifiers for regulating the centromeric chro-
matin environment, or the centromeric RNAs may func-
tion to facilitate kinetochore function as a structural or 
regulatory component. At the pericentric heterochromatin 
flanking the centromeric core, transcription, RNAi path-
way and specific histone modifications may cooperate to 
facilitate sister chromatid cohesion, CENP-A loading or 
centromere establishment. Besides CENP-A, centromeric 
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and pericentric histone modifications and transcription 
may function as conserved epigenetic mechanisms to cre-
ate a favorable chromatin environment for centromere 
specification.

Following the discoveries of post-translational modifica-
tions of centromeric proteins, centromeric chromatin and 
transcriptional environment, future studies are anticipated to 
reveal more specific molecular functions of these epigenetic 

Table 4  Relationship between transcription, RNAi, heterochromatin assembly and centromere function

Species Transcription site RNAi pathway Heterochromatin function of the 
transcription/ RNAi or phenotypes 
in mutant/ overexpression

Reference

Fission Yeast (Schizosaccharo-
myces pombe)

Pericentric outer repeats dg region Ago1 RISC associates with Stc1 to 
recruit histone methyltransferase 
Clr4 for H3K9 methylation, 
H3K9me3 is then recognized 
by HP1 homolog Swi6, whereas 
H3K9me2 is important to main-
tain the siRNAs accumulation. 
Defective RNAi leads to chromo-
some missegregation

[101, 102, 150, 
152, 153, 
166, 169]

Transfer RNA alanine gene at 
the centromeric and pericentric 
boundary by RNA Pol III

- Prevent spreading of heterochro-
matin

[170]

Fruit fly (Drosophila mela-
nogaster)

? Piwi Piwi RNAi pathway is required for 
heterochromatin silencing and 
HP1 localization

[158, 171]

Chicken DT40-human hybrid cells α-satellites ? Dicer deficient cells mislocalize 
cohesin Rad21 and Bub1, but do 
not affect CENP-A and CENP-C

[128]

Arabidopsis thaliana 180 bp centromeric satellite 
repeats

? Dicer mutant abolishes 23–24 nt 
centromeric small RNAs, but do 
not affect H3K9me2 nor chromo-
some segregation

[79]

Tammar wallaby (Macropus 
eugenii)

Centromere-specific repetitive 
satellites

? Crasi RNAs are required for 
recruiting H3K9me3 at pericen-
tric heterochromatin

[168]

Mouse (Mus musculus) Minor satellites (Centromeric core) ? Dicer-null cells inhibit cell prolif-
eration but not histone modifica-
tion at the pericentromere

[154, 155]

Dicer knockdown reduces viability 
and differentiation ability

[155, 156]

Accumulation of 120nt RNAs 
affect distribution of heterochro-
matin marks H3K9me and HP1

[103, 155]

Major satellites (Pericentromere) ? Histone methyltransferase Suv39h 
promotes H3K9me at peri-
centromere, and is required 
for viability and chromosome 
stability

[172]

Association of HP1 to pericen-
tromere is RNA-dependent

[154]

Human (Homo sapiens) α-satellites AGO2 The AGO2 slicer activity is 
required for proper chromosome 
segregation

[173, 174]

Association of HP1a to pericen-
tromere is RNA-dependent

[174]

Nematode (Caenorhabditis 
elegans)

Germline genes 22G-siRNA CSR-1 Is required for proper chromosome 
segregation, kinetochore organi-
zation and P-granule structure 
maintenance

[160]
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factors on centromere function, and the relationships among 
these different epigenetic pathways. How the centromeric 
marks are first established and then maintained? An active, 
functional centromere is likely to be crucial for the inher-
itance of these epigenetic marks, possibly constructing a 
positive feedback mechanism. It will be interesting to study 
how a functional centromere signals and regulates histone 
modifications and centromeric transcription, and it will be 
fascinating to understand how chromosomes are accurately 
transmitted from the beginning of eukaryotic life, via the 
propagation of epigenetic marks that define the centromere.
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