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Abstract
Axillary meristems (AMs) are located in the leaf axil and can establish new growth axes. Whereas their neighboring cells are 
differentiated, the undifferentiated cells in the AM endow the AM with the same developmental potential as the shoot apical 
meristem. The AM is, therefore, an excellent system to study stem cell fate maintenance in plants. In this review, we sum-
marize the current knowledge of AM initiation. Recent findings have shown that AMs derive from a stem cell lineage that is 
maintained in the leaf axil. This review covers AM progenitor cell fate maintenance, reactivation, and meristem establishment. 
We also highlight recent work that links transcription factors, phytohormones, and epigenetic regulation to AM initiation.
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Introduction

Unlike most animals, plants are ramifying systems with new 
cycles of growth throughout their lifespan. At one level, this 
constant growth is achieved by postembryonic organogen-
esis. The shoot apical meristem (SAM), which is formed 
during embryogenesis and harbors stem cells in its center, 
forms lateral organs such as leaves at its periphery. Thus, 
the SAM creates the shoot, i.e., the aboveground portion of 
a plant. Similarly, the root apical meristem gives rise to the 
entire underground root system. However, these two meris-
tems only establish a single growth axis, and the periodic 
formation of branching meristems is needed to initiate new 
growth axes. In seed plants, branching is achieved by the 
axillary meristem (AM) formed at the leaf axil, where the 
boundary region separates the leaf from the stem. In the 
model plant Arabidopsis thaliana and many other species, 
an AM is associated with each leaf, which, together with an 
internode section, forms a developmental unit called a phy-
tomere. AMs form axillary buds, which can either develop 

into a branch or remain dormant for a certain amount of time 
or even permanently. Axillary bud dormancy is strongly pro-
moted by the SAM, and this phenomenon is termed apical 
dominance. Extensive studies have shown that auxin, strigo-
lactone, and sucrose as well as light and other environmen-
tal signals all affect apical dominance. A number of excel-
lent recent reviews have focused on axillary bud outgrowth 
[1–3]. In this review, we focus on AM initiation, which is an 
ideal system to study stem cell fate determination.

AM initiation is informative about cell fate, 
stem cells, and meristem organization

The origin of AMs has long been a matter of debate. Based 
on morphology, two theories have been proposed. The de 
novo theory posits that differentiated cells dedifferentiate to 
become stem cells and form AMs. The alternative detached 
theory proposes that some leaf axil cells remain undiffer-
entiated and later form AMs [4]. Recent works identified a 
meristematic cell population in the leaf axil that is neces-
sary for AM initiation [5]. However, this leaf axil population 
differs from the SAM cell population, as it does not express 
the stem cell markers CLAVATA3 (CLV3) and WUSCHEL 
(WUS) [6–9]. These leaf axil meristematic cells undergo 
a maintenance phase, which is marked by low expression 
levels of the meristem gene SHOOTMERISTEMLESS 
(STM); a subsequent activation phase, in which STM expres-
sion increases; and finally an emergence phase, which is 
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characterized by the establishment of the WUS-CLV3 feed-
back loop (Fig. 1). This leaf axil meristematic lineage and 
AM initiation represent an ideal conceptual and technical 
framework for the study of cell fate, stem cells, and meris-
tem organization [10]. Recent findings have shed light on the 
molecular regulation of each phase, and the following sec-
tions cover the regulation of stem cell fate during AM initia-
tion. While this review focuses on vegetative stage branch-
ing, readers can refer to recent reviews on reproductive-stage 
branching, especially spike branching in grasses [11–16].

Distinct gene regulatory networks control 
postembryonic AM initiation

Because AMs have the same developmental potential as 
the SAM, a natural line of inquiry is whether AM initiation 
is under the same developmental regulation as embryonic 
SAM formation. There are indeed many similarities between 
the AM and SAM, particularly after the morphogenesis 
phase. In contrast, the maintenance and activation phases are 
largely specific to AM initiation and are not associated with 
SAM formation. Genes such as LATERAL SUPRESSOR 

(LAS) and REGULATOR OF AXILLARY MERISTEMS 
(RAX) in Arabidopsis have expression patterns highly spe-
cific to AM initiation. On the other hand, mutations in STM 
and WUS, both of which are required for SAM maintenance, 
also affect AM initiation.

STM regulates SAM maintenance, and is broadly 
expressed in the SAM since globular stage of embryogen-
esis [17, 18]. In the SAM, STM prevents meristematic cell 
differentiation. As mentioned earlier, STM is also profoundly 
involved in regulating AM initiation. Whereas strong stm 
alleles lack leaves, the intermediate/weak stm-bum1 allele 
exhibits significantly reduced axillary buds formation [5]. 
STM expression is maintained in a small population of leaf 
axil cells, and these cells retain their meristematic identity 
and do not form vacuoles. Laser ablation of these STM-
expressing cells abolishes bud formation, indicating that 
they are required to initiate axillary buds. The STM expres-
sion pattern in the leaf axil dynamically changes over the 
course of AM initiation (Fig. 1). During the earlier mainte-
nance phase, the expression of STM is maintained but with a 
gradual decline. In the subsequent and activation phase, STM 
expression is significantly upregulated, which is accompa-
nied by enhanced cell divisions [5]. It is important to note 

Fig. 1   Conceptual models of the different stages of AM initiation 
with a focus on the expression profiles of STM and WUS. a Accord-
ing to the expression levels of STM and WUS, AM initiation can be 

divided into three stages: maintenance, activation, and initiation 
(detailed in b–d). Arrows and inhibition symbols indicate activation 
and repression, respectively
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that only cells with maintained STM expression can have 
high levels of STM expression during the activation phase to 
initiate AMs. In other words, there is no de novo establish-
ment of STM expression. Based on its expression patterns, 
STM is a convenient marker for meristematic cell fate.

WUS is another crucial factor for SAM maintenance [19, 
20]. During embryogenesis, WUS expression starts at the 
16-cell stage, and its expression is constrained to the organ-
izing center below the stem cells [19]. WUS is diffusible 
and directly activates the expression of the stem cell marker 
gene CLV3 in the above stem cells [21–24]. In the organ-
izing center, the expression of WUS-interacting HAIRY 
MERISTEM proteins prohibits WUS activation of CLV3 
expression [8, 9]. CLV3 encodes a polypeptide hormone 
that represses WUS expression [23, 24]. The WUS-CLV3 
feedback loop maintains stem cell niche homeostasis and 
according wus mutants are unable to maintain the SAM [20, 
25]. WUS is also involved in AM initiation, as axillary buds 
are often completely absent or converted into one or a few 
leaf-like structures in wus mutants [6]. In contrast to STM, 
WUS expression in the leaf axil is not maintained. WUS 
expression is only detectable in mature leaf axils, around 
P13 (the thirteenth earliest leaf primordium) leaves in the 
Col-0 ecotype, when the AM has formed a visible bulge 
(Fig. 1a, d) [6]. WUS expression is initially scattered in a 
few cells, and gradually restrict to the organization center 
after CLV3 expression becomes detectable [6–9]. In rice 
(Oryza sativa), mutation in the WUS orthologous gene 
MONOCULM3 (MOC3, also named TILLERS ABSENT1 
and STERILE AND REDUCED TILLERING1) causes AM 
initiation defects and female fertility, with minimal effects 
on SAM maintenance [26–28].

Transcriptional regulation

To date, most of the identified regulators of AM initiation 
encode transcription factors (Fig. 2). Many of these genes 
are expressed specifically in the leaf axil and form a leaf 
axil-enriched gene regulatory network (GRN). Several key 
regulators of the GRN were initially identified by forward 
genetics, and have been used as ‘anchor points’ to pull out 
additional ones [29, 30].

LAS/MOC1

The Arabidopsis LAS gene specifically affects AM initiation 
and not the SAM. LAS encodes a GRAS family transcrip-
tion factor, and is specifically expressed in the leaf axil [31]. 
Lateral suppressor (Ls), the LAS ortholog in tomato (Sola-
num lycopersicum), was first identified by forward genetic 
analysis. Tomato ls mutant plants lack axillary buds and also 
have petal development defects [32]. Using reverse genetics, 

Arabidopsis las mutants were found to have severe defects in 
axillary bud formation but normal flower development [31]. 
Large-scale GRN analysis indicated that the LAS promoter 
is bound by many transcription factors and is likely to be 
a “regulatory hub” [30]. An independent forward genetic 
research identified MONOCULM1 (MOC1), the rice LAS 
ortholog, which also exhibits boundary-specific expression. 
Rice moc1 mutants have significantly reduced tiller number 
and inflorescence branching [33], suggesting that MOC1 is 
involved in both vegetative and reproductive development. 
In rice, a co-activator of the cell cycle anaphase-promot-
ing complex, TILLERING AND DWARF 1 (also named 
TILLER ENHANCER), targets MOC1 to the 26S protea-
some for degradation in a cell cycle-dependent manner [34, 
35]. At the protein level, rice MOC1 physically interacts 
with MOC3 and enhances MOC3 activation of FLORAL 
ORGAN NUMBER1, the CLV1 ortholog in rice. Rice MOC1 
promotes tiller bud outgrowth [36], which is distinct from 
the functions of its orthologs in Arabidopsis and tomato.

RAX

There are three paralogous RAX genes in Arabidopsis, all 
encoding R2R3 MYB transcription factors that redundantly 
regulate AM initiation. The RAX ortholog in tomato, Blind 
(Bl), was identified by forward genetic analysis of bl mutants 
lacking side shoots [37]. The three Arabidopsis RAX genes 

Fig. 2   Summary diagram of transcription factors and phytohormones 
controlling AM initiation. This diagram includes factors that function 
at different temporal stages. The black boxes denote the key meris-
tematic factors STM and WUS. Green arrows and red inhibition 
symbols represent positive regulation and negative regulation, respec-
tively
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similarly regulate early AM initiation. RAX1 and RAX3 
expression domains are restricted to the center of the leaf 
axils and mark the positions where AMs initiate [38, 39]. In 
contrast, RAX2 is more broadly expressed. Among the RAX 
gene mutants, rax1 mutants have the strongest AM initiation 
defects, which are enhanced by rax2 and rax3 mutations. 
rax1 rax2 rax3 triple mutants seldom develop axillary buds 
in either the rosette or cauline leaves [38].

CUC​

In Arabidopsis, there are three NAC transcription factor-
encoding CUP-SHAPED COTYLEDON (CUC​) genes that 
redundantly regulate boundary formation. Two of them, 
CUC1 and CUC2, are under miR164 regulation. CUC1 and 
CUC2 were first isolated for their redundant functions in 
embryonic SAM formation and cotyledon separation during 
embryogenesis, and the double mutant phenotype is charac-
terized by occasionally fused cup-shaped cotyledons [40]. 
Similar mutant phenotypes were identified in petunia, Antir-
rhinum, and tomato [41–43]. CUC​ genes and their ortholo-
gous genes in other species redundantly affect phyllotaxis, 
leaf-stem separation, compound leaf formation or leaf mar-
gin serration, and carpel margin development [44–52], In 
Arabidopsis, CUC​ genes also redundantly promote AM ini-
tiation, with CUC3, and to a lesser extent CUC2, playing the 
leading roles. cuc3 single mutants have dramatic AM initia-
tion defects in rosette leaves, and both cuc1 and cuc2 muta-
tions enhance the cuc3 mutant phenotype. In cuc1 cuc2 cuc3 
triple mutant plants, almost all rosette and cauline leaves 
have barren leaf axils [53, 54]. In terms of their expression 
patterns, all three Arabidopsis CUC​ genes are restricted to 
the boundary regions. During embryogenesis, CUC1 and 
CUC2 are excluded from the uppermost layer, while CUC3 
expression is detected in this layer [40, 54, 55]. Consistent 
with this differential expression, only CUC1 and CUC2 tran-
scripts are degraded by miR164. Among the three MIR164 
genes, MIR164c also exhibits boundary-specific expression 
[53]. Similar to LAS, the CUC2 promotor is bound by a large 
number of transcription factors, including RAX1 [30]. It 
remains unclear if this RAX1 binding represents primary 
regulation or secondary feedback, as CUC2 expression 
precedes that of RAX1. In terms of downstream regulation, 
CUC​ genes regulate STM and LAS [30, 40, 53, 56]. STM 
expression is lost in cuc1 cuc2 double mutant heart-stage 
embryos, and CUC1 protein binds to the STM promoter 
to induce its expression [40, 55, 56]. In turn, STM protein 
binds to the CUC1 promotor to activate CUC1 expression, 
forming a positive feedback loop [56, 57]. The same regula-
tory mechanism may also function during AM initiation. In 
cuc triple mutant plants, LAS expression in the leaf axil is 
lost [53]. Consistently, CUC2 proteins directly bind to the 
LAS promotor and upregulate its expression [30].

REV

REVOLUTA​ (REV) has pleiotropic effects on shoot and root 
development, including SAM and floral meristem activity, 
leave and stem patterning and growth, vascular develop-
ment, and root development [58, 59]. Notably, rev mutant 
plants lack axillary buds in both rosette and cauline leaf 
axils [58, 60, 61]. REV is broadly expressed in the SAM, 
leaf adaxial domain facing the SAM, center of the leaf axil 
proceeding AM initiation, and vascular tissues [5, 60–62]. 
REV encodes an HD-ZIPIII family transcription factor, 
which also includes PHABULOSA (PHB), PHAVOLUTA​ 
(PHV), CORONA, and ATHB8 [60, 61]. The expressions of 
these HD-ZIPIII genes are regulated by MIR165/6 [63, 64]. 
Nevertheless, only rev mutants have AM initiation defects, 
but not other single mutants for HD-ZIPIII genes [60]. On 
the other hand, dominant mutants of PHB, PHV, and REV, 
which escape from MIR165/6 regulation, similarly exhibit 
adaxialized leaves and ectopic axillary buds surrounding the 
adaxialized leaves [61, 62, 65, 66].

REV is a downstream factor during AM initiation, and 
LAS promotes REV expression in the leaf axil [31]. REV 
in turn upregulates STM expression immediately prior to 
AM initiation by directly binding to the STM promoter 
region [5]. REV upregulation of STM requires prior STM 
expression and a permissive local epigenetic environment, 
which ensures that STM is not ectopically expressed in other 
tissues where REV is active [5]. Similar to the findings in 
Arabidopsis, rice HD-ZIPIII transcription factor LATERAL 
FLORET1 upregulates the expression of OSH1, a homolog 
of STM, to promote spikelet branching and to form extra 
florets [67].

Although the REV-related PHB and PHV proteins 
can similarly bind to STM and promote its expression [5, 
68], the observed AM initiation defects are unique to rev 
mutants [60]. It is likely that among these genes, only REV 
is strongly expressed in mature leaf axils. On the other hand, 
PHB, PHV, and REV alleles that lead to ectopic expression 
of these genes all give rise to ectopic AMs on the abaxial 
leaf base, providing support for the de novo theory [65]. It 
is conceivable that ectopic activity of these HD-ZIPIII tran-
scription factors could maintain STM expression in the leaf 
abaxial side and promote ectopic AM initiation.

LAX1/BA1/ROX

The LAX PANICLE1 (LAX1) bHLH protein gene in rice was 
identified by forward genetic analysis, and mutation of this 
gene leads to defects in both vegetative and reproductive-
stage branching [69]. Stage- and direction-specific LAX1 
protein trafficking is essential for its function during AM 
initiation [70]. An independent forward genetic analysis 
showed that mutations in the orthologous barren stalk1 
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(ba1) gene in maize similarly lead to vegetative and repro-
ductive branching defects [71]. LAX1 and ba1 orthologs 
broadly exist in many species [72]. Reverse genetic analysis 
showed that the Arabidopsis ortholog, REGULATOR OF 
AXILLARY MERISTEM FORMATION (ROX), also partici-
pates in AM initiation, but specifically affects early vegeta-
tive development [73]. ROX expression is restricted to the 
leaf axil, and is upregulated by both RAX and LAS [73]. 
The wild sunflower (Helianthus annuus) plants are highly 
branched with many small flowering heads. By contrast, 
domesticated sunflowers commonly produce a single large 
head. Recent studies showed that the ROX ortholog, ROX-
LIKE (Ha-ROXL), was responsible for the plant architecture 
changes associated with domestication [74, 75]. Like rice 
and maize, but different from Arabidopsis, sunflower Ha-
ROXL is responsible for both vegetative and reproductive-
stage AM initiation. Furthermore, HA-ROXL promotes the 
expressions of RAX, LAS, and CUC2 orthologs [74].

LAX2/BA2

Rice LAX2 participates in AM initiation during both the 
vegetative and reproductive stages [76]. LAX2 is broadly 
expressed in meristems and encodes a novel nuclear protein 
that contains a plant-specific conserved domain. BA2 is the 
LAX2 ortholog in maize, and it affects tiller bud forma-
tion, ear row number, and tassel branching [77]. The physi-
cal interactions of LAX2 with LAX1 in rice and BA2 with 
BA1 in maize are both known to regulate AM formation. 
However, both the lax1 lax2 and ba1 ba2 double mutants 
have much more severe bud formation defects than the sin-
gle mutants [76, 77], suggesting the existence of additional 
interacting factors.

Other transcription factors

There are additional regulatory genes of AM initiation, 
and the majority of them encode transcription factors. A 
genome-scale yeast one-hybrid (Y1H) screen identified new 
transcription factors that bind to the promotor regions of 
LAS, CUC2, RAX1, and STM [30]. LAS and CUC2 are puta-
tive regulatory hubs based on the abundance of transcrip-
tion factors that bind to their promoters. SQUAMOSA PRO-
MOTER-BINDING PROTEIN-LIKE 9 and 15 (SPL9/15) 
bind to the LAS promotor to suppress its expression, and 
mutations in SPL9/15 lead to the formation of extra AMs, 
termed accessory meristems, in cauline leaf axils [30]. 
DORNRÖSCHEN (DRN, also known as ENHANCER OF 
SHOOT REGENERATION1, ESR1) and its homolog DRN-
LIKE (DRNL, also known as ESR2) are required for AM 
initiation. In single and double drn and drnl mutants, a sig-
nificant portion of the leaf axils are barren [30]. DRN and 
DRNL regulate AM initiation through various factors: both 

proteins bind to the CUC2 promoter to promote its expres-
sion [30], and they also upregulate CUC1 expression [78, 
79].

Recent studies identified regulators of RAX1. EXCES-
SIVE BRANCHES1 (EXB1, also named WRKY71) encodes 
a boundary-specific WRKY transcription factor, and EXB1 
overexpression leads to excessive AM initiation. Fusing 
EXB1 with an EAR repression domain to suppress down-
stream gene expression leads to inhibition of AM initia-
tion. However, exb1 mutant plants exhibit normal axillary 
bud formation, suggesting genetic redundancy. EXB1 also 
directly activates the expression of RAX genes [80]. LEAFY 
(LFY) is a master regulator of the reproductive-stage transi-
tion. An LFY allele with reduced floral function was used 
to show that LFY directly activates RAX1 expression to 
promote AM initiation [81]. This finding also explains why 
AM initiation is much faster in cauline leaves, which are 
formed during reproductive-stage transition [82], compared 
to rosette leaves.

Genes with boundary-specific expression are often 
involved in AM initiation. One example is LATERAL 
ORGAN FUSION1 (LOF1), which encodes an MYB tran-
scription factor. LOF1 weakly promotes AM initiation 
together with its homolog LOF2 [83]. The tomato ortholog 
Trifoliate promotes compound leaf formation and also 
weakly affects AM initiation [84]. A recent leaf axil-specific 
translatome analysis also identified new regulators of AM 
initiation [29]. HANABA TARANU, which encodes a GATA 
transcription factor, promotes AM initiation in addition to 
its known roles in embryogenesis and meristem maintenance 
[85–88]. The translatome analysis also identified RABBIT 
EARS, which encodes a C2H2 family zinc-finger transcrip-
tional repressor, as a suppressor of AM initiation.

A recent cell domain-specific transcriptome analysis 
showed that leaf axil boundary genes were also expressed 
in maize ligules, which separate grass leaf sheath and leaf 
blade [89]. This finding is supported by genetic analyses of 
the BLADE-ON-PETIOLE (BOP) genes in several species. 
The BOP genes were first identified in Arabidopsis as sup-
pressors of lamina formation on the petiole [90, 91], and 
have later been associated with abscission zone formation, 
bract suppression, and floral patterning [92–94]. Notably, the 
barley BOP gene UNICULME4 (CUL4) is expressed in the 
boundary and promotes axillary bud and ligule formation, as 
well as inflorescence development [95]. Furthermore, Elig-
ulum-a (ELI-a) another related barley gene expressed in the 
preligular band and various other tissues is related to AM 
initiation. Mutations in ELI-a in combination with the unic-
ulm2 mutant, which lacks tillers, result in plants that restore 
tiller formation [96]. The functions of BOP appear to be 
highly diverged among different species. They control maize 
axillary bud outgrowth [97] and tomato inflorescence devel-
opment [98]. However, BOP function in rice is restricted to 
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leaf development [99]. Nevertheless, the connection between 
AM initiation and ligule formation point to new approaches 
to identify novel genes that regulate AM development.

Phytohormones

Phytohormones play critical roles in various plant develop-
mental process, and recent studies have linked some of them 
to AM initiation (Fig. 2).

Auxin

Whereas auxin maxima are often associated with organo-
genesis, such as the formation of leaves, flowers, and lateral 
roots, a low auxin environment is necessary for vegetative 
AM initiation in Arabidopsis and tomato [100, 101]. The DII 
auxin sensor, whose signal negatively correlates with auxin 
levels [102, 103], has strong signals in the leaf axil bound-
ary region starting at leaf primordium emergence in Arabi-
dopsis. DR5 signal, which correlates with auxin signaling, 
is excluded from the leaf axils in Arabidopsis and tomato. 
Consistent with these observed patterns, ectopic expression 
of the iaaM auxin biosynthesis enzyme in the leaf axil led 
to dramatically compromised AM initiation in Arabidopsis 
[100, 101]. Local auxin application in the leaf axil in tomato 
also blocks AM initiation [100]. The leaf axil auxin mini-
mum depends on polar auxin transport, and both auxin efflux 
and auxin influx mutants exhibit varying degrees of axillary 
bud formation defects [100, 101]. Similar AM phenotype 
can also be obtained by treating Arabidopsis or tomato with 
auxin efflux inhibitor N-1-naphthylphthalamic acid [101]. 
In pCUC2 ≫ iaaM plants with ectopic auxin biosynthesis 
in the leaf axil, STM expression is significantly reduced, 
disrupting STM maintenance [5]. Consistently, auxin signal-
ing suppresses STM expression in the floral meristem [104].

In contrast to its effect on vegetative AM initiation, auxin 
promotes the formation of the floral meristem, which is 
considered a specialized AM [4], and probably also cauline 
leaf AMs, which form during the floral transition [82]. The 
formation of Arabidopsis floral primordia is further regu-
lated by a reciprocal feedback loop between auxin levels and 
LFY expression. Auxin promotes LFY expression, and LFY 
feeds back onto multiple components of the auxin pathway 
[105–107]. A live-imaging analysis of Arabidopsis cauline 
leaf AMs showed high DR5 expression, which was similarly 
observed in tomato AMs, likely also after the floral transi-
tion [108]. The role of auxin in maize and rice spike branch-
ing has been more extensively studied [109].

In maize, auxin biosynthesis is required for AM initia-
tion during vegetative development, in addition to promot-
ing reproductive-stage AM initiation [110, 111]. Given that 
auxin is required for SAM homeostasis and maintenance 

[112], it is possible that auxin functions in a later step of AM 
initiation or bud maintenance. It remains to be determined 
if auxin is required for vegetative stage bud formation in 
eudicots, such as Arabidopsis.

Cytokinins

Cytokinins regulate SAM patterning and homeostasis 
[113–116], and are broadly involved in shoot meristem 
functions [117]. During AM initiation in Arabidopsis, a 
cytokinin signaling pulse, which can be monitored using 
the TCS cytokinin signaling sensor [118], is detectable just 
a few days prior to AM initiation in the center of the leaf axil 
[100]. Cytokinin signaling requires cytokinins, receptors, 
and signaling pathway components. STM promotes cyto-
kinin biosynthesis in the SAM [119–121], and may function 
similarly in the leaf axil. AHK4, one of the three cytokinin 
receptors in Arabidopsis, is specifically detected in the leaf 
axil center [100]. Several type-B ARR transcription factors, 
which are downstream cytokinin signaling, are expressed or 
even enriched in the leaf axil [6, 100]. Cytokinin signaling in 
the leaf axil is causally related to AM initiation, and several 
combinations of cytokinin perception mutations lead to AM 
initiation defects. Mutants of type-B ARR transcription fac-
tor genes also show compromised AM initiation, with arr1 
having the strongest phenotype [100]. The leaf axil cytokinin 
signaling pulse depends on LAS, RAX, and REV. Moreover, 
ectopic cytokinin production in the leaf axil can rescue rax 
mutant phenotypes [100].

Cytokinin de novo activation of WUS expression in the 
leaf axil helps to establish functional AMs. Unlike STM, 
WUS expression is not maintained in the leaf axil. Soon after 
the leaf axil TCS signal, WUS expression is activated in 
TCS-expressing cells. At the molecular level, type-B ARR 
transcription factors, especially ARR1, directly bind to the 
WUS promoter to activate its expression [6]. Consistent with 
this activity, ectopic WUS expression rescues the AM initia-
tion defect of the arr1-4 mutant [6]. Similar to their function 
in AM initiation, type-B ARRs also activate WUS expression 
de novo during shoot regeneration from callus [122, 123]. 
In addition to binding to WUS, ARR1 also binds to the LAS 
promotor and activates its expression [30]. Cytokinins may 
also promote STM expression, which has been shown in the 
SAM [124].

Other phytohormones

Additional hormones may also contribute to AM initiation. 
For example, a recent study reported that gibberellin nega-
tively regulates AM initiation [125]. DELLA proteins neg-
atively regulate gibberellin signaling, and della pentuple 
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mutant plants have slightly reduced axillary bud numbers. 
Additionally, ectopic expression of the GA20ox2 gibberel-
lin biosynthesis gene in the leaf axil inhibits AM initiation 
[125]. DELLA proteins interact with SPL9 [126], which 
bind to the LAS promoter to repress its expression [30, 
125]. These molecular links may contribute to AM initia-
tion and warrant further confirmation.

Although there is no evidence that the growth-pro-
moting brassinosteroid phytohormones interfere with 
AM initiation, they do affect organ boundary formation 
[127, 128]. Additionally, the expression levels of several 
AM initiation-related genes are altered in brassinosteroid 
signaling and biosynthesis mutants. Since many of these 
affected genes, such as CUC​ and LOF1, are involved in 
both boundary separation and AM initiation, it remains 
to be determined if brassinosteroids substantially affect 
AM initiation.

Epigenetic regulation

Epigenetic regulation allows differential expression of the 
same gene in different cell types from the same genome. 
Thus, epigenetic regulation is involved in virtually all 
developmental processes, including AM initiation. The 
above-mentioned transcriptional regulation of WUS and 
STM also depends on epigenetic regulation to ensure that 
their spatiotemporal expression patterns are precisely con-
trolled. Neither REV, which activates STM expression, nor 
ARR1, which activates WUS expression, is limited to the 
leaf axil. Epigenetic regulation restricts the expression of 
both genes. The Polycomb group (PcG) complexes mediate 
histone 3 lysine 27 trimethylation (H3K27me3), which is a 
repressive mark. In differentiated tissues, such as mature 
leaves, both STM and WUS have high H3K27me3 levels. 
In contrast, these genes have a low level of H3K27me3 and 
a high level of H3Ac, a mark associated with active chro-
matin, in tissues containing the leaf axil STM-expressing 
cells [5]. It is likely that an open chromatin status is asso-
ciated with the maintenance of STM expression. In PcG-
related mutants, both WUS and STM expression levels are 
upregulated [5, 6, 129, 130]. Moreover, treating mature 
leaf cells with the histone deacetylation inhibitor trichos-
tatin A leads to ectopic WUS expression [6].

Epigenetic regulation is more dynamic for WUS, whose 
expression is terminated in the leaf axil and then subse-
quently activated de novo [6]. In the leaf axil tissues of 
young leaf primordia, where WUS is not expressed, the 
WUS locus has abundant H3K27me3, but is depleted 
of H3/4Ac. Prior to WUS activation, the levels of the 
H3K27me3 repressive mark decrease, while the levels of 
the H3/4Ac active mark increase [6].

Perspectives

Phenotypic characterization of changes in AM initiation is 
often difficult due to strong apical dominance in many plant 
species, including the model plant Arabidopsis. Despite the 
identification of key transcription factors and phytohor-
mones that regulate AM initiation (Fig. 2), there are clearly 
many “unknowns” in this research area. First, the leaf axil 
stem cell lineage warrants further characterization. Given 
that plant cells in general have higher plasticity than animal 
cells, this stem cell lineage provides an excellent system to 
study cell fate determination. It remains unknown how this 
stem cell lineage is maintained, how the epigenetic status 
is maintained, and to what extent the fate of this stem cell 
lineage is reversible. To answer these questions, new cel-
lular resolution technologies are needed. Second, there are 
likely many unknown AM initiation regulators are awaiting 
to be uncovered. We need new tools for forward genetics 
and system biology to dissect the gene regulatory networks 
underlying AM initiation. Third, we need to better connect 
the known AM initiation regulators to obtain a plausible 
regulatory network. Finally, regulatory mechanisms other 
than transcriptional regulation need to be identified affecting 
AM initiation.
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