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Abstract
Redox homeostasis is an essential requirement of the biological systems for performing various normal cellular functions 
including cellular growth, differentiation, senescence, survival and aging in humans. The changes in the basal levels of 
reactive oxygen species (ROS) are detrimental to cells and often lead to several disease conditions including cardiovascular, 
neurological, diabetes and cancer. During the last two decades, substantial research has been done which clearly suggests 
that ROS are essential for the initiation, progression, angiogenesis as well as metastasis of cancer in several ways. During the 
last two decades, the potential of dysregulated ROS to enhance tumor formation through the activation of various oncogenic 
signaling pathways, DNA mutations, immune escape, tumor microenvironment, metastasis, angiogenesis and extension of 
telomere has been discovered. At present, surgery followed by chemotherapy and/or radiotherapy is the major therapeutic 
modality for treating patients with either early or advanced stages of cancer. However, the majority of patients relapse or 
did not respond to initial treatment. One of the reasons for recurrence/relapse is the altered levels of ROS in tumor cells as 
well as in cancer-initiating stem cells. One of the critical issues is targeting the intracellular/extracellular ROS for signifi-
cant antitumor response and relapse-free survival. Indeed, a large number of FDA-approved anticancer drugs are efficient to 
eliminate cancer cells and drug resistance by increasing ROS production. Thus, the modulation of oxidative stress response 
might represent a potential approach to eradicate cancer in combination with FDA-approved chemotherapies, radiotherapies 
as well as immunotherapies.

Keywords  Reactive oxygen species (ROS) · Mitochondrial ROS (mROS) · Antioxidant system · Ferroptosis · Signaling 
pathways · Cancer stem cells (CSCs) · Metastasis · Angiogenesis · Immune escape · Tumor microenvironment · ROS 
scavenger · Chemotherapy
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ASK-1	� Apoptosis signal-regulated kinase 1
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ERK	� Extracellular regulated kinase
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EMT	� Epithelial–mesenchymal transition
eNOS	� Endothelial nitric oxide synthase
GPX	� Glutathione peroxidase
GSH	� Glutathione
GCL	� Glutamate-cysteine ligase
GSS	� GSH synthetase
GSSG	� GSH disulfide
GPX4	� Glutathione peroxidase 4
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H2O2	� Hydrogen peroxide
HCC	� Hepatocellular carcinoma
HER2	� Human epidermal growth factor receptor 2
HGF	� Hepatocyte growth factor
HIF-1	� Hypoxia-inducible factor
hTERT	� Human telomerase reverse transcriptase
IDH1	� Isocitrate dehydrogenase 1
IDH2	� Isocitrate dehydrogenase 2
IL-6	� Interleukin 6
JNK	� C-Jun N-terminal kinase
LDH	� Lactate dehydrogenase
LSC	� Leukemic stem cells
MAPK	� Mitogen-activated protein kinase
MDSC	� Myeloid-derived suppressor cell
mROS	� Mitochondrial reactive oxygen species
mtDNA	� Mitochondrial DNA
NADH	� Nicotinamide adenine dinucleotide
NF-κB	� Nuclear factor kappa-light-chain-enhancer of 

activated B cells
NO	� Nitrogen oxide
NOS	� Nitric oxide synthase
NOX	� NADPH oxidase
NRF2	� Nuclear factor erythroid 2-related factor 2
O2•	� Superoxide
OH•	� Hydroxy radical
OXPHOS	� Oxidative phosphorylation
PRX	� Peroxiredoxins
PDAC	� Pancreatic ductal adenocarcinoma
PD-1	� Programmed death protein 1
PD-L1	� Programmed death ligand 1
PD-L2	� Programmed death ligand 2
PDGFR	� Platelet-derived growth factor receptors
PDGF	� Platelet-derived growth factor receptors
PI3K	� Phosphoinositide 3-kinases
PML	� Promyelocytic leukemia
PTEN	� Phosphatase and tensin homolog
RTK	� Receptor tyrosine kinase
RNS	� Reactive nitrogen species
ROS	� Reactive oxygen species
SAL	� Salvicine
SOD	� Superoxide dismutase
SSZ	� Sulfasalazine
STAT3	� Signal transducer and activator of transcrip-

tion 3
TF	� Transcription factor
Treg	� Regulatory T cells
TAM	� Tumor-associated macrophages
TFAM	� Mitochondrial transcription factor A
TMZ	� Temozolomide
TNBC	� Triple-negative breast cancer
UCP-2	� Uncoupling protein 2

Introduction

Reactive oxygen species (ROS) are characterized as oxy-
gen-carrying molecules having reactive properties which 
consist of radicals including O2

− (superoxide), HO• 
(hydroxyl) and non-radicals including H2O2 (hydrogen 
peroxide) [1–4]. These ROS molecules originate from 
oxygen which is utilized in several metabolic responses 
in the mitochondria and endoplasmic reticulum (ER) along 
with peroxisomes [5, 6]. Around 2% of the oxygen is uti-
lized through mitochondria to generate O2

−. Therefore, 
mitochondria are recognized as an utmost source of ROS 
[3, 6, 7]. The ER provides an oxidizing environment for 
proper folding of proteins by forming disulfide bonds and 
increasing ROS levels by oxidation of proteins [8]. Peroxi-
somes play a dual role: (a) scavenging of ROS through the 
catalytic degradation of H2O2 and (b) generation of ROS 
via β-oxidation of the fatty acids. ROS can be produced 
by either enzymatic and/or non-enzymatic mechanisms. 
The enzymatic mechanism involves NADPH oxidases 
(NOXs), endothelial nitric oxide synthase (eNOS), xan-
thine oxidase, arachidonic acid, lipoxygenase, enzymes 
of cytochrome P450 and cyclooxygenase. Non-enzymatic 
mechanism of ROS generation is through the mitochon-
drial respiratory chain [1, 2, 9, 10]. Therefore, coordina-
tion of ROS/redox homeostasis is pivotal for regulating 
the normal biological functions including cell growth, 
senescence, cell survival and aging. A controlled regula-
tion of ROS inducer, as well as ROS scavenger pathways, 
is required because low/moderate levels ROS is important 
for proliferation, differentiation, migration, and survival, 
whereas excessive ROS levels are harmful [7] (Figs. 1 and 
2). Alteration in the H2O2 or ROS has a potential effect 
on cellular functions, because of the fact that signaling 
pathways and transcription factors (TFs) related to cell 
division, stem cell differentiation and cellular stress net-
works are susceptible to the redox environment [11–16]. 
ROS can easily interact with DNA and other biomolecules. 
This can lead to DNA damage, incorporation of oncogenic 
mutations in the normal cells that results in genomic insta-
bility and cancer [16–19]. Cancer cells have increased 
aerobic glycolysis (Warburg effect) which is correlated 
with augmented ROS/oxidative stress [9]. The increased 
levels of ROS in cancer cells are because of alterations in 
key signaling pathways related to cellular metabolism. In 
the present review, we are focusing on the involvement 
of ROS as an important regulator of a variety of cellular 
processes including regulation of cellular homeostasis, 
various signaling pathways, telomerase, metastasis, angio-
genesis, cancer stem cell, immune response and microbi-
ome for the initiation, progression and treatment of human 
malignancies. 



4461The multifaceted role of reactive oxygen species in tumorigenesis﻿	

1 3

Regulation of ROS generation

ROS balance is maintained by several enzymes that neu-
tralize toxic oxidants. Superoxide dismutases (SODs) are 
responsible for the conversion of O2

− into H2O2. To avoid 
cellular damage, catalase (CAT), glutathione peroxidase 
(GPXs), and peroxiredoxins (PRXs) convert H2O2 into 
water and oxygen [20–22] (Fig. 1). There are six different 
types of PRXs that are localized in ER, cytosol, peroxisome, 
and mitochondria and this makes them ideal scavengers for 
ROS/H2O2 [21, 23]. PRXs function is to accept oxidants 
through active cysteine residue. These oxidized PRXs are 
then reduced via thioredoxin (TRX), as a result of which 

TRX gets oxidized and subsequently reduced by TRX 
reductase [14, 21]. In human cancers, deregulation of TRX 
metabolism has been found to be involved in drug resist-
ance. Elevated levels of TRX have been noticed in different 
cancers including colorectal, pancreatic, lung, cervix, liver, 
and breast [24–29]. Glutathione (GSH) is a well-known 
antioxidant that functions as a scavenger for free radicals. 
GSH plays a critical role in multiple cellular processes such 
as cellular proliferation, division as well as differentiation. 
GSH is synthesized by glutamate-cysteine ligase (GCL) 
and GSH synthetase (GSS) [30]. The glutathione antioxi-
dant system comprises GSH, glutathione reductase, GPX 
and glutathione S-transferases (GST). GSH guards the cells 
against oxidative stress by minimizing disulfide bond for-
mation to the cysteine residues present on the cytoplasmic 
proteins. To perform the antioxidant function, GSH has been 
shown to be oxidized into GSSG. Glutathione peroxidases 
(GPX) act as a catalyst and accelerate the breakdown of 
hydroperoxides as well as H2O2 [47, 48]. GSH reductase has 
been shown to reduce GSSG and replenish the pool of GSH 
via the utilization of NADPH [49] (Fig. 3a). Generation 
of NADPH inside the cell is mostly controlled by cellular 
metabolism that includes glucose and glutamine metabo-
lism, pentose phosphate pathway, conversion of pyruvate 
to malate by malic enzyme and conversion of isocitrate 
to α-ketoglutarate by isocitrate dehydrogenase (IDH) [1]. 
Under normal physiological conditions, GSH always occurs 
in its reduced form inside the cells due to the constitutive 
activity of glutathione reductase [50]. The reduced form of 
glutathione plays critical roles to control cellular levels of 
ROS. Moreover, mitochondrial GSH has been observed to 
react with ROS and protect from apoptosis. Modification of 
GSH metabolism has been observed in many tumors [31]. 
GSH dysregulation has been displayed to be involved in mul-
tidrug and radiation resistance. For example, an increase 
in GSH levels within tumor cells has been correlated with 
resistance to anthracyclines, platinum-based anticancer 
drugs, and alkylating agents. Another study showed that 
overutilization of cysteine for GSH synthesis can mediate 
tamoxifen resistance against breast cancer cells [32]. GSTs 
belongs to a class of detoxifying enzymes that accelerate the 
concurrence of GSH to a number of exogenous and endog-
enous electrophilic compounds for alimentation of cellular 
integrity, genomic stability by preventing DNA damage, 
oxidative stress [33, 34] (Fig. 3b). GSTs showed decreased 
hydroperoxides and 4-HNE, products of lipid peroxidation, 
to keep the oxidative stress under control [35]. GSTs have 
been reported to be robustly expressed in almost all human 
malignancies to modulate mitogen-activated protein kinase 
(MAPK) pathways [35]. Also, overexpression of GSTs has 
been correlated with tumor progression and drug resistance 
in human cancers [33, 35] (Table 1).

Fig. 1   Formation and regulation of ROS and its effects on cellular 
functions. Mitochondria and NADPH oxidases are major sources of 
O2

−, HO•, and H2O2 (ROS) formation. Superoxide dismutase (SOD1 
or SOD2) can convert O2

− into H2O2. H2O2 can be converted into 
H2O (water) by peroxiredoxin (PRX), glutathione peroxidase (GPX) 
and catalase (CAT) in mitochondria and cytosol. ROS are generated 
during normal cellular functioning and homeostasis is maintained 
by antioxidants expressed by the cells. Low ROS (green) is the basic 
need to maintain normal cellular proliferation, survival, and differen-
tiation. Moderate to high ROS (tumor favoring ROS; light red) is the 
signal for the increased cellular proliferation, survival, tumor initia-
tion, immune escape to genomic instability, metastasis, invasion and 
angiogenesis. Extremely high ROS produced by chemotherapeutic 
agents (dark red) is dangerous for the cells and leads to cell cycle 
arrest, apoptosis, senescence and unrepairable DNA damage



4462	 A. Kirtonia et al.

1 3

Nuclear factor erythroid 2-related factor 2 (NRF2) is a 
well-known transcription factor. NRF2 is an important mas-
ter regulator for maintaining redox balance while enhancing 
the expression of antioxidant proteins inside the cells [36, 
37]. Under normal physiological conditions, NRF2 under-
goes proteasomal degradation due to its ability to interact 
with Kelch-like ECH-associated protein 1(KEAP1), along 
with Cullin 3 (Cul3) E3 ubiquitin ligase [38, 39]. On the 
other hand, when there is an increase in the ROS levels dur-
ing oxidative stress, KEAP1 gets oxidized and obstructs the 
binding of NRF2 to the KEAP1 degradation complex [40]. 

This leads to the stabilization of NRF2 in the cytoplasm and 
its translocation into the nucleus to drive the expression of 
several genes involved in antioxidants (PRXs, CAT GPXs), 
redox balance, detoxification, NADPH and GSH synthesis 
[1, 40–42] (Fig. 4). The constitutive activation of NRF2 has 
been observed in several human cancers including lung, 
breast, ovarian, skin, and prostate [41, 43–47]. Moreover, 
mutations in either KEAP1 or NRF2 and well-established 
oncogenes (KRAS, Myc) have been found to activate NRF2 
[43, 46]. Deregulation in the NRF2–KEAP1 pathway has 
been reported in drug resistance, genomic instability, resist-
ance to apoptosis, metastasis and metabolic reprogramming 
in several cancer cells [43, 46–49]. The depletion of NRF2 
has displayed decreased tumor growth by enhancing oxi-
dative stress-dependent cell death [40, 46, 47]. Therefore, 
therapeutic strategies that modulate TRX, PRX, GSH, GPX 
and NRF2 levels within tumor cells could increase the effi-
cacy of anticancer therapies [50].

Role of lipid ROS and ferroptosis in human 
malignancies

Regulated or programmed cell death is an important process 
and is required for several key biological processes includ-
ing development and cellular homeostasis. Programmed cell 
death can be achieved either via apoptosis or non-apoptotic 
pathways, including ferroptosis [51–53]. Ferroptosis can be 
easily distinguished from other types of programmed cell 
death such as apoptosis, necrosis, and autophagy based on 
morphology and biochemical reaction [51–54]. Ferroptosis 
is a different class of cell death that relies on iron metabo-
lism and lipid ROS [51, 52, 55]. Ferroptosis has shown to 
be initiated either with the depletion of cysteine or loss of 
glutathione peroxidase 4 (GPX4, an enzyme involved in 
lipid repair). The loss of GPX4 has been noticed with the 

Fig. 2   Maintenance of cellular 
homeostasis through inducers 
and scavengers of ROS. ROS 
can be produced by mito-
chondria, NADPH oxidases, 
hypoxia, metabolism, ER stress, 
cyclooxygenase and oncogenes 
including HRAS, FLT3-ITD, 
BCR-ABL, AKT, NF-kB, STAT3 
and STAT5. On the other hand, 
ROS can be eliminated via 
activation of the dietary antioxi-
dants, glutathione peroxidase, 
peroxiredoxin, catalase, NRF2, 
NADPH, SOD and tumor sup-
pressor gnes including BRCA1, 
BRCA2, TP53, PTEN, FXOP3 
and ATM 

Fig. 3   Glutathione antioxidant system. a Schematics for the reduction 
of hydrogen peroxide. Nicotinamide Adenine Dinucleotide Phosphate 
is essential for the regeneration of GSH via glutathione reductase. 
Hydrogen peroxide (H2O2) is reduced to water (H2O) via glutathione 
peroxidase. b  Mechanism of the glutathione S transferases (GSTs). 
Glutathione conjugation with xenobiotic (X) is mainly catalyzed via 
GST to from glutathione S conjugate
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accumulation of peroxides in the lipid membrane that leads 
to aggregation of destructive lipid ROS. The knockout of 
the Gpx4 gene in the murine model has been observed with 
increased lethal lipid ROS [56]. Also, the silencing of GPX4 
in human cells has been found to induce the accumulation of 
lipid ROS and ferroptosis cell death [57]. Further, pharma-
cological inhibitors such as FIN56, FINO2, and RSL3 have 
reported to either degrade GPX4 or inhibit the function of 
GPX4 [51, 53–55, 58, 59]. Accumulation of fatal lipid ROS 
has been noticed with stimulation of polyunsaturated fatty 
acids (PUFAs) through long-chain fatty acid—CoA ligase 4 
(ACSL4) and their addition within the membrane lysophos-
pholipids [60]. However, several reports have proved beyond 
doubt that the peroxidation of PUFAs is catalyzed by lipoxy-
genases (LOXs) enzymes [61] (Fig. 5). Moreover, the sup-
pression of system Xc− (erastin or RSL3) linked with indi-
rect repression of GPX4 enzymatic activity [52]. System 
Xc− belongs to the cystine/glutamate antiporter system, 
which is associated with the import of extracellular cystine 

to replace intracellular glutamate [62]. Cysteine (reduced 
form of cystine) acts as a precursor for the synthesis of glu-
tathione (GSH). GSH functions as a cofactor for GPX4 to 
catalyze the inhibition of lipid peroxides. The impairment 
of system Xc− using small molecules displayed an aggrega-
tion of lethal lipid peroxides and ROS that led to ferroptosis 
[57] (Fig. 5).

Role of ROS in the activated signaling 
pathways in human malignancies

Human malignancies are one of the major causes of deaths, 
more than tuberculosis, malaria and acquired immune 
deficiency syndrome around the world [63]. Cancer is a 
genetic and metabolic disorder that arises from internal 
factors (inherited mutations, translocations, abnormal acti-
vation of signaling pathways initiated by growth factors 
and hormones, immune conditions) and external factors 

Fig. 4   Role of the NRF2/KEAP1 antioxidant pathway for maintaining 
cellular homeostasis. Under normal physiological condition, NRF2 
interact with KEAP1 to activate Cul3‐dependent ubiquitination and 
its degradation via the proteasome. Under stress or induced condition, 

NRF2 dissociates from KEAP1 and translocates into the nucleus. 
NRF2 forms a heterodimer with sMaf protein as well as to ARE to 
initiate the transcription of several downstream genes
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(environment, infection, food, alcohol, tobacco, radiation) 
[63–67]. Both these factors can influence critical genes 
including proto-oncogenes, tumor suppressor genes, DNA 
repair, and cell cycle genes through the formation of cellular 
intermediates such as ROS [68]. The association between 
ROS and cellular transformation was unveiled by initial 
studies, where activating RAS mutations and growth fac-
tors (epidermal growth factor (EGF), insulin) pathways can 
enhance the intracellular levels of H2O2 to induce tumor 
growth [69–71]. Now, it is more evident through the labora-
tory experiments that ROS can lead to carcinogenesis, either 
by activation of several oncogenic pathways or through 
oncogenic mutations in the DNA. In this section, we focus 
on the most relevant signaling pathways such as MAPK/
extracellular regulated kinase (ERK)/c-jun N-terminal 
kinase (JNK) pathway, PI3K/AKT/mTOR pathway, ROS 
in the NF-κB pathway, signal transducer and activator of 
transcription (STAT) signaling affected by ROS in cancers.

The MAPK family consisting of ERK1/2, JNK and p38 
MAPKs pathways are intracellular signaling pathways 
required for cellular growth, differentiation and survival. 
ROS have been shown to oxidize and deactivate MAPK 
phosphatases, while activating the epidermal growth factor 
receptor (EGFR) and platelet-derived growth factor recep-
tors (PDGFR) signaling in a ligand-independent fashion 

through the RAS and ERK pathways [72–78]. Several 
other studies have demonstrated that H2O2 is an important 
mediator for ligand-independent phosphorylation of receptor 
tyrosine kinases (RTKs) [79, 80]. For example, metabolism 
of estrogen in breast carcinoma results in the production of 
H2O2 which in turn activates ERK1/2 to increase cellular 
proliferation and survival. Mutant HRAS (G12V)-trans-
formed NIH/3T3 fibroblast cells have been shown to gener-
ate a huge amount of O2

− via RAC1 [81]. Moreover, ROS 
can activate HRAS, NRAS, and KRAS oncogenic switch 
through oxidation of the cysteine residue [82]. Weinberg and 
colleagues have observed that mitochondrial ROS (mROS) 
is essential for Kras-mediated tumorigenesis in murine 
lung carcinoma model via the ERK–MAPK signaling path-
way [83]. Mitochondrial transcription factor A (TFAM) is 
important for the replication of mitochondrial DNA, and 
depletion of TFAM suppressed the growth of lung tumors in 
Kras murine models. Moreover, TFAM heterozygous knock-
out mice have elevated mROS levels and showed increased 
intestinal tumors in APC Min/+ murine model, suggesting 
the pivotal role of mROS in carcinogenesis [84]. Similarly, 
KRAS (G12D, G12V) mutation induces mROS and acti-
vates various signaling pathways in the acinar cells for the 
progression of pancreatic carcinoma [85, 86]. Inhibition of 
ROS using NAC and MitoQ showed a marked reduction in 

Fig. 5   Mechanism and inducer 
of ferroptosis. Suppression 
of system Xc−/GPX4 activity 
caused ferroptosis to induce cell 
death. Elevation of lipid ROS 
results in the ferroptopsis
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the initiation and progression of pre-cancerous lesions in 
Kras-driven murine models of pancreatic cancer [85]. On 
the contrary, activation of ERK1/2 signaling with exogenous 
H2O2 displayed apoptosis in human pancreatic carcinoma 
and glioma because of the extremely high level of ROS. 
Excessive levels of ROS have been found to be positively 
correlated with senescence, cell cycle arrest, and apoptosis 
through the ASK1/JNK/p38 signaling cascade [87]. ASK-1 
(apoptosis signal-regulated kinase-1) and reduced TRX form 
a complex that results in the inactivation of ASK-1. During 
excessive stress, H2O2 has been shown to oxidize cysteine 
residues of TRX, leading to dissociation of ASK-1 for acti-
vation of JNK and p38 cascade leading to apoptosis [87–89]. 
Similarly, glutathione S-transferase P dissociates from JNK 
to facilitate JNK activation under elevated ROS/H2O2 [90] 
(Fig. 6). Higher levels of H2O2/ROS result in prolonged acti-
vation of the JNK/p38 that can prevent the proliferation of 
tumor cells [89–92].

PI3K/PTEN is another important signaling pathway in 
the tumorigenesis and metastasis where several key inter-
mediates are highly sensitive to redox dysregulation [23, 
93]. ROS (O2

− and H2O2) can hyperactivate the PI3K/AKT/
mTOR pathway through oxidation of the cysteine thiol group 
of various phosphatases (PTEN, PTP1B, PP2A), resulting 
in their inactivation [94–97]. Moreover, ROS can indirectly 
phosphorylate casein kinase II, which promotes degrada-
tion of PTEN protein via proteasomes. PTEN is mostly 

dysregulated in breast, glioblastomas, melanoma, endome-
trial and prostate cancers because of an increase in ROS 
(O2

− and H2O2) production to favor tumor cell growth and 
survival [48, 98, 99]. H2O2 is generated during the binding 
of estrogen and growth factors (EGF, PDGF) to their respec-
tive receptors (Fig. 6). This has been displayed to activate 
the PI3K/AKT signaling in breast and ovarian carcinoma 
[100]. NRF2 protein binds to KEAP1 (E3 ubiquitin ligase) 
protein to maintain low levels of NRF2 protein in the cytosol 
under lower concentrations of cellular ROS, whereas high 
concentrations of ROS lead to oxidation at the cysteine resi-
dues of KEAP1, which allows cytosolic NRF2 to translocate 
into the nucleus to upregulate the expression of antioxidants. 
Also, activation of PI3K/AKT signaling is essential for the 
nuclear transportation of NRF2. PI3K inhibitors (LY294002, 
wortmannin) suppressed NRF2-dependent upregulation of 
antioxidant genes in neuroblastoma cells [101]. BRCA1 
mutant breast tumors are deficient in DNA repair mecha-
nisms and accumulate more ROS, leading to genetic modi-
fication. BKM120 treatment impedes estrogen-dependent 
activation of NRF2-mediated PI3K/AKT signaling, indicat-
ing that BRCA1-deficient tumors can be treated by elevating 
ROS levels [102].

NF-κB is a major TF which plays a critical role in 
inflammation, cellular proliferation, differentiation, and 
various immunological responses [103–107]. The NF-κB 
protein expression has been observed to be triggered via 

Fig. 6   ROS activate RAS and 
PI3/AKT signaling path-
ways. Growth factor receptor 
signaling can generate ROS 
through growth factors, NOXs 
and mitochondria. ROS can 
activate RAS/MAPK and PI3K/
AKT/mTOR signaling cascade 
either though inactivation of 
phosphatases such as PTEN 
or PTP at cysteine residues or 
by direct oxidation of kinases. 
Other mechanisms by which 
ROS induce cellular signaling 
are through activation NF-kB 
signaling
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H2O2 [108]. For instance, treatment of breast carcinoma 
cells with IL-1β, TNFα, or sodium arsenite generates H2O2 
and O2

−, which in turn activate NF-κB and enhance cellular 
growth [109, 110]. Interestingly, knockdown of superoxide 
dismutase (SOD) showed an increase in the basal ROS levels 
and NF-κB activity in oral carcinoma. It has been reported 
that IKK-based NF-κB signaling is activated by increased 
cellular oxidative stress either by H2O2, rotenone-mediated 
O2

− or by inhibition of the glutathione system. On the other 
hand, IKK-independent activation of NF-κB occurs through 
phosphorylation of IκBα at tyrosine residue in response to 
ROS which releases NF-κB [108] (Fig. 6). ROS have been 
found to activate NF-κB and NRF2 to support cancer cell 
survival by increasing the levels of antioxidants to escape 
cancer cell death in an ROS-dependent fashion [108, 111]. 
Mutant KRAS generates mROS and activates NF-κB through 
PKD1, which leads to the formation of precancerous lesions 
in the pancreas [85].

It has been well established that tumor undergoes meta-
bolic reprogramming due to oxidative phosphorylation 
(OXPHOS) to control energy requirements. Particularly, 
tumors addicted to oncogene and drug resistanve have been 
noticed to rely on ROS/OXPHOS-mediated STAT3 signal-
ing as an alternative mechanism for their survival. Several 
signaling pathways coincide with STAT3; therefore, trans-
location of STAT3 to the mitochondria can extend the con-
nection across oncogene-mediated signaling pathways and 
cancer cell metabolism [112–116]. Radiotherapy treatment 
has been noticed with markedly lower ROS and elevated 
protein expression of phospho-STAT3, along with BCL2 in 
triple-negative breast cancer (TNBC) and radio-resistance. 
Uncoupling protein 2 (UCP-2) is responsible for reducing 

ROS levels. UCP2 is highly upregulated to maintain low 
mROS and resistance to paclitaxel in epithelial lung carci-
noma (A549, H460). Paclitaxel resistance was reversed by 
the silencing of UCP-2 through the STAT3 pathway [117]. 
Further, niclosamide (STAT3 inhibitor) or STAT3 silencing 
sensitized the TNBC cells via induction of ROS and inhibi-
tion of BCL2 [118]. NOX4 is robustly expressed in NSCLC 
cells and helps in ROS-dependent IL-6 secretion, which 
eventually phosphorylates STAT3 (Y705). On the other 
hand, NOX4 knockdown proved that reduced H2O2 inhib-
ited IL-6 dependent STAT3 activity. Also, exogenous IL-6 
showed STAT3 activation via NOX4 (Fig. 7). This suggests 
a positive loop among NOX–ROS–IL-6 and STAT3 [119]. 
The STAT5 signaling pathway is activated in acute mye-
loid leukemia (AML) with FLT3/ITD. FLT3/ITD expres-
sion in AML has been noticed with increased H2O2 in a 
NOX-dependent manner [120]. FLT3 inhibitor (PKC412) 
and NOX inhibitors (DPI, VAS2870) have been shown to 
inhibits ROS production in FLT3/ITD expressing AML cells 
[121]. STAT5 expression has a positive link with BCR-ABL 
mutation in chronic myeloid leukemia (CML). STAT5 upreg-
ulation has been noticed with high ROS and more BCR-ABL 
mutation in CML cells. STAT5-induced ROS led to double-
strand DNA breaks and witnessed by γH2AX [122].

ROS as an important regulator of telomerase

Human telomerase reverse transcriptase (hTERT) is 
localized in mitochondria and is important for mitochon-
drial function [123, 124]. hTERT is critical for respira-
tory chain function and to maintain low ROS [125–127]. 

Fig. 7   ROS-dependent STAT3 
pathway in metastasis and drug 
resistance. Growth factors, 
ionizing radiation, mitochondria 
and NOX4 result in the produc-
tion of intracellular ROS. ROS 
activate cancer cells and cancer-
associated fibroblast cells to 
secrete IL-6. IL-6 activates the 
STAT3 pathway and promotes 
tumor metastasis, resistance to 
chemotherapy and radiotherapy, 
and CSC self-renewal
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In hepatocellular carcinoma, there is a marked increase in 
the ROS levels from early to late stage which is positively 
correlated with increased telomeres length. It has been 
observed that H2O2 extends telomeres by enhancing telom-
erase activity through AKT signaling in HCC, lung cancer 
and leukemias. Interestingly, there is a positive associa-
tion between ROS levels, phosphorylation of AKT, length 
of telomere and prognosis in human cancers [128]. AKT 
inhibitors (perifosine, GSK690693, SH-6, and MK‐2206) 
displayed compromised telomerase activity as well as 
shortening of telomere length while decreasing ROS levels, 
viability, H2O2-mediated migration and invasion in human 
malignancies [129, 130]. Now, this is known that mitochon-
drial TERT can increase intracellular-reduced glutathione 
to escape ROS-mediated apoptosis [131, 132]. Transloca-
tion of hTERT from the nucleus to mitochondria results in 
multidrug resistance in cancers due to reduced ROS which 
provides protection to mtDNA. Elevated levels of H2O2 have 
been found to be associated with the shortening of the tel-
omere [133, 134].

ROS is essential for metastasis, angiogenesis 
and cancer stem cell

Metastasis is the major cause of mortality and only limited 
number of cells can metastasize to distant organs [135]. 
Growing pieces of evidence witness the fact that higher 
levels of ROS are vital to facilitate and sustain the aggres-
sive metastatic phenotype of cancer cells [136]. NOX-
dependent ROS/NF-κB pathway accelerates migration and 
invasion of tumor cells by enhancing TGF-β1, uPA and 
MMP-9 expression [137]. Mutant TP53 was observed to 
enhance Nox4-dependent metastasis either through TGF-
β1 or independent of TGF-β1 signaling. Treatment of 
colon carcinoma cells with H2O2 stimulated MMP-7 pro-
duction in an AP1-dependent fashion. Also, ROS can lead 
to the overexpression of MMP1/2/9 to enhance metastasis. 
Other reports have displayed that activated integrin-Rac 
signaling can efficiently generate ROS which results in 
migration, invasion and epithelial to mesenchymal tran-
sition through MMP-3. Matsuno and colleagues found 
that ROS-activated Nrf2 leads to EMT and metastasis via 
Notch signaling. ROS can activate TGF-β1 through the 
TAK1 (TGF-β-activated kinase 1) pathway to metastasize 
the cancer cells to another organ. NRF2 and ATF4 are 
involved in antioxidant response by enhancing glutathione 
synthesis and heme oxygenase 1 to bypass oxidative stress, 
promoting survival during metastasis by blocking anoikis. 
Addition of either H2O2 or SOD in culture medium dis-
played EMT phenotype where TWIST1, vimentin and 
SLUG were upregulated and E-cadherin was downregu-
lated in human malignant mesothelioma and pancreatic 

carcinoma cells, respectively [138]. It has been noticed 
that ROS stimulates tumor cells and stromal cells to 
secrete IL-6, which in turn activates STAT3 signaling and 
triggers EMT and drug-resistant phenotype by altering the 
protein expression of E-cadherin, N-cadherin, vimentin, 
and snail (Fig. 7). ROS activate NF-κB to maintain CSCs 
and cause resistance to chemotherapy and radiotherapy 
[119]. Also, the silencing of thioredoxin-like 2 (TXNL2) 
showed decreased mammosphere formation, metastasis, 
and tumor growth by inducing ROS levels and suppressing 
NF-kB activity in breast carcinoma [139].

In normoxia, HIF-1α is degraded due to hydroxylation 
of PHD2 and recognition through von Hippel–Lindau 
protein. H2O2 has been shown to contribute to metasta-
sis and angiogenesis through the stabilization of HIF and 
activation of one-carbon metabolism as well as AMPK 
signaling networks to enhance NADPH production [140]. 
Hypoxia triggers mROS production which stabilizes 
HIF-1α subunit by forming a dimer along with HIF-1β 
to drive the expression of hypoxia-responsive genes to 
increase angiogenesis in tumor mass [141] (Fig. 8). AKT 
activation results in the formation of superoxide and H2O2, 
which turn on HIF-1 and induce VEGF expression [142]. 
Notably, H2O2 can promote angiogenesis via the Ang1 
and p44/42 MAPK axis. Nox2-generated ROS induces the 
migration of endothelial cells to tumor mass to promote 
angiogenesis through several pathways such as PI3K/AKT, 
Src, and ERK [143]. Importantly, ROS have been noticed 
to regulate the expression of several TFs and remodeling 
proteins (p300, VEGF-A, HIF-1α, p53, and MMPs) essen-
tial for angiogenesis [144].

Cancer stem cells (CSCs) are correlated with clinical 
hallmark features such as resistance to therapy, tumor 
recurrence and metastasis [86, 145, 146]. CD44-positive 
leukemic stem cells (LSC) have lower ROS because of 
PKC-θ silencing by NOTCH1 [147]. The frequency of 
LSC in AML has been correlated with the expression 
of Gpx3 (ROS scavenger) to keep lower ROS [148]. In 
breast carcinoma, the Snail-G9a-DNMT1 complex pauses 
the promoter of E-cadherin and for promoter methylation 
of fructose-1,6-biphosphatase (FBP1). The silencing of 
FBP1 cuts down oxygen utilization as well as ROS due 
to compromised mitochondrial oxidative phosphorylation 
(OXPHOS). This increases CSC-like properties and tumo-
rigenicity through β-catenin [149, 150]. On the contrary, 
CSCs are known to have high mROS, which helps them 
to alter the metabolic reprogramming through fatty acid 
β-oxidation and MAPK signaling, leading to transcrip-
tional activation of EMT markers in several cancers [151, 
152]. Several studies provided evidence that low ROS in 
CSCs helps them to overcome the effect of chemothera-
peutic drugs. These suggested that low levels of ROS are 
needed to preserve LSC/CSCs.
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Role of ROS in the immune response 
during tumor progression

The tumor microenvironment is composed of myeloid-
derived suppressor cells (MDSCs), regulatory T cells 
(Tregs) and tumor-associated macrophages (TAMs). 
MDSCs, Tregs cells and TAMs provide an immune-sup-
pressive environment for tumor growth, metastasis, invasion 
and resistance to chemotherapeutics drugs. CD8+ T cells 
are crucial for anticancer immune response in the tumors. 
Nonetheless, the tumor microenvironment creates an immu-
nosuppressive environment which eventually results in the 
suppression of CTL response, leading to cancer progression. 
High ROS have been noticed as one of the major factors 
for immunosuppression and inhibition for T cell activa-
tion and proliferation, while low ROS can bring the T cell 
back into action inside the tumor microenvironment. Com-
plexes I and III of the mitochondrial electron transport chain 
(ETC) are excellent sources of mROS and T cell activation 
[153–155]. Tumor-infiltrating T cells can be activated by 
overexpression of PGC1α which is involved in the biogen-
esis of mitochondria and resumes anticancer activity [156]. 
ROS scavengers such as MitoQ and MitoTEMPO enhance 
CD8+ tumor-infiltrating lymphocyte activation in kidney 
tumors by activating SOD2 [157]. T cells expressing chi-
meric antigen receptor (CAR) and CAT have been shown to 
be correlated with decreased intracellular oxidative stress 

and an increased ability of T cells (CAR-CAT) to kill can-
cer cells [158]. CAR-CAT T cells showed better antitumor 
response than traditional CAR T cells even under extracel-
lular oxidative stress [158]. Program Death receptor 1 (PD-
1) is a negative regulator of the immune system, which is 
present on the surface of T cells. PD-1 can efficiently bind to 
either PD-L1 and/or PD-L2, which results in the recruitment 
of SHP2 and inhibits cytotoxic T-lymphocytes (T-CTLs) to 
mediate killing of cancer cells. It has been observed that 
T-CTLs extracted from murine treated with PD-L1 antibody 
have elevated O2

− and cellular ROS. Further, exposure of 
these cells to tert-butyl hydroperoxide or a mitochondrial 
respiratory chain uncoupler showed a synergistic reduction 
in tumor growth. It has been observed that when HCC xeno-
grafts were treated with metformin, oxygen consumption 
was inhibited in murine tumors, leading to enhanced oxygen 
supply inside the tumor cells. This results in decreased lev-
els of intratumor hypoxia by suppressing the expression of 
HIF-1α in HCC xenograft [159]. The combination of met-
formin with PD-1 blockade markedly enhanced intratumor T 
cell activation and proliferation, leading to tumor clearance 
through alleviation of tumor hypoxia [160]. This observa-
tion suggests that non-responders to PD-1 antibodies might 
have high mROS and less hypoxic microenvironment, which 
results in compromised CTL response. Several studies have 
observed that elevated ROS or oxidative stress led to immu-
nosuppression inside the tumor microenvironment through 

Fig. 8   Mitochondrial ROS in 
hypoxia and angiogenesis. In 
oxygen-rich conditions, HIF-1α 
forms complex with VHL with 
the help of PHD2. This results 
in ubiquitination and proteas-
ome-mediated degradation of 
the complex. On the other hand, 
mROS can cause the depletion 
of oxygen levels and inhibition 
of PHD2 activity resulting in 
HIF-1 α stabilization, by form-
ing a dimer with HIF-1β. This 
dimer moves to the nucleus and 
results in transcriptional activa-
tion of VEGF, EPO
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Tregs. Furthermore, Tregs hinder the therapeutic ability of 
the PD-L1 antibody in murine cancer models. Kunisada 
and colleagues have evaluated that metformin (complex I 
inhibitor) decreased the number of tumor-infiltrating Tregs 
by reducing the differentiation ability of the naïve CD4+ T 
cells into Tregs via Foxp3 (the transcriptional regulator for 
metabolic reprogramming) [161]. Weinberg and group have 
demonstrated that mitochondrial complex III is needed for 
inhibiting Treg function [162]. It is clear from the above 
studies that more research is required to discover the key 
mechanisms of ROS involved in extracellular and tumor-
infiltrating cells in modulating tumor immunity. MDSCs are 
immunosuppressive cells within the tumor microenviron-
ment (TME). Tumor-induced MDSCs showed a block in 
T cell proliferation and support colorectal carcinoma cell 
growth through the production of ROS [163]. Interestingly, 
catalase (ROS inhibitors) rescued the activity of T cells by 
suppressing the negative effect of MDSCs [164]. On the con-
trary, high ROS inhibits T cell responses by suppressing the 
formation of TCR and MHC antigen complex [165]. TAMs 
are present within the TME and are important moderators 
of inflammation and carcinogenesis. ROS are involved in 
the activation of macrophage signaling. ROS generated 
from macrophages have been shown to induce Tregs [166]. 
Another study displayed that ROS promote an invasive 

phenotype in TAMs extracted from skin cancer (melanoma) 
through secretion of tumor necrosis factor α [167]. It has 
been observed that several key mitochondrial genes are 
highly expressed in TAMs obtained from melanomas, sug-
gesting mROS is the major source of oxidative stress within 
TAMs. Now, it is very clear that ROS is not only involved in 
oxidative stress, but also important in immune modulation 
in human malignancies (Fig. 9).

Importance of ROS in the gut microbiome

It is universally accepted that host microbiota can support 
tumorigenesis via induction of pro-inflammatory toxins, 
signaling pathways or escape of antitumor immune func-
tions. Interestingly, several host–microbiota have been asso-
ciated with the generation of ROS, leading to tumorigenic 
state [168, 169]. Enterococcus faecalis have been shown to 
generate extracellular O2

−, which is converted to H2O2 and 
can damage DNA in eukaryotes [170]. Bacteroides fragi-
lis generate toxin, which is required for bacterial growth 
while maintaining polyamine catabolism. This is the major 
cause of ROS production, DNA damage and tumor initiation 
in the colon [171]. Several groups have shown that diverse 
species of bacteria can consume bile acid for their growth 

Fig. 9   Involvement of ROS in 
tumor microenvironment and 
immunosuppression. Myeloid-
derived suppressor cells 
(MDSCs) are generated due 
to secretion of growth factors 
(GM-CSF, M-CSF, VEGF) and 
pro-inflammatory cytokines 
(IFN-ϒ, IL-1β, IL-4, TNFα 
by tumor cells. MDSC secrete 
ROS, nitric oxide (NO) and 
arginase (ARG) to inactivate 
T cell and TGFβ, and IL10 
to activate regulatory T cells 
(Tregs). ROS convert M0 mac-
rophages into TAMs and secrete 
immune-suppressive factors 
and cytokines to block NK and 
CTLs. Tumor cells and stromal 
cells express TGFβ, checkpoint 
ligands and FasL to cause T 
cell apoptosis. ROS help tumor 
cells to overexpress PDL1/2 and 
CTLA4 to inhibit CTLs. TGFβ 
stimulates NOXs within the 
Treg cells to trigger ROS pro-
duction. Macrophage-induced 
ROS leads to the accumulation 
of Treg cells. MDSC produces a 
large amount of ROS to trigger 
Tregs and suppress T cells
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and generate ROS as a by-product which induces gastroin-
testinal cancers and DNA damage [172, 173]. On the con-
trary, damaged mucosal epithelium utilizes low redox/ROS 
signaling for repair [174]. It has been observed that host 
mROS decide diversity in the gut microbiome [175]. High-
throughput sequencing of gut microbiota discovered muta-
tions in different genes, leading to change in mitochondrial 
function and composition of the gut microbiota. Further-
more, modulation of ROS levels displayed higher diversity 
in the murine gut microbiota [175]. In a recent report, it has 
been noticed that melanoma patients, who respond well to 
immunotherapy, have displayed an increase in the diversity 
of gut microbiota [176]. These studies indicate that modu-
lation of mROS could be used to increase the sensitivity of 
immunotherapies in cancer patients in clinics. 

Role of ROS and ROS scavengers/
antioxidants in cancer prevention 
and treatment

Several chemotherapeutic approaches are designed with the 
aim of increasing intracellular ROS levels to increase unre-
pairable damages which result in apoptosis of tumor cells. 
This is one of the promising approaches which can be eas-
ily achieved via chemotherapeutic drugs and radiotherapy 
depending on the origin of the tumor.

Drugs or agents affecting antioxidant system, lipid 
ROS and ferroptosis

GCL is an important rate-limiting enzyme in GSH syn-
thesis. GSH metabolism has been displayed to enhance 
drug resistance by preventing cell death of the tumor cells. 
Buthionine sulfoximine (BSO) is a well-known inhibitor 
of de novo GSH synthesis and is clinically used for mela-
noma, ovarian and breast cancers [177, 178]. Phenylethyl 
isothiocyanate depletes GPX, and GSH has been reported 
with anticancer effect in preclinical ovarian cancer murine 
model [179]. EUK-134 (SOD mimetic) and NOV-002 (glu-
tathione disulfide mimetic) are the antioxidants under clini-
cal development for clinical practice in cancer and other 
diseases [180]. NOV-002 was injected in patients with 
HER2-negative breast carcinoma in combination with dox-
orubicin/cyclophosphamide/docetaxel and demonstrated a 
favorable antitumor activity with manageable side effect 
than adjuvant therapy [181]. Auranofin is a well-known 
inhibitor of thioredoxin and used as an antirheumatic drug 
in clinics. Importantly, the combination of auranofin with 
BSO showed enhanced sensitivity in head and neck can-
cer toward EGFR inhibitors and this effect was reversed in 
the treatment with NAC [182]. In another study, auranofin 
treatment of cisplatin-resistant ovarian cancer cells resulted 

in cytochrome c-mediated cell death via attenuation of 
TRX reductase [183]. BSO or erastin in combination with 
auranofin has displayed synergistic anticancer activity in 
rhabdomyosarcoma by increasing the ubiquitination of pro-
teins [184]. Auranofin inhibited side population, expression 
of stem cell markers as well as the ability to initiate tumors 
in lung cancer xenograft model [185]. TRX interacting 
protein is one of the crucial targets of polycomb-repressive 
complex 2 and is silenced in AML. DZNep (EZH2 inhibitor) 
treatment restores the TRX-interacting protein expression, 
which in turn inhibits thioredoxin and increases ROS, lead-
ing the way to apoptosis in AML [186]. These data highlight 
the importance of thioredoxin metabolism in the survival of 
cancer cells [183]. Particularly, combination therapy using 
antioxidants with therapeutic drugs that strongly trigger 
apoptosis independent of oxidative stress may be effective. 
Combined treatment of all-trans-retinoic acid (ATRA) and 
ATO has been reported to prevent the translocation of NRF2 
into the nucleus and displayed significant cell death in leu-
kemia and breast cancer cells [187]. ATRA sensitizes the 
CSCs in ovarian cancer by inhibiting NRF2 and ALDH1 
activity [188]. AEM1 showed promising anticancer activity 
in lung carcinoma by repressing transcriptional activation 
of NRF2 at ARE site in the nucleus [189]. However, the 
major challenge for suppressing NRF2 is specificity and 
toxicity. Sulfasalazine (SSZ), artesunate (ART), erastin, 
temozolomide (TMZ), sorafenib, BSO, lapatinib, altreta-
mine, ML-162, RSL-3, ML-210, and ATRA are well-known 
inhibitors for induction of ferroptosism [51, 52, 54, 55, 190]. 
Sorafenib was initially discovered as an inducer of ferrop-
tosis in hepatocellular cancer cells [191]. Mechanistically, 
sorafenib depletes GSH along with the accumulation of 
lipid ROS [191]. ART has been shown to induces ferrop-
tosis in human cancer cells including pancreas, head and 
neck, and ovarian through iron metabolism-mediated ROS 
[192, 193]. SSZ induces ferroptosis in glioma cells (GBM), 
pancreatic carcinoma and lung carcinoma via inhibition 
of system Xc− [54, 194–196]. Erastin triggered ferropto-
sis in fibrosarcoma, lung, prostate, and osteosarcoma cells 
[197]. TMZ in combination with erastin can be a potential 
therapeutic agent in GBM [197]. TMZ inhibits autophagy 
in glioblastoma stem cells and induces cell death via the 
accumulation of lipid ROS [190, 198, 199]. Cisplatin exerts 
an anticancer effect in HCT116 (colon cancer) and A549 
(lung cancer) cells through apoptosis via reduced GSH and 
GPX [200]. Lanperisone enhances the production of ROS to 
induce ferroptotic death in K-Ras-mutant mouse embryonic 
fibroblasts and lung cancer cells in the mouse model [201, 
202]. Moreover, salinomycin and ionomycin are clinically 
approved antibiotics that promote ferroptosis in colon and 
breast cancer cells through iron metabolism-mediated ROS 
[202, 203]. Ferrostatin, liproxstatin and zileuton have been 
reported to suppress erastin and RSL3-induced ferroptosis 
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in fibrosarcoma, murine hippocampal and murine embryonic 
fibroblasts [54, 56, 204, 205]. Several natural compounds 
including bromelain, baicalein, artenimol, artemisinin, coty-
lenin A (CN-A), N-acetyl-l-cysteine (NAC) and vitamins 
can control cell death via ferroptosis, lipid peroxidation and 
ROS production [52, 54–56, 190, 206–209].

Drugs or agents affecting mitochondria 
and mitochondrial ROS

IDH1/2 are mutated in blood cancers and brain tumors and 
result in the formation of 2-hydroxyglutarate (oncometabo-
lite) [210–213]. In the Idh1 mutant knock-in murine model, 
there is a decrease in the intracellular ROS, leading to an 
increase in the NADP(+)/NADPH ratio and expression of 
Hif1α target gene in brain and hematopoietic cells [214]. The 
lower levels of ROS have been associated with metabolism 
and overexpression of BCL2 protein in leukemic stem cells 
in IDH1/2 mutant AML. Ivosidenib and enasidenib are spe-
cific inhibitors for IDH1/2 mutant and target mROS for the 
anticancer effect. These inhibitors showed promising anti-
leukemic activity in patients with AML in clinical trials and 
are approved by the FDA for the treatment of elderly AML 
patients [215]. Disulfiram, an ALDH inhibitor in combina-
tion with copper (Cu), has been reported to inhibit cancer 
stem cells and tumor growth of GBM cells via suppression 
of mitochondrial ALDH activity and generation of ROS 
along with the activation of p38 pathway [216]. Disulfiram/
Cu specifically eliminates leukemia-initiating cells by silenc-
ing of NRF2/NF-kB cascade and elevating ROS-dependent 
JNK pathway [146]. Arsenic trioxide (AS2O3) is one of the 
most successful FDA-approved therapies for leukemia, lung, 
and myeloma [217, 218]. AS2O3 exposure enhances ROS 
production and is sensed by PML to enhance nuclear body 
formation which eventually activates p53 to induces differ-
entiation and cell death of leukemic cells [217, 219]. AS2O3 
combined with ascorbic acid in phase 1 study and was found 
to be effective against patients with relapsed/refractory 
multiple myeloma [220]. Paclitaxel treatment revealed an 
elevated level of ROS through mitochondria which results 
in activation of STAT3 and JAK2 through phosphorylation 
in lung carcinoma cells, leading to BCL-2 mediated pro-
grammed cell death [117]. 2DG (2-deoxyglucose; glucose 
analog) has been shown to impede glucose metabolism that 
results in the accumulation of GSSG to induce oxidative 
stress. This was associated with radio-sensitization and 
marked apoptosis in a variety of cancers including pancre-
atic, prostate and cervical [221–223].

Nutraceuticals with antioxidant properties

Importantly, the intake of natural antioxidant-rich foods has 
been recommended as one of the best ways to protect against 

cancer. Several nutrients (vitamins A, C, and D, epigallocate-
chin-3-gallate (EGCG), genistein, curcumin, piperine, thean-
ine, and choline) have strong antioxidant properties and have 
been found to control the expansion of cancer stem cells and 
tumorigenesis in pancreatic, ovarian, breast, colorectal and 
brain tumors. Wang and colleagues have performed a meta-
analysis in a large cohort to find out the correlation between 
vitamin A and patients with ovarian cancer [224]. KRAS or 
BRAF mutations are the most recurrent mutations in colorectal 
carcinoma. It has been observed that high doses of vitamin C 
showed selective killing of colorectal cancer cells having either 
KRAS or BRAF mutations because of increased uptake of 
the dehydro-ascorbate (DHA, the oxidized form of vitamin C) 
through GLUT1 [225]. This led to the accumulation of ROS, 
inhibition of glyceraldehyde 3-phosphate dehydrogenase, 
energy crisis. Interestingly, vitamin C attenuated tumor growth 
in mutant Kras (G12D)/Apc murine models [225]. More 
recently, Grant has observed that vitamin D can lower the risk 
of colorectal and breast cancer, whereas it was the opposite in 
prostate cancer [226]. Yang and colleagues have reviewed the 
role, molecular mechanism and signaling pathways of EGCG 
in several murine cancer models as well as in human can-
cers [227]. To date, there is a limited therapeutic option for 
pancreatic cancer which includes gemcitabine in combination 
with trichostatin A, EGCG, benzyl isothiocyanate (BITC), and 
capsaicin [227–233]. The above drugs are known to increase 
intracellular ROS levels to promote apoptosis. BITC operates 
through ROS-dependent ERK/JNK/p38MAPK and G2/M 
arrest by reducing cyclin B1, Cdc2, and Cdc25C in pancreatic 
and other cancer [231, 234]. EGCG treatment suppressed the 
expression of the BCL-2, IAP, BCL-XL, and cIAP (antiapop-
totic) and enhanced the expression of the BAD, FAS, and BAX 
pro-apoptotic [230]. Sulindac is the FDA-approved drug that 
enhances intracellular ROS levels in colorectal and lung cancer 
cells which makes them sensitive to H2O2-mediated apoptosis 
[235]. Aminoflavone induces cell death in breast cancer cells 
(MCF7, MDA-MB231), but is non-toxic in MCF-10A (non-
malignant breast cells). Aminoflavone displayed a marked 
increase in intracellular ROS and was significantly correlated 
with the activation of caspase 3-mediated cell death. Further, 
inhibition of ROS production using NAC reverses the effect 
of amino flavone [236]. NAC treatment suppressed migra-
tion, invasion, and EMT through matrix metallopeptidase 
3. Pancratistatin, IOA, thymoquinone, and Triphala induce 
apoptosis of breast carcinoma cells by enhancing intracellular 
ROS by increasing the potential of mitochondrial membrane 
[113, 237–239]. Curcumin is a well-known natural antioxi-
dant that has been used as an anticancer agent in almost all 
human malignancies. Curcumin at lower concentrations has 
been correlated with reduced ROS production, while curcumin 
at higher concentrations displayed increased ROS levels in 
leukemia and solid tumors [240, 241]. Nimbolide has been 
found to induce oxidative stress, which caused delay in tumor 
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growth in the transgenic prostate cancer model via STAT3 
signaling [242, 243]. β-Caryophyllene oxide has been shown 
to suppress tumor growth and support apoptosis by suppress-
ing ROS-mediated activation of MAPKs [75, 244].

Chemotherapeutic drugs or cytotoxic agents

Anthracyclines and topoisomerase inhibitors such as doxo-
rubicin, adriamycin, daunorubicin, and epirubicin have 
been reported with anticancer activity in both solid and 
blood cancers, because these drugs can block DNA syn-
thesis, topoisomerase II activity and complex I/II leading 
to increase in the production of mitochondrial ROS [245, 
246]. Salvicine (SAL) is a known topoisomerase II poison 
that has been successful in clinical trials for cancer patients. 
SAL triggers H2O2 production, DNA double-strand breaks 
which induce G2M arrest and apoptosis in cervical carci-
noma, leukemia and gastric carcinoma [247, 248]. Platinum-
based drugs including cisplatin, carboplatin, oxaliplatin and 
other alkylating drugs are known for maintaining very high 
levels of ROS to induce cell death in several human malig-
nancies [249, 250]. On the other hand, nucleotide analogs, 
antimetabolites, taxanes, and alkaloids treatments eliminate 
cancer cells by maintaining low ROS. The 5-fluorouracil 
(5-FU) is FDA approved for the treatment of patients with 
various malignancies. 5-FU sensitizes the tumors by pro-
ducing mROS in a p53-dependent fashion [251]. Vorinostat 
displayed effective antitumor activity against BRAF and 
or MEK inhibitors resistant to melanoma in clinical tri-
als. Treatment with vorinostat suppresses SLC7A11 which 
enhances ROS levels and induces DNA damage and cell 
death [252]. Under normal conditions, DNA damage is 
sensed and corrected either by DNA single-strand break 
repair (SSBR) mechanism or double-strand break (DSB) 
repair pathways [253]. PARP enzymes are essential for 
SSBR [253]. It is conceivable that loss of DNA damage 
repair due to PARP inhibitors can sensitize cancer cells to 
cisplatin- or carboplatin-induced oxidative stress [254, 255]. 
Interestingly, PARP inhibitors displayed synergy with cispl-
atin leading to increase in DNA damage as well as permea-
bilization of the mitochondrial membrane in lung carcinoma 
[253, 254]. More research is still required for a deeper and 
better understanding of clinical-grade ROS scavengers and 
inducers and will be beneficial for the treatment.

Conclusions

During the last five decades, our knowledge has greatly 
increased in context with the potential applicability of 
oxidative stress/ROS in normal physiological functions as 
well as in human malignancies. As we know, in the current 
scenario we use several toxic chemicals, preservatives, 

and plastics to process and preserve packed food items 
and color in food items, and have harmful practices such 
as excessive smoking and drinking. These are excellent 
sources of ROS right from birth and can lead to genomic 
instability, DNA mutations, activation of growth factor-
mediated signaling, change in microbiota, metabolism and 
compromised immunity which ultimately lead to cancer 
and other diseases. Currently, with the advancement in 
novel technologies (DNA sequencing, metabolomics), we 
are starting to understand that even mutations in onco-
genes and tumor suppressor genes induce oxidative stress/
ROS. ROS are emerging as one of the key modulators of 
gut microbiota and tumor microenvironment. In future, 
modulation of ROS can be utilized to redefine or boost 
the immune response by releasing the immunosuppres-
sive effect for better efficacy anticancer therapies. Moreo-
ver, this is very evident from many reports that ROS are 
involved in aberrant proliferation, tumorigenesis, angio-
genesis, metastasis, and apoptosis through the activation 
of several signal transduction cascades including MAPK, 
PI3K, NF-kB, STAT3, HIF-1α, and ferroptosis. Impor-
tantly, in 2019, the Nobel Prize has been given for dis-
covering the hypoxia-responsive pathway and how cell 
responds under varying oxygen levels by altering the tran-
scription of HIF-1α regulated genes [140, 141]. Modula-
tion of H2O2 through ROS scavengers in transformed cells 
has been shown to inhibit tumor growth and angiogenesis 
by blocking peroxide-dependent HIF-1α. On the other 
hand, several successful chemotherapeutic agents work by 
maintaining high ROS. Given the fact that ROS are critical 
for promoting tumorigenesis, ROS modulator or antioxi-
dant has emerged as an alternative anticancer therapeutic 
and recently incorporated with chemotherapeutic drugs in 
clinical trials. Many studies were successful in reducing 
the tumor burden and provided proof of this concept in 
patients with late stages [256].

We must be a little careful, knowledgeable and consid-
erable while using ROS modulator because ROS levels 
are crucial for the alimony of normal cells especially stem 
cells. ROS may be used as a biomarker for assessing the 
drug response where the aim of the chemotherapy drugs is 
to increase the ROS. One can think that ROS not only tar-
gets tumor cells, but also activate other cells in the tumor 
such as immune cells, macrophage, microbiota. This is 
what is required for a successful antitumor therapy and to 
overcome the drug resistance.
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