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Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond 
to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal 
changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesive-
ness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted 
to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this 
review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, 
including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of 
interactions between the fibers.
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Introduction

Cells are continuously subjected to forces exerted both inter-
nally and externally that result in changes in the cellular 
mechanical properties, which are known to influence vari-
ous aspects of cell structure and function. The mechanical 
property induces structural changes such as deformation and 
remodeling, and regulates cell motility, migration, and dif-
ferentiation [1–3]. Loss of contractility of heart muscle cells 
may cause heart failure [4]. Neural cells can die when the 
axons of neural cells are stretched excessively, whereas cell 
growth is activated by moderate stretching of the axon [5]. 
Several researches reported that cancer cells are mechani-
cally softened compared with healthy normal cells [6–8]. 
However, cancer cells that are more invasive have increased 
elasticity in other reports [9].

Internally, cellular mechanical properties are the result 
of the structural organization of subcellular components, 
including the nuclear envelope, cell membrane, and 
cytoskeleton. Among them, the cytoskeleton is a major 

regulator of the intracellular mechanics. The mechanical 
properties of a cell include elasticity, stiffness, viscoelastic-
ity, and adhesion. Elasticity is the resistance of a material to 
deformation by stress [10]. The elastic materials show a lin-
ear or non-linear relationship between stress and strain, with 
the material returning to its initial state when the stress is 
removed. Since elasticity is the ratio of stress (force applied 
per unit area) and strain (deformation caused by stress), high 
elasticity indicates that large stress is required to bring about 
even a slight deformation. In contrast, low elasticity indi-
cates that minimal stress can cause a large strain. Stiffness 
is the rigidity of a material in response to stress; it depends 
on the size, shape, mass, and crosslinks in the structure of 
a material [11, 12]. Viscoelastic materials resist shear flow 
and strain linearly with time (they exhibit time-dependent 
strain) [13].

Externally, cells are continually subjected to mechanical 
loads from their extracellular matrix (ECM). Cells adhere 
to ECM ligands through integrins, a family of transmem-
brane adhesion receptors [14]. Integrin-mediated adhesion 
between cells and the ECM is a highly regulated process 
associated with several critical cellular events, includ-
ing gene expression, cell locomotion, and differentiation 
[15–17]. A cell senses and responds to its ECM by alter-
ing its structure and mechanical properties. [18–21]. On 
a substrate with nano-patterned grooves, cells can change 
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shape and arrangement along the grooves [22]. Fibroblasts 
on a soft matrix are sitting in a small area with no detect-
able stress fibers [23]. As the matrix stiffens, the fibroblasts 
spread over a wide area and the stress fiber is formed.

Previous studies have provided valuable information 
on the underlying mechanism of the cellular mechanics 
[24–27]. However, the mechanical response to stimuli is 
still complicated to understand due to the intrinsic nature of 
cells. First, cellular mechanical properties are neither homo-
geneous nor isotropic [28]. Second, because cells are alive, 
all features of the cytoskeletal components vary as a function 
of time [29]. Third, the elastic property of cells is inherently 
nonlinear. Cytoskeletal components are semi-flexible poly-
mers, allowing cells to resist deformation depending on the 
extent of stress [30, 31]. Fourth, the cytoskeletal components 
of actin, microtubule, and intermediate filaments interact 
with each other in complicated ways and are connected to 
other components, such as actin-binding proteins and inte-
grins [32].

Three cytoskeletal components—actin, microtubule, and 
intermediate filaments—play pivotal and distinct roles in 
intracellular mechanics. In this work, we reviewed the lit-
erature, highlighting research that explores the role of the 
cytoskeleton especially in intracellular elasticity and identi-
fies each cytoskeletal filament involved in that role. In the 
“Contribution of actin filaments to intracellular elastic-
ity” section, the effects of actin filament (F-actin) contents 
and distribution on cell elasticity are summarized. In the 
“Actin-binding proteins that affects intracellular elasticity” 
section, the variety of F-actin-binding proteins and their 
contributions to intracellular elasticity are summarized. In 
the “Contribution of intermediate filament to intracellular 
elasticity” and “Non-critical role of microtubules in intracel-
lular elasticity” sections, the roles of intermediate filaments 
and microtubules in intracellular elasticity are summarized, 

respectively. Finally, we related the complexity of cytoskel-
etal filaments to existing difficulties in understanding intra-
cellular elasticity.

Contribution of actin filaments 
to intracellular elasticity

F‑actin is a major factor in cellular elasticity

Actin is a ubiquitous and essential protein in all eukaryotic 
cells. It is a major constituent of the cytoskeletal network 
and forms many different cellular structures. Actin provides 
a framework, determines cell shape, and plays a role in a 
variety of cellular processes, including division of cyto-
plasm, motility, and muscle contraction [33, 34]. Actin can 
be present as either a globular (G) or filamentous (F) pro-
tein. The monomeric globular form of G-actin has molecular 
weight of 46 kDa and forms the basic unit for F-actin. The 
concentration of G-actin is relatively similar in most cells 
and it determines the polymerization rate of G-actin into 
F-actin [35, 36]. The polymerization of G-actin is linearly 
dependent on the ATP-actin concentration.

The G-actin can assemble into F-actin in vitro under 
the right ionic conditions; no other proteins are required to 
produce filaments (Fig. 1a) [37]. Several studies have been 
performed on various cell types to isolate the specific con-
tributions of actin filaments on the cellular elastic property. 
F-actin was disrupted or stabilized by cytoskeletal drugs and 
the resulting changes in deformability or elasticity of cells 
were measured by optical stretcher or atomic force micros-
copy (AFM), respectively [38, 39]. The drugs cytochalasin 
B (Cyt-B), cytochalasin D (Cyt-D), and latrunculin A dis-
rupt F-actin by inhibiting actin polymerization [40–42]. 

Fig. 1   a Main constituents of the cytoskeleton and their intracellular 
distribution. G-actin polymerizes to form F-actin under physiological 
conditions. The polymerization and de-polymerization readily occur 
at barbed and pointed ends of F-actin, respectively. Intermediate fila-
ments are built from monomers that associate with each other to form 

dimers. Microtubules are formed by the polymerization of a dimer 
of two globular proteins, α- and β-tubulin. b Schematic relationships 
between intracellular elasticity and concentration and structure of 
F-actin. The intracellular elasticity is proportional to the concentra-
tion and structuring of F-actin
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Jasplakinolide (Jas) promotes actin nucleation and polym-
erization [43].

When cells are treated with Cyt-B, Cyt-D, or latrunculin 
A, long actin filaments are disrupted and their arrangement 
changes randomly. The disruption of F-actin leads to cell 
softening across multiple cell types. For example, the elastic 
modulus of 3T3 and NRK fibroblasts decreased by a factor 
of 1.4–3.2 when treated with appropriate concentrations of 
Cyt-B, Cyt-D, and latrunculin A [39]. Mouse embryonic 
fibroblast becomes more deformable by latrunculin A [44]. 
MCF-7 adenocarcinoma cells treated with latrunculin A 
were more easily deformed by optical stretching, especially 
at small strains (< 5%) [38].

Cellular softening by F-actin disruption depends on 
cell type. For example, the elastic modulus of Jurkat cells 
decreased by 55% (from 0.51 ± 0.06 to 0.23 ± 0.04 kPa) and 
that of lymphocytes decreased by 72.5% (from 1.24 ± 0.09 to 
0.34 ± 0.04 kPa) when exposed to 20 μg/mL of Cyt-B [45]. 
The elastic modulus of chondrocytes decreased by 60–80% 
when treated with Cyt-D, while hepatocellular carcinoma 
and fibrosarcoma cells showed no apparent changes in elas-
ticity [46]. These results suggest that F-actin may contribute 
to the elasticity of cancer cells differently than normal cells.

Intracellular elasticity is proportional to the amount 
of F‑actin

F-actin content is an important factor determining intracellu-
lar elasticity. However, F-actin contents continue to fluctuate 
to some extent in response to internal and external envi-
ronmental stimulations. When neutrophils are stimulated 
with bacterial-derived formyl-Met-Leu-Phe, F-actin levels 
increased, causing an increase in intracellular stiffness. The 
elasticity of neutrophils was proportional to F-actin con-
tent with a proportionality constant of 0.54 [47]. Murine 
fibroblasts cells (NIH3T3) also showed a strong relationship 
between their elastic modulus and F-actin content, with a 
proportionality constant of 0.023 [48]. Modeling has shown 
that the elastic modulus of an F-actin network is dependent 
on actin contents with the proportionality constant of 2.5 
[49].

Irreversible changes in F-actin contents can be induced 
by aging and disease, which are accompanied by changes in 
intracellular elasticity. Skin fibroblasts isolated from young 
donors (< 42 years old) showed 31% less F-actin contents 
than fibroblasts isolated from older donors (> 60 years old) 
[50]. Consequently, the elastic modulus of the younger group 
is about 60% lower than that of old group. F-actin levels in 
bladder cancer cells of HTB-9, HT1376, and T24 are only 
73%, 35%, and 42% that of non-malignant bladder HCV29 
cells. The elastic modulus of HCV29 cells is 50 kPa and 
that of cancer cells is below 15 kPa—a 70% difference [8].

Intracellular elasticity depends on F‑actin 
distribution

F-actin is organized into high-order structures within 
cells as bundles or three-dimensional networks. This 
structuring is regulated by a variety of actin-binding pro-
teins that are closely associated with intracellular elas-
ticity. The alignment of an F-actin bundle also affects 
intracellular elasticity [51]. When F-actin bundles are 
aligned along the long axis of a cell with well-defined 
stress fibers, the cells exhibit a high elastic modulus. 
In contrast, when actin filaments are less organized or 
oriented randomly, the cells have a lower elastic modu-
lus [8, 52–54]. F-actin in ovarian epithelial cells (ISOE) 
is aligned in the same direction as ovarian cancer cells 
(OVCAR and HEY), thus ISOE has a relatively large 
elastic modulus [6]. Generally, an F-actin network with 
low density will soften a cell membrane, while dense 
networks with a high concentration of cross-links will 
stiffen a cell [55].

F-actin is bundled together via cross-linking proteins 
to form stress fibers [4, 56, 57], which are contractile 
bundles composed of approximately 10–30 actin fila-
ments [58]. A stress fiber is a dynamic structure with 
non-uniform elasticity and forces, as indicated by the 
constantly fluctuating spacing between myosin II along 
the stress fiber [59–61]. The mechanical property of 
a stress fiber depends on the contractile level, and the 
elastic modulus is ~ 15 kPa [62–64]. The presence of 
stress fibers causes enhanced intracellular elasticity 
that is sensitive to spatial and temporal distribution. 
For example, the transient accumulation of stress fibers 
induced by Src proteins and their organization leads to 
transient increase in intracellular elasticity in a human 
breast cell line [48].

Actin‑binding proteins that affect 
intracellular elasticity

Various actin‑binding proteins

Actin-binding proteins regulate the organization and 
dynamics of actin filaments [65, 66]. Actin-binding pro-
teins include monomer-binding proteins (profilin, thy-
mosin), bundling proteins (myosin II, α-actinin, fascin), 
cross-linking proteins (filamin), side-binding proteins 
(tropomyosin), capping proteins (CapZ), severing proteins 
(gelsolin, villin), and nucleating protein (Arp2/3 complex). 
Among them, a high order of actin filament structures of 
bundles and networks is facilitated mainly by myosin II, 
α-actinin, filamin, and tropomyosin.
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Actin‑binding proteins increase intracellular 
elasticity

Actin-binding proteins are involved in the regulation of the 
intracellular elasticity through stabilizing F-actin structure, 
changing the mechanical properties of F-actin itself, and 
structuring bundles or networks.

α-Actinin binds to F-actin at two specific binding sites 
that are present in various intracellular structures that require 
organized actin filament polarity (Fig. 1a) [67–70]. Low 
concentrations of α-actinin and F-actin form orthogonal 
actin filament networks, but forms bundles at high concen-
tration above a crosslinking-to-bundling threshold [71–76]. 
The F-actin networks demonstrate viscoelastic property with 
non-linear stress–strain relationship, and the property varies 
by binding proteins and density of crosslinking [29, 31, 77, 
78]. An F-actin bundle with α-actinin behaves like a viscous 
fluid because each bundle can slip past other bundles [71]. 
Overexpression of α-actinin causes cellular stiffening. In 
human osteoblasts, 150% overexpression of α-actinin with 
a GFP fusion protein causes a 60% increase in the cell stiff-
ness [79]. The elastic modulus of fibroblasts injected with 
α-actinin increased from 80 ± 20 to 190 ± 30 dyn/cm2 [80]. 
The cooperation of α-actinin with fascin further enhanced 
the elastic modulus up to 240 ± 35 dyn/cm2.

Myosin II proteins selectively bind to appropriate subsets 
of actin filaments via motor head domain to form an actin 
filament bundle structure, such as a stress fiber. In bundled 
F-actin networks, myosin filaments actively contract or slide 
antiparallel actin filaments, which causes local tension or 
network contraction [81–84]. Therefore, myosin can stiffen 
F-actin by more than two orders of magnitude [85]. The stiff-
ened actin filament generates internal stress, which results in 
increased whole-cell elasticity. Approximately 300 myosin 
molecules must be assembled with actin filaments to gener-
ate sustained internal tension [86]. The inhibition of myosin 
II results in softening of cells. When myosin II was inhib-
ited by BDM and ML-7, which inhibit myosin-light-chain-
kinase, fibroblast cells softened by a factor of three in both 
peripheral and nuclear regions [87]. When the fibroblast was 
treated with the myosin inhibitor blebbistatin, the elastic 
modulus decreased from 20 to 8 kPa for 30–60 min [88].

Filamin is a large dimeric multidomain protein 
(~ 280 kDa) which is mainly localized to the leading edge 
and the trailing stress fibers in the cellular membrane [89, 
90]. Filamin plays a role in bundling actin fibers. Actin 
filaments are dispersed randomly in filamin-deficient cells, 
while actin filaments align and form stress fibers in the pres-
ence of filamin. The formation of stress fibers can be facili-
tated and stabilized by filamin. Therefore, filamin-deficient 
cells are softer than filamin-expressing cells [91, 92]. The 
effects of filamin on elasticity of F-actin network are more 
pronounced when filamin cooperates with α-actinin [6].

Tropomyosins (Tpms) are integral components of actin 
filaments that play a critical role in the generation of func-
tionally distinct F-actin structures [93–97]. Tpms stabilize 
F-actin structures and regulate the interaction between 
F-actin and cellular membranes. In red blood cell, Tpms 
stabilize short F-actin and strengthen the linkages between 
the membrane skeleton and transmembrane glycoproteins, 
which cause changes in morphological and mechanical 
properties of the red blood cells [98]. Tpms also affects the 
amount and organization of F-actin, with the effects depend-
ing on the Tpm isoforms [99]. Various Tpm isoforms have 
been identified, including Tpm 1.10, Tpm 1.11, Tpm 1,12, 
Tpm 1.7, Tpm 2.1, Tpm 3.1, and Tpm 4.2. By overexpress-
ing Tpm 3.1, the F-actin/G-actin ratio increased significantly 
and the elastic modulus of cells increased. Overexpression 
of Tpm 1.10, Tpm 1,11, Tpm 1.7, and Tpm 3.1 inhibits the 
F-actin bundling while Tpm 1.11, Tpm 2.1, and Tpm 4.2 
shows no significant effects on the F-actin bundles. The cor-
relation between the intracellular elasticity and F-actin is 
summarized in Fig. 1b.

Contribution of intermediate filament 
to intracellular elasticity

Intermediate filaments function as tension-bearing elements 
to maintain cell shape and rigidity, and serve to anchor in 
place several organelles, including the nucleus and des-
mosomes [100, 101]. They are also involved in formation of 
the nuclear lamina, a net-like meshwork that lines the inner 
nuclear membrane and governs the shape of the nucleus. 
The intermediate filaments are flexible but stable and strong 
with less subunit exchange. More than 50 different interme-
diate filament proteins have been identified and classified 
into six groups based on similarities between their amino 
acid sequences (Table 1) [102, 103]. All intermediate fila-
ment proteins share a similar structure that is based on an 
N-terminal head domain, central α-helical rod domain of 
approximately 310 ~ 350 amino acids, and C-terminal tail 
domain (Fig. 1a) [101]. The head and tail domains vary in 
size and shape. Although intermediate filaments are essential 
to maintaining correct tissue structure and function, and are 
associated with more than 50 human diseases, much less is 
known about intermediate filaments compared with actin 
and microtubules.

Recent studies have demonstrated that vimentin is an 
important regulator of intracellular elasticity among the 
intermediate filament proteins. Vimentin is a highly dynamic 
structural protein that undergoes changes in organization 
during various cellular processes, such as cell migration 
and spreading [104]. Vimentin contributes to intracellular 
elasticity in various cell types. For example, the elastic mod-
ulus of mouse embryonic fibroblasts expressing vimentin 
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is 2 ~ 2.5 times higher than it is in fibroblasts that do not 
express vimentin [105]. The elastic modulus of chondrocytes 
was decreased by 2.8-fold due to vimentin disruption [106]. 
Vimentin-null fibroblasts also showed greater deformability 
than wild-type fibroblasts in response to compressive stress 
[107]. In addition, studies have shown that expression of 
vimentin is affected by the mechanical environment and is 
strongly related to cancer progression. Vimentin expres-
sion increased in intervertebral disc cells undergoing static 
compression and chondrocytes of weight-bearing cartilage 
[107, 108]. Vimentin is overexpressed in cancer cells and 
plays a critical role in metastasis [109, 110]. Although the 
mechanical role of vimentin is not clearly understood yet, it 
seems that the stiffening of cells with vimentin is related to 
localize subcellular components [105, 111]. Vimentin also 
constrains the random movement of subcellular components 
and traveling distance. This limitation helps stabilize subcel-
lular components spatially, causing cellular stiffening.

Keratins are expressed in all epithelial cells and they form 
the structural framework of epithelial cells [112]. The kerat-
ins constitute 54 distinct proteins, 28 type I and 26 type II 
keratins, which are expressed in site- and differentiation-
dependent manner in epithelial cells [113]. The keratins 
are especially abundant in epidermal keratinocytes and sig-
nificantly contribute to the cellular elasticity of keratino-
cytes [114]. Keratinocytes are found to have relatively high 
Young’s modulus than other cell types due to the keratin 
intermediate filament [115–117]. The Young’s modulus sig-
nificantly decreases in keratinocytes lacking keratin [118]. 
For example, the Young’s modulus of normal keratinocytes 
is 459 ± 31 Pa for nucleus and 752 ± 100 Pa for cell body. 
However, the Young’s modulus of type I keratin-deficient 
keratinocytes is only 343 ± 18 Pa for nucleus and 412 ± 75 Pa 

for cell body. When the keratin expression was decreased by 
immortalization in human keratinocytes, the deformability 
of keratinocytes was increased 2–3 times as compared to the 
normal keratinocytes [116]. The murine keratinocytes lack-
ing keratins also exhibited about 60% higher deformability 
than wild-type cells [119].

Nestin is a class VI intermediate filament that is expressed 
in various tissues and stem or progenitor cells [120]. Nestin 
is highly expressed in high-metastatic cancer cells, such as 
pancreatic and prostate cancers; therefore, it is considered a 
biomarker for invasive phenotype [121, 122]. Nestin seems 
to be closely associated with the cellular elasticity and motil-
ity of metastatic cancer cells [123]. Highly metastatic mouse 
breast cancer cell was stiffened by nestin knockout, which 
may result in suppression of metastasis. When nestin was 
expressed normally, the cellular elasticity was recovered. 
Although only limited studies on nestin have been conducted 
to date, the change in elasticity seems to be related to the 
decreased vimentin–actin binding interaction caused by nes-
tin [123].

Non‑critical role of microtubules 
in intracellular elasticity

Microtubules are tubular polymers of tubulin and that form 
part of the cytoskeleton. They are straight and hollow cylin-
ders 25 nm in diameter [124]. The length of microtubules in 
the cell varies between 200 nm and 25 µm depending upon 
the task of a particular microtubule and the stage of the cell’s 
life cycle [124]. Microtubules are the major components of 
cilia and flagella, and participate in the formation of spindle 
fibers during cell division [125]. They serve as conveyor 
belts, moving other organelles throughout the cytoplasm. 
Although microtubules play an important role in regulat-
ing mechanical stimuli, they show little effect on cellular 
elasticity compared with F-actin and intermediate filaments 
in most cases [45, 126]. Disruption or reorganization of the 
microtubules with drugs such as colchicine, nocodazole, and 
paclitaxel had no significant effect on intracellular elasticity 
[38, 127]. However, disrupted microtubules cause a decrease 
in elasticity in MCF-7 adenocarcinoma cells at large strains 
and an increase in elasticity in fibrosarcoma and hepato-
cellular carcinoma cells [38, 46]. Relationships between 
intracellular elasticity and three cytoskeletal filaments are 
summarized as schematic drawing (Fig. 2).

Concluding remarks

Cytoskeletal filaments of actin, intermediate filaments, and 
microtubules exhibit unique characteristics in structure, 
mechanics, contents, and functions (Table 2). Actin is one 

Table 1   Classes of intermediate filaments [76, 107]

Class Proteins Size (kDa) Cell type

I Keratins, acidic 40–60 Epithelial cells
II Keratins, basic 50–70 Epithelial cells
III Vimentin 54 Mesenchymal cells

Glial fibrillary acidic 
protein

51 Astroglial cells

Desmin 53 Muscle cells
Synemin 150 Skeletal muscle cells
Peripherin 57 Neurons

IV Neurofilaments H, M 
and L

67, 150, 200 Neurons

Internexin Neurons
V Lamin A, B, and C 60–75 All
VI Filensin 94 Lens

Phakinin 47 Lens
Nestin 200–240 Neuronal stem cells
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of the most abundant proteins in eukaryotes, accounting for 
2.7 ~ 14% of cellular proteins [136, 137]. Actin forms polar-
ized filaments that are mainly present in the cell periphery. 

F-actin is a highly dynamic structure that rapidly reorganizes 
during cell migration and morphological changes (Fig. 2a). 
Intermediate filaments are composed of several types of 

Fig. 2   Schematic drawing of relationships between intracellular elasticity and cytoskeletal filaments. The intraelasticity of cell responds sensi-
tively to the structure and expression level of F-actin and intermediate filaments. Role of microtubule is not significant

Table 2   Comparison of three cytoskeletal filaments in various aspects of structure, mechanical properties, contents, main presence region, and 
functions in cell

Actin filaments Intermediate filaments Microtubules Refs.

Subunit Actin monomer Rod-like dimers (N terminus, α-helical 
rod domain, C terminus)

α-tubulin, β-tubulin [37, 101, 124]

Subunit weight (kDa) ~ 40 45 ~ 60 ~ 50 [128–130]
Subunit size (nm) 5 45 (length), 2–3 (thickness) 4 (dimer) [130, 131]
Diameter (nm) 7 10 25 [124]
Persistence length (µm) 15

~ 20
3–10

~ 1.0
0.3 ~ 1.0 (vimentin)

6000
1–8000

[26, 132, 133]

Bending stiffness (Nm2) 7 × 10−26 ~ 10−26 3 × 10−23 [132]
Young’s modulus (kPa) 1.3 × 106 ~ 2.5 × 106

~ 2 × 106
~ 4 × 106

3 ~ 4 × 106 (non-stabilized filament)
~ 9 × 106 (non-stabilized filaments)

~ 2 × 106 [132, 134]

Shear modulus (kPa) 0.283 0.032, 0.104 0.034 [135]
Content (%) (actin/total 

cellular protein)
7 ~ 14 (chick skin fibroblasts)
4.4 ~ 5.6 (non-tumorigenic)
2.7 ~ 3.97 (tumorigenic)

~ 1.0
~ 85 (epidermal keratinocyte, neurons)

– [102, 136, 137]

Region Cell periphery Central region Central region [138]
Function Division of cytoplasm, motility, and 

muscle contraction, ear sensory 
cells

Stress-buffering, mechanical strength, 
maintenance of cell shape

Cell division, inter-
cellular transport

[130, 134]



1351Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity﻿	

1 3

homologous proteins that are expressed in different types 
of cells and tissues (Fig. 2a). Intermediate filaments extend 
from the inner nucleus through the cytoplasm, accounting 
for ~ 1% of the cellular proteins in most cell types, but up 
to 85% in neuron and epidermal keratinocytes [138]. Inter-
mediate filaments are relatively insoluble and stable struc-
tures with no polarity compared with actin and microtu-
bules [102]. Microtubules are rigid hollow rods that extend 
throughout the cell (Fig. 2a). They are in a state of dynamic 
equilibrium, constantly assembling and disassembling via 
the addition and removal of dimers (α and β-tubulin).

In addition, the three cytoskeletal filaments are distin-
guished from each other by mechanical properties. A single 
actin filament is semi-flexible, but stiffens when bundled 
or networked via actin-binding proteins. Intermediate fila-
ments exhibit a highly non-linear stress–strain relation-
ship. For examples, vimentin and keratin are stiff at high 
strains, but softer than actin filaments at low strains [127, 
139]. Microtubules exhibit a larger bending stiffness due 
to their tubular structure [46]. The stress–strain curves of 
the three cytoskeletal filaments with equal weight concen-
trations show differences in mechanical properties [140]. 
Actin filaments are highly resistant to deformation indicat-
ing high shear modulus that can rupture at ~ 20% strain [77]. 
Vimentin is easily deformed at low stresses and does not lose 
elasticity even under large stress and strain. Vimentin can 
withstand stresses of up to ~ 80% strain. Microtubules show 
the greatest deformability at low stress, but break down 
above ~ 50% strain.

Although we have much information about the F-actin, 
intermediate filaments, and microtubules in terms of intra-
cellular elasticity, their properties and roles do not explain 
cellular elasticity quantitatively. First, because the content 
of F-actin is closely related to cell elasticity, the continu-
ously or easily changed F-actin concentration makes it diffi-
cult to quantitatively characterize the mechanical properties 
of a cell. The concentration of F-actin can be changed by 
external stimuli, migration, and cell cycle processes. F-actin 
concentration increases by approximately 10–15% as cells 
enter S-phase in untransformed cells, while the concentra-
tion increases by approximately 13% during G2 + M phase in 
transformed cells [141]. The concentration changes not only 
transiently, but also permanently due to aging and diseases.

Second, although the mechanical property of single 
F-actin is well understood, the property changes when inter-
acting with various binding proteins in complex ways. The 
degree of change depends on the variety and concentration 
of binding proteins. In many cases, F-actin interacts with 
two or more binding proteins simultaneously, making it dif-
ficult to interpret the change in elasticity clearly. For exam-
ple, the elastic modulus of F-actin networks increased by 
twofold with 0.12 µM α-actinin and filamin separately, and 
by 12-fold when combining α-actinin and filamin [72]. The 

synergistic effect was not observed with 24 µM combining 
of α-actinin and filamin, but the increase of the elasticity by 
the filamin alone was remarkable.

Third, the three cytoskeletal filaments associate with each 
other, causing changes in the elastic property of both the fila-
ments themselves and the cells as whole. Many studies have 
demonstrated that interactions between actin, microtubules, 
and intermediate filaments influence intracellular elastic-
ity. For example, the amount of F-actin and microtubules is 
regulated by crosstalk [138]. Increasing densities of F-actin 
at the centrosome leads to reduced microtubule production. 
However, decrease in F-actin density due to cell adhesion 
and spreading activates microtubule growth. These interac-
tions are related to intracellular elasticity. F-actin networks 
can be either stiffened or softened by co-polymerization with 
vimentin, depending on the concentrations and density of 
crosslinkers [142]. The length of F-actin can also change 
after interacting with vimentin [130]. However, the under-
lying mechanisms of these interactions are incompletely 
understood.

In conclusion, a deeper understanding of the mechanical 
characteristics of the cells will offer valuable insight into cel-
lular physiology. Thanks to recent advances in biophysical 
techniques, the magnitudes of elastic moduli of a variety of 
cell types have been measured. Visualization of the struc-
tural changes in the cytoskeletal filaments of living cells 
during mechanical stimulation has been established using 
advanced imaging techniques, such as confocal microscopy 
and AFM. These measurements reveal remarkable elastic 
properties of cells adapted to environmental changes and 
surprising behaviors of individual cytoskeletal filaments. 
However, quantification of the elastic property of cells and 
the contribution of individual cytoskeletal filaments to the 
overall mechanical response of a cell remains challenging 
due to the complex and heterogeneous structures of the sub-
cellular components.
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