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Abstract
Daily fluctuations in animal physiology, known as circadian rhythms, are orchestrated by a conserved molecular timekeeper, 
known as the circadian clock. The circadian clock forms a transcription–translation feedback loop that has emerged as a 
central biological regulator of many 24-h processes. Early studies of the intestine discovered that many digestive functions 
have a daily rhythm and that intestinal cell production was similarly time-dependent. As genetic methods in model organisms 
have become available, it has become apparent that the circadian clock regulates many basic cellular functions, including 
growth, proliferation, and differentiation, as well as cell signalling and stem cell self-renewal. Recent connections between 
circadian rhythms and immune system function, and between circadian rhythms and microbiome dynamics, have also been 
revealed in the intestine. These processes are highly relevant in understanding intestinal stem cell biology. Here we describe 
the circadian clock regulation of intestinal stem cells primarily in two model organisms: Drosophila melanogaster and 
mice. Like all cells in the body, intestinal stem cells are subject to circadian timing, and both cell-intrinsic and cell-extrinsic 
circadian processes contribute to their function.
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Abbreviations
Apc  Adenomatous polyposis complex
Ascl2  Achaete scute-like homolog 2
Bmal1  Brain and muscle Aryl hydrocarbon receptor 

nuclear translocator like
Bmi1  B-cell-specific moloney murine leukemia virus 

integration site 1
Bmp  Bone morphogenic protein
CBC  Crypt base columnar cell
ChIP  Chromatin immunoprecipitation
Chk  Checkpoint kinase
Ck1  Casein kinase 1
Clk  Clock
Clock  Circadian locomotor output cycles kaput
Cry  Cryptochrome
Cxcl12  C-X-C chemokine ligand 12
Cxcr4  C-X-C chemokine receptor type 4
Cyc  Cycle
Gsk3  Glycogen synthase kinase 3
Hopx  Homeoboxdomain-only protein

IBD  Inflammatory bowel disease
IL  Interleukin
ISC  Intestinal stem cell
Jak/Stat  Janus kinase/signal transducers and activators of 

transcription
Klf9  Kruppel-like factor 9
Lgr5  Leucine-rich repeat-containing G-protein cou-

pled receptor 5
Lrig1  Leucine-rich repeats and immunoglobin-like 

domains-protein 1
Lrp  Low density lipoprotein receptor
Mapk  Mitogen-activated protein kinase
mTOR  Mammalian target of rapamycin
Olfm4  Olfactomedin 4
Per  Period
Ror  Retinoic acid receptor-related orphan receptors
S6K  S6 kinase
Sirt1  Sirtuin-1
Tert1  Telomerase reverse transcriptase
Tim  Timeless
Tnf  Tumour necrosis factor
Upd  Unpaired
Vri  Vrille
Pdp1  PAR domain protein-1
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Wee1  Wee1 G2 checkpoint kinase
Xpa  Xeroderma pigmentosum group A

Circadian rhythms

Circadian rhythms are 24-h recurring physiological pro-
cesses such as daily sleep/wake cycles, feeding/fasting 
cycles, daily changes in body temperature, hormone levels, 
and cardiovascular function [1–3]. The word Circadian is 
derived from Latin “circa” (meaning “about”) and “diem” 
(meaning “day”). Circadian Rhythms have four main char-
acteristics: (1) an approximately 24-h period, correspond-
ing to the 24-h rotation of the Earth’s axis; (2) tempera-
ture-compensation, meaning they are maintained as a 24-h 
process under a wide range of environmental temperatures; 
(3) the ability to be synchronized by external cues such as 
light and feeding (called “zeitgebers” from German mean-
ing “time giver”), to synchronize 24-h internal timekeeping 
with 24-h changes in environment; (4) the ability to per-
sist in the absence of external cues (called “free-running”), 
which means the physiological changes arising from cir-
cadian clock function reflect ongoing internal cellular and 
molecular timing rather than a simple response to the cues 
[1, 2]. These characteristics differentiate circadian clock and 
other environmental-responsive processes, including diur-
nal rhythms whose daily repetition may be determined by 
light responses, and ultradian and infradian rhythms whose 
period is less or more than 24-h, respectively. Hence, circa-
dian rhythms are 24-h oscillatory networks of molecular and 
cellular activity, present in animals to maximize their health 
and fitness under constant 24-h planetary change.

The observation that biology is synchronized to the 24-h 
day–night cycle and persists in the absence of external cues 
was first supported by experimental evidence in 1729 when 
French scientist Jean-Jacques d’Ortous de Mairan kept a 
plant in a windowless room and observed that the cyclic 
behaviour of leaf opening continued in complete darkness 
[4]. Rhythmic behaviours were documented in a wide variety 
of organisms, in the conidiation of fungi [5], the eclosion of 
fruit flies [6–9], and the locomotor activity of finches [10]. 
This research eventually led to the discovery of an endog-
enous genetic timekeeper: the study of eclosion rhythms in 
fruit flies, Drosophila melanogaster, unearthed three genetic 
mutants with disrupted rhythms, the Period (Per) mutants 
[9]. Mapped to the X-chromosome of Drosophila, the Per 
gene linked circadian rhythms to a molecular timekeeper, 
the circadian clock [11], and was the first demonstration 
that animal behaviour could be attributed to the function of 
a single gene.

Recent studies have implicated the working of the circa-
dian clock system with Intestinal Stem Cell (ISC) function 
[12–16]. This review will explore the role of the circadian 

clock in regulating processes relevant to intestinal and ISC 
biology, in mice and Drosophila. As this field is still in its 
infancy, connections between the circadian clock and molec-
ular processes important in ISCs, but not yet linked with 
circadian function, will be highlighted as possible directions 
for future work.

The circadian clock

Circadian rhythms are maintained by a cell-intrinsic molecu-
lar transcription–translation feedback cycle called the circa-
dian clock. This molecular system influences the expression 
of many genes that contribute to 24-h cycles of cellular func-
tion. The circadian clock is conserved from flies to mammals 
and has been shown to regulate a total of ~ 40% of genes 
in the mouse [17], and possibly an even higher number in 
primates [18]. These genes vary between different tissues, 
suggesting circadian functions are specific depending on cell 
type [17, 19]. Due to the tremendous number of cellular 
processes it can regulate, it is perhaps not surprising that 
the circadian clock has been linked to many diseases [20, 
21] including cancer [22–24], diabetes [25], inflammatory 
bowel disease [26, 27] and obesity [28, 29]. The mechanisms 
of how the clock fully impacts intestinal health remain to be 
elucidated.

The components of the circadian clock in animals are 
highly conserved between Drosophila and mice. In Dros-
ophila, the circadian clock is a transcription–translation 
feedback loop in which protein heterodimers, Per and Time-
less (Tim), repress their own transcriptional activators, 
Clock (Clk) and Cycle (Cyc) (Fig. 1a). In the beginning of 
the day, the repressors are active, however, over the day, 
light-induced degradation of Tim by the photoreceptive pro-
tein Cryptochrome (Cry) releases Per-Tim inhibition. These 
repressors are degraded, allowing the Clk/Cyc transcrip-
tional activators to bind to E-box (5′-CAC GTG -3′) regions 
all over in the genome, including that of their repressors, 
starting the next cycle [30–34]. This process is free-running: 
in the absence of environmental cues, phosphorylation and 
degradation of Per reset the circadian clock to maintain its 
approximately 24-h period [35–37]. A secondary feedback 
loop consists of transcription factors Vrille (Vri) and PAR-
domain protein 1 (Pdp1) that are transcribed by Clk/Cyc 
and modify Clk expression; Vri represses Clk and Pdp1 acti-
vates Clk in turn [38–41]. This second transcription/trans-
lation system is thought to confer greater robustness to the 
clock since expression of both the repressors and activators 
oscillate in opposite phases. The mechanism for tempera-
ture compensation remains unknown, although in plants the 
ratio of clock components may buffer rhythms in varying 
temperatures [42].
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In mice, Brain and Muscle Aryl hydrocarbon receptor 
nuclear translocator Like protein 1 (Bmal1) and Circadian 
Locomotor Output Cycles Kaput (Clock) proteins similarly 
dimerize and transcriptionally activate Per and Cry, which 
in turn repress Clock/Bmal1 activity (Fig. 2a). In mam-
mals, Tim is not part of the central clock mechanism, it is 
substituted by Cry itself and the transcription–translation 
feedback loop is otherwise similar. The mammalian clock 
has additional genetic redundancy, as it consists of multi-
ple paralogs of clock components: Bmal1-2 [43], Clk1-2 
or Npas2 [44–46], Per1-3 [47–51] and Cry1-2 [52–54]. As 
in Drosophila, the activity of Clock/Bmal1 drives its own 
repression, and a secondary stabilizing loop is also present, 
but consisting of Reverbα (also known as Nuclear Recep-
tor Subfamily 1 Group D Member 1, Nr1d1), or Reverbβ 
(Nr1d2) [55], and multiple isotypes of Retinoic Acid Recep-
tor-Related Orphan Receptor (Rorα, also known as Nr1f1, 
as well as Rorβ and Rorγ, with several isoforms of each of 
these) [56, 57], which feedback in a tissue-specific manner 
to drive a second opposite-phased system. Post-transcrip-
tional and post-translational modifications of circadian 
clock components also play a role in regulating circadian 

gene expression [58]. The mechanisms of both Drosophila 
and mammalian circadian clocks are well-established due 
to decades of research [1, 2]. It is also important to men-
tion that non-transcriptional mechanisms can establish cir-
cadian rhythms, although in this review we will primarily 
consider the canonical transcription–translation circadian 
clock system.

Entrainment of the circadian clock

A major question in circadian biology is understanding how 
the clock is entrained by environmental cues to synchro-
nize its activity with 24-h cycles. Light, temperature and 
feeding are three cues that have been shown to synchronize 
circadian clocks. In many animals, the circadian system is 
hierarchical, being composed of a central pacemaker driv-
ing the synchronization of peripheral pacemakers located 
inside cells throughout tissues of the body [59]. Photoper-
iod changes, the periods of light and darkness, are sensed 
by retinal cells of the eye, then sent to the central pace-
maker in the brain. This central pacemaker, located in the 

Fig. 1  The Drosophila circadian 
clock, and intestine. a The 
circadian clock in Drosophila 
consists of the basic-helix–
loop–helix (bHLH) transcrip-
tion factors Clk and Cyc which 
bind to E-box regions in the 
genome driving the transcrip-
tion of clock-controlled genes. 
The core circadian clock genes 
Period (Per) and Timeless 
(Tim) form a protein heterodi-
mer that represses Clk/Cyc 
activity. A secondary stabiliz-
ing loop involving Pdp1 and 
Vri activates or represses Clk, 
respectively. Pdp1 and/or Vri 
could themselves regulate target 
genes in a rhythmic fashion as 
well, contributing to the overall 
clock-controlled gene rhythm. 
b The intestine in Drosophila 
is a pseudostratified epithelium 
consisting of basally located 
intestinal stem cells (ISC) which 
either self-renew to maintain 
the stem cell pool or divide into 
progenitor cells, called entero-
blasts. The different epithelial 
cells as well as the visceral 
muscle are thought to serve as a 
niche for the ISCs in this simpli-
fied epithelium
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suprachiasmatic nucleus of the hypothalamus, is thought to 
coordinate these peripheral clocks through neuronal signals, 
and the hypothalamo-pituitary-adrenal axis [60–65]. Hor-
mones sent via this system, time the peripheral pacemakers 
in distant tissues, that work together to establish circadian 
rhythms in the body [66, 67]. Each peripheral timekeeper 
maintains rhythmic gene expression patterns relative to the 
central pacemaker [66, 68–70]. This complex and intimately 
connected system allows the body to overall coordinate the 
timing of physiological functions to anticipate the demands 
of the organism based on 24-h time.

Photoperiod light is sensed by opsins in mice [52, 71–75], 
and Cry in Drosophila [76–80]. While in mammals a hier-
archical system conveys photoperiod information from the 
retina to peripheral tissue clocks, in Drosophila, photoperiod 

cues can synchronize clocks in tissues directly and indepen-
dently [81, 82]. Although the mechanism for 24-h period 
temperature compensation is unknown, in mammalian cells 
[83] and in Drosophila [84] temperature changes can syn-
chronize the circadian clock in peripheral tissues. Feed-
ing has been shown to be an important entrainment cue in 
peripheral tissues in mice, such as the liver, kidney, and heart 
[85–88], as well as their equivalents in Drosophila [89–91]. 
Indeed, peripheral clocks are highly dependent on feeding 
time. In mice it was shown that feeding can uncouple periph-
eral and central clocks, as the former is directly entrained by 
the time of food intake while the latter is entrained by photo-
period. This likely reflects the hierarchical system of clock 
timing in mammals, where the central clock of the supra-
chiasmatic nucleus receives timing cues from light hitting 

Fig. 2  The mouse circadian clock, and the intestinal crypt. a The 
circadian clock in mice consists of basic-helix-loop-helix (bHLH) 
transcription factors clock Clock (or Npas2) and Bmal1 which bind 
to E-box regions in the genome driving the transcription of clock-
controlled genes. These genes include the core circadian clock genes 
Per1-3 and Cry1-2 which form protein heterodimers that represses 
Clock/Bmal1 activity. A secondary stabilizing loop involving RORs 
and Reverbs (and their respective isotypes) activate or repress Bmal1, 
respectively. Both of these nuclear receptors could regulate their 

own clock-controlled target genes as well. b The intestine in mice is 
folded into crypts and projections into the lumen (villi). Differentia-
tion occurs as progenitor cells move upward to the villi, and old cells 
are shed from the tips of the villi. The epithelium consists of rapidly 
dividing LGR5+ intestinal stem cells (ISC) located at the base of the 
crypt as well as quiescent +4 ISCs. which either self-renew to main-
tain the stem cell pool or divide into progenitor cells, called transit 
amplifying progenitor cells. Both mesenchymal cells, in particular 
telocytes, and Paneth cells serve as a Wnt pathway niche for the ISCs
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the retina, and the peripheral clocks receive hormonal cues 
from the central clock. In vitro, serum shock [92], the glu-
cocorticoid dexamethasone [93], forskolin [94], and insulin 
[95] can be used to synchronize the clock, underscoring the 
importance of hormones and cellular signaling in entrain-
ing clock timing. In Drosophila, hormonal inter-organ com-
munication is not so clear, however, studies have revealed 
elements of circadian time-setting [90, 91], including food 
synchronization of peripheral tissues [16, 91, 96].

Intestinal stem cells

The intestine is a dynamic tissue that undergoes nearly con-
tinuous cellular turnover. This is most likely due to the harsh 
processes of nutrient digestion, that can damage intestinal 
cells needed for nutrient absorption, hormone release, and 
pathogen defense. In addition to its role in digestion, the 
intestine is also a barrier to the outside environment that is 
evolved to cope with constant bombardment of pathogens 
and harmful chemicals. Nearly the entire intestinal epithe-
lium is renewed weekly in mammals, and its dynamic turno-
ver is supported by a population of ISCs [97–99]. In animals, 
the intestinal epithelium consists of several cell types: (1) 
ISCs; (2) progenitor cells (transit amplifying cells in mice, 
or enteroblasts in Drosophila); (3) absorptive cells (entero-
cytes); (4) enteroendocrine cells; (5) secretory cells (Paneth 
cells, goblet cells). Secretory cells have not been found in 
Drosophila, whose epithelium and immune system is simpli-
fied in its cellular diversity. However, the Drosophila intes-
tine resembles and is regulated by the same pathways of its 
mammalian counterpart, making this system an attractive 
model for basic research [100, 101].

Drosophila intestinal stem cells

The Drosophila intestine (also known as the midgut) is a 
pseudostratified epithelium with ISCs located near the base 
and differentiated cells facing the lumen (Fig. 1b). ISCs 
divide into daughter ISCs or enteroblasts [102–104] that 
differentiate into enterocytes or enteroendocrine cells [105, 
106]. Drosophila ISCs are marked by the Notch pathway 
ligand Delta, that is involved in signaling differentiation to 
ISC daughter cells as they are produced [104]. The stem cell 
niche is well defined in the Drosophila intestine, consisting 
of important signals for ISC maintenance that are provided 
by the stem and progenitor cells themselves [107–110], as 
well as the visceral muscle [108, 111–117]. The Bone Mor-
phogenic Protein (Bmp) and Wnt signaling pathways pre-
sent in this system, further highlight the similarity between 
the Drosophila ISC system and that of mammals [101, 115, 
118–122].

Mammalian intestinal stem cells

In mammals, the intestinal epithelium is arranged in a crypt-
villus structure with stem cells located at the base of the 
crypts of Lieberkühn, and differentiating daughter cells 
moving upward to the tip of the villus [123] (Fig. 2b). The 
progenitor cells differentiate as they travel up the crypt to 
the villus, although differentiated Paneth cells will migrate 
back down to the crypt where they reside with the stem 
cells at the base. In mice, at least two distinct populations of 
stem cells are known: the +4 ISCs (sometimes also called 
label-retaining cells) and the crypt base columnar (CBC) 
cells. The CBCs are a population of quick-cycling ISCs in 
which Wnt signaling is important for stem cell proliferation 
and differentiation. The +4 ISCs, or ISCs at approximately 
that position in the crypt, have been separately identified 
by the markers Bmi1 [124], Tert [125], Hopx [126], Lrig1 
[127], and most recently by Clusterin [128], however, the 
precise relationships between cells bearing these markers is 
an area of ongoing research. Some of these markers may be 
also expressed by CBCs [129], and the quick-cycling CBCs 
are specifically marked by Leucine-rich repeat-containing 
G-protein coupled receptor (Lgr5) [130], Olfm4 [131] and 
Ascl2 [132, 133]. Complex and not fully understood lineage 
relationships exist between these different ISC populations 
in this tissue, but it is thought that during baseline, uninjured 
conditions the Lgr5 + ISCs divide once every 1–2 days to 
produce the differentiated cells of the intestinal epithelium 
[130, 134, 135]. The +4 cells on the other hand seem to 
play a role during stress and regeneration. At the base of the 
crypt, mesenchymal cells and Paneth cells form the Lgr5+ 
ISC niche, by secreting Wnt pathway ligands that create a 
zone of high Wnt activity (described in detail below). ISCs 
in both Drosophila and mice have proven to be excellent, 
and mutually beneficial systems to inform our knowledge 
of basic stem cell biology.

Circadian regulation of the intestine

Nearly all cells of the body are thought to harbor circa-
dian clock activity, and the intestine is no exception. In 
both Drosophila and mammals, clock gene transcriptional 
rhythms are present in the intestine [12, 16, 136, 137]. 
Experiments in vivo in Drosophila and mice, and recently 
in vitro using intestinal organoids, 3-dimensional cell culture 
models, further confirm that the circadian clock is present 
in the intestinal epithelium [12, 14–16]. Analysis of 24-h 
changes in transcript abundance has been a central test of 
circadian output in many different contexts, including the 
digestive tract. In wildtype mice, > 1000 transcripts are 
thought to oscillate under photoperiod [138], although free-
running conditions and circadian clock mutants have not 
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yet been tested to confirm these are a result of bona fide 
clock activity [138–140]. In Drosophila, over 400 genes 
show circadian expression rhythms, that are absent when the 
clock is non-functional [12]. Furthermore, one of the most 
highly expressed transcription factors in Drosophila ISCs is 
the circadian clock gene Cyc [107], the ortholog of Bmal1, 
which suggests that at least this one core clock gene plays 
an important role in these cells. The clock appears to be 
robust in the intestine, functioning under different diets and 
physiological contexts [138–140]. However, it is important 
to note that the transcriptional analyses thus far represent an 
average of all the different cell types present, and not neces-
sarily information about cell-specific circadian rhythms in 
this tissue. In addition, these studies have been carried out 
under constant light/dark photoperiod, meaning that they 
have not addressed the free-running nature of the circadian 
clock system, and cannot completely discriminate between 
circadian clock target genes and light-response genes. Deter-
mining the precise functions of the clock in the intestinal 
epithelial cells, as well as their non-epithelial neighbors, is 
a problem for future research.

Despite a large number of potential transcripts, the func-
tions of the circadian rhythms in the intestine remain poorly 
understood. The intestine of clock mutant Drosophila or 
mice has no obvious size or morphological phenotypes [12, 
15, 141], yet daily rhythms in the expression and activity of 
enzymes and transporters for carbohydrates, peptides, and 
fats are very well-established [140, 142–147]. This high-
lights that one of the primary functions of the intestine, to 
absorb and digest nutrients, is probably under circadian reg-
ulation. This would be a significant role for the circadian sys-
tem, likely connecting this tissue to the circadian metabolic 
control of the whole animal. The role of circadian rhythms in 
governing intestinal absorption and digestion functions have 
been addressed in previous reviews [148–150].

Circadian regulation of stem cells

Do stem cells themselves have a circadian clock? Early 
observations of circadian rhythms in mitosis and apoptosis 
were indeed attributed to epidermal stem cells in tongue, 
skin and intestinal epithelium [151]. However, studies show-
ing circadian rhythms in stem cells, specifically, occurred 
later when the molecular tools needed to identify and study 
these cells became available. Diurnal variation in stem cell 
characteristics was initially shown in the haematopoetic stem 
cells [152, 153] and subsequently in epidermal stem cells 
[154, 155]. Clock genes are expressed by haematopoetic 
stem cells, but it is not yet clear whether circadian transcrip-
tional cycles are present [156]. However, in the body the cir-
cadian clock regulates oscillation of the chemokine Cxcl12 
and its receptor, Cxcr4 [152, 153]. These regulate extrinsic 

stem cell signaling, causing daily patterns of migration and 
homing of haematopoietic stem cells from the bone marrow 
to the bloodstream. Recent reports have further implicated 
circadian rhythms with the cell-intrinsic proliferation and 
self-renewal of haematopoietic stem cells, and leukemia 
stem cells [157, 158]. Per2 expression is increased in aged 
haematopoietic stem cells where it increases apoptosis and 
DNA-stress response [158]. In the case of leukemia stem 
cells, Clock and Bmal1 are required for sustained prolifera-
tion and the maintenance of the undifferentiated state [157]. 
In these blood cells, it is not yet clear if these are due to 
circadian functions, or non-circadian functions of these 
clock genes in different cellular pathways. In the epidermis, 
the role of the clock is complex since many different cell 
types participate in regeneration, including epidermal stem 
cells, and the output of the circadian system may be dif-
ferent depending on cell type. Hence, connecting circadian 
regeneration rhythms to actual stem cell activity is a chal-
lenge. As in the intestine, circadian rhythms in the mitosis of 
epidermal cells are present and are clock-dependent [159], 
and two genes, P21 and Klf9 have both been implicated as 
mechanisms connecting the clock to cellular proliferation 
[113, 160]. Migration of fibroblasts during wound closing 
also has a circadian regulatory role [161], suggesting sev-
eral stages of skin wound healing would be time-dependent. 
The epidermal stem cells themselves, exhibit circadian clock 
function, and the loss of Bmal1 and Per1/2 increases and 
decreases proliferation, respectively [154]. Overall, it is clear 
that circadian rhythms exist in the blood and skin, and are 
the product of circadian clock output in many different cell 
types. The role of the circadian clock in stem cells in the 
haematopoietic and epidermal tissues has been reviewed 
[162–167], raising many interesting areas for future study.

In the previous examples, stem cells can be regulated by 
cell-extrinsic clock mechanisms, as well as cell-intrinsic 
ones. This raises the question of the relative contribution of 
extrinsic versus intrinsic mechanisms in stem cell biology, 
and whether stem cells need to have intrinsic circadian clock 
function to display time of day changes in their behaviour. 
Adult tissue stem cells represent a relatively undifferentiated 
population, that give rise to a lineage of increasingly differ-
entiated progeny. When does the clock arise during devel-
opment? The notion that the circadian system emerges as a 
result of differentiation is a compelling framework. In early 
mouse embryonic stem cells the circadian clock is com-
pletely absent [168], arising at later stages during embry-
onic development [169]. In the adult, however, hair follicle 
stem cells and muscle stem cells both have circadian clock 
function [154, 170]. It has been documented that adult ISCs 
have weak to no circadian clock activity in vitro [14], sug-
gesting these would resemble embryonic stem cells rather 
than the tissue stem cells found in skin or muscle. However, 
in the adult Drosophila intestine, circadian clock function is 
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present in ISCs [12, 16]. It is possible that these differences 
are simply species-specific, or that the physiological state 
of the environmental milieu, which is different in vivo than 
in vitro, regulates clock activity in ISCs. How cell-intrinsic 
circadian activity in intestinal cell lineage emerges during 
differentiation is an important question for future research.

Circadian regulation of intestinal stem cells

Are any ISC-related processes under similar circadian con-
trol? Tissue stem cells’ primary function is to replace the 
surrounding differentiated cells to maintain tissue homeo-
stasis throughout adulthood. In the circadian field, it is gen-
erally accepted that proliferation of intestinal precursors 
follows 24-h cycles, based on seminal studies by Sigdestad 
and Potten nearly 50 years ago [148, 151, 171, 172]. These 
studies found that mitoses show diurnal rhythms in rodents, 
peaking in the early morning when the nocturnal animal 
begins to slow its activity and return to sleep. However, 
in the stem cell field, daily proliferation rhythms do not 
receive much attention. Indeed, early studies of intestinal 
tissue renewal including one by the pioneer of ISC biology, 
Charles Leblond, found that intestinal precursor prolifera-
tion was constant and showed no time of day dependence 
[97, 173, 174]. A recent study has addressed this discrep-
ancy, showing that prior to stress, rhythms in proliferation 
are weak, however, under regenerative conditions where 
inflammation is high, cell proliferation follows clear daily 
rhythms [12, 15]. Together these studies hint that stem cell 
output is gated by the circadian clock, and modern cellular 
and genetic tools can now be applied to resolve the contribu-
tion of a fundamental cellular timekeeper to ISC biology.

Like many adult tissue stem cells, ISCs are located in 
regions of the intestine called the niche, a localized zone 
of cellular signaling that determines their undifferentiated 
status and proliferative capacity. In the mammalian intestine, 
homeostasis is chiefly maintained through Wnt and Bmp that 
regulate a balance between ISC self-renewal and differentia-
tion [123]. In Drosophila, these same pathways contribute 
to ISC regenerative activity, and the overall system shares 
many conserved features, albeit not the exact same details 
[101]. For instance, Bmp can promote Drosophila ISC pro-
liferation, while in mice it inhibits proliferation through 
differentiation of ISCs. Here, we will consider primarily 
conserved cellular processes that might be controlled by the 
clock in the ISC niche in both systems. In both Drosophila 
and mammals, during baseline, undamaged conditions, ISCs 
proliferate to renew the epithelium constantly, and during 
regenerative, post-damaged conditions ISCs are thought 
to further increase this regeneration. As mentioned above, 
certain subpopulations of ISCs in the mammalian intestinal 
crypt are thought to form complex lineage relationships, and 

these are particularly susceptible to changes from baseline 
to regeneration [175]. Intestinal epithelial mitoses in the 
Drosophila and mouse intestine shows circadian rhythms 
during regeneration [12, 15], which suggests that pathways 
which regulate ISC proliferation are regulated by the circa-
dian clock. Since the study of circadian regulation of ISCs is 
a new area of research, five different possibilities that could 
mechanistically explain these rhythms will be discussed 
below, based on studies of the circadian clock in the intes-
tine and other systems (Table 1). These five possibilities are 
highly relevant to both colorectal cancer and IBD pathology 
as well.

Cell cycle control of stem cell proliferation

Many cells divide approximately once per day, and a link 
between the circadian clock and the cell cycle has been 
actively researched [176]. Initial studies indicated that the 
cell cycle is likely to be coupled to the circadian clock in 
fibroblasts and in the liver [177, 178]. Live-imaging of circa-
dian clock activity in immortalized fibroblasts revealed that 
the clock functions in dividing cells and helps to establish 
the timing of cell cycle progression, while at the same time 
being affected by the cell cycle during mitosis, which causes 
a delay in circadian clock progression [178]. The first expla-
nation for the link between the circadian clock and the cell 
cycle is that, like Huygen’s pendulum, the circadian cycle of 
transcription/translation and the cell cycle of growth/divi-
sion could exist as two oscillating processes that impact each 
other’s activity, in essence synchronizing them relative to 
one another over time in the same cell [179, 180]. This is 
an important concept, and the coupling of oscillators in the 
same cell could be a general principle linking many recur-
ring processes with daily circadian activity. However, it is 
important to note that these cycles can be decoupled, and it 
has been shown that the cell cycle is not under any obliga-
tory circadian clock control [181].

The regulation of the cell cycle by the clock in a 
top–down fashion is a second, parsimonious explanation for 
daily rhythms that have been observed in tissue regeneration. 
In the liver, Wee1 (a G2/M cell cycle checkpoint regulator) is 
directly controlled by the circadian clock thereby regulating 
the proliferation of liver cells during regeneration [177]. In 
hepatocytes the cell cycle inhibitor, P21, is also a circadian 
clock target that establishes the proliferative timing of cells 
[182]. This means that in the liver, multiple phases of the 
cell cycle appear to be downstream of the clock, thus clock 
mutants have abnormal regenerative output. In other tissues, 
other cell cycle checkpoint regulators are under circadian 
control, including P16, thereby influencing the timing of 
fibroblast division during wound healing in mice [183]. In 
the skin, the role of the clock is very complex. For instance, 
it regulates growth and the cell cycle in epidermal stem cells 
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[154, 155, 170] that determines the propensity of epidermal 
stem cells to activate during regeneration or to remain dor-
mant [154]. Interestingly, during youth the circadian clock 
targets genes involved in regulating epidermal cell prolifera-
tion, but during age shifts to genes involved in DNA repair 
and stress, indicating that the circadian program is mutable 
[170]. In addition to stem cells, cell cycle checkpoints in 
other proliferating skin cells such as hair follicle precur-
sors are regulated by the circadian clock [113, 159], thereby 
influencing the growth of hair. Together, these elegant stud-
ies have shown that the clock plays cell-specific roles in 
diverse cells of the skin. Since the intestinal crypt of mam-
mals houses a complex population of stem cells, as well as 
transit-amplifying progenitors and committed progenitors, 
the clock could play a highly complex role in the intestinal 
epithelium. In the intestine it is not yet clear if regulators 
such as Wee1, P21, or P16 cause circadian rhythms in prolif-
eration, and whether these act at the levels of ISCs, or within 
other dividing intestinal precursors [15, 184]. Future studies 

will reveal the precise contributions of the circadian clock in 
different intestinal cells, and how or whether these interact 
to drive daily rhythms in overall cell cycle.

A third possibility is that the clock might not regulate 
the cell cycle directly, but through processes such as DNA 
repair that stall proliferation to correct errors. Several links 
between DNA damage and repair pathways and the circa-
dian clock pathway have been established, and reviewed 
elsewhere [185, 186]. For instance, the mouse ortholog of 
the core clock gene, Tim, links DNA repair checkpoint with 
the circadian clock through Chk1 [187], and similarly, both 
Per1 and Per3 interact with Chk2 [188, 189]. This would 
mean that components of the circadian clock, whose lev-
els oscillate during the day, would restrict both single and 
double-strand DNA repair to enable cell cycle progression at 
particular times of day. Although these connections have not 
been tested in the intestine yet, such processes could impact 
the timing of cell proliferation in tissues like the intestine, 
that undergo frequent oxidative stresses and subsequent 

Table 1  Regulatory mechanisms

A list of five potential regulatory mechanisms through which the circadian clock controls ISC function. References listed correspond to the 
papers in the text, and studies carried out on stem cell populations are emphasized

Process Tissue/cell Role of circadian clock References

1. Cell cycle/DNA repair Brain DNA repair by Xpa [193]
Epidermal stem cells Regulation of cell cycle (p21, Cdk4, etc.) [154]
Fibroblasts Regulation of p16 through NONO [183]
Intestinal Stem Cells Regulation of cell proliferation (via cell 

signaling)
[12, 14, 15]

Intestine Regulation of mitosis [151, 171]
Kidney Regulation of Chk1 [187]
Liver Regulation of Wee1, p21, DNA repair by Xpa [177, 182, 192]
Skin Timing of DNA repair [190, 191]

2. Self renewal (Wnt signaling) Bone Regulation of osteogenesis [210]
Brain Regulation of c-Myc [216–218]
Fat Regulation of adipogenesis [211]
Intestinal stem cells Regulation of Wnt3A in Paneth cells [14]
Intestine Regulation of β-Catenin [212]
Liver Regulation of c-Myc [215]
Muscle progenitor cells Regulation of myogenesis [208, 209]

3. Differentiation Epidermal stem cells Regulation of Notch, Bmp signalling [154, 155]
Fat, Tendon Regulation of Bmp signalling [236, 237]
Intestinal stem cells Loss of Notch signalling disrupts circadian 

clock
[16]

Keratinocytes Regulation of Klf9 [160]
4. Feeding and growth (insulin signaling) Brain, liver, fibroblasts mTOR/Bmal1 regulated protein translation [251]
5. Immune response White blood cells Proliferation, circulation, regulation of inflam-

matory response
[258, 259, 261–270, 277]

Intestine Microbiome, regulation of inflammatory 
response (Toll-like receptors, Tnf, etc.)

[12, 15, 274–276, 279–284]

Colon Regulation of inflammatory response, and 
inflammasome (Nlrp3)

[26, 277, 278]
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DNA damage. Indeed, the mouse epidermis that is sub-
ject to ultraviolet light-induced DNA stress, shows time of 
day dependent DNA damage responses [190]. In this case, 
both the outcomes of DNA damage and the timing of cell 
proliferation that results have daily rhythms and are clock-
dependent. Indeed, Xpa, a gene that mediates the excision 
repair of DNA nucleotides is under circadian clock control 
in multiple tissues, suggesting DNA repair is a fundamen-
tally clock-regulated process [191–193]. The DNA damage 
response in the intestine is an interesting potential area of 
research that could be quite relevant in the intestine where 
a high metabolic rate, and frequent inflammatory events, 
can lead to DNA damage. However, it is important to note 
that the links between cell cycle control and the circadian 
clock have not been studied in ISCs per se, but rather other 
proliferating cell types, so it is not yet clear if these connec-
tions are relevant to ISCs. Indeed, in intestinal epithelial 
cells, a definitive link between cell cycle control and the 
circadian clock has not been observed to date, and it has 
been proposed that the correlation between the proliferation 
of intestinal cells and 24-h rhythms is due to other cellular 
processes [12, 14, 15].

Stem cell self‑renewal: Wnt signaling

Wnt signaling is intimately connected to ISC biology and, 
through ISCs, plays a critical role in the mammalian intes-
tine [194]. The canonical Wnt pathway proceeds from the 
secretion of Wnt ligand which binds to the Frizzled receptor 
[195], activating the coreceptors Lrp [196] and Dishevelled 
[197]. This inactivates a destruction complex composed of 
Axin, Apc, and Gsk3 to stabilize β-catenin and activate the 
transcription of genes including Lgr5, Axin2 and c-Myc. 
These target genes are thought to be present in Wnt-receiv-
ing cells, including ISCs. In the mouse intestine, Wnt sign-
aling is boosted by R-spondins and their receptor Lgr5 to 
promote self-renewal of Lgr+ stem cells [198], and intestinal 
crypt growth and proliferation [199, 200]. In mice, a major 
source of Wnt ligands are telocytes, a type of mesenchymal 
cell [201], although Paneth cells and other cell types near the 
crypt also express redundant Wnt sources [194, 202–205]. 
In Drosophila, the ISC niche also contains redundant Wnt 
signals originating from the visceral muscles [206, 207] and 
intestinal progenitors [120]. The Wnt pathway is a conserved 
ISC self-renewal mechanism.

Several lines of evidence indicate that the circadian clock 
may regulate aspects of this important signaling pathway. A 
recent paper by Matsu-Ura et al. used intestinal organoids 
to reveal a mechanism for how Wnt signaling can be reg-
ulated by the circadian clock in the intestinal epithelium 
[14]. Intestinal organoids are 3-dimensional stem-cell-based 
cultures that recapitulate aspects of intestinal physiology, 
such as regeneration and differentiation of epithelial cells 

[200]. Using an elegant combination of the FUCCI cell 
cycle reporter (Fluorescence Ubiquitination-based Cell 
Cycle Indicator—which labels cells with green and red 
fluorescence depending on their stage in the cell cycle), 
and the TOP-FLASH Wnt reporter (which reports TCF/Lef 
transcriptional activity via Luciferase), Matsu-Ura et al. 
determined that the circadian clock regulates production of 
Wnt3A ligand by Paneth cells, resulting in 24-h oscillations 
of signaling activity that couple circadian rhythms to pro-
liferation [14]. Although Matsu-Ura et al. did not find that 
ISCs themselves exhibited circadian clock activity, clock 
control of Wnt signaling ISC niche propagates rhythms to 
these cells extrinsically. Along these lines, in the epider-
mis, ChIP analysis has shown that Bmal1 binds rhythmi-
cally to Wnt pathway related gene promoters suggesting that 
the clock may modify sensitivity to Wnt signals [154]. In 
muscle, fat, and mesenchymal cells, the clock components 
Bmal1 and Reverb also have been shown to transcriptionally 
target various components of the Wnt pathway [208–211]. 
Although these studies were not carried out on stem cells, 
they raise interesting possibilities of how the circadian 
clock can regulate ISC behaviour by driving intrinsic cel-
lular processes. The intestinal organoid system provides a 
means to investigate these processes and is amenable to stud-
ies of circadian clock function [13, 15]. Of note, Per2 and 
β-catenin have been suggested to be mutually inhibitory in 
the intestinal epithelium, with Per2 normally downregulat-
ing β-catenin [212], while high β-catenin levels tipping the 
balance to result in Per2 loss [213]. The mutual negative 
regulation of key components of the Wnt and circadian clock 
pathways in the same cell, once again underscores possible 
bidirectionality of cellular signaling processes and circadian 
clock function.

Downstream components of the Wnt signaling pathway 
have been shown to be regulated by the circadian clock, 
including target genes such as c-Myc. C-Myc is a transcrip-
tion factor that regulates ISC biology [214] and shows circa-
dian rhythms in its expression in several other tissues [215, 
216]. C-myc is also interconnected with the circadian clock, 
like Clock/Bmal1, c-Myc binds to E-boxes in the genome 
where it dampens Bmal1-driven rhythms of Reverb expres-
sion [217], and/or opposes Bmal1/Clock at E-boxes [218, 
219]. Of note, the circadian clock can also influence c-Myc 
expression through Bmal1 binding of the c-Myc promoter 
[218]. Overall, these studies highlight the possibility that 
c-Myc and the clock could oppose one another’s activity, and 
notably in the intestine c-Myc is highly expressed by prolif-
erating crypt cells [220]. It is thus possible that circadian 
clock activity is weaker in the base of the crypt where Wnt 
signaling is highest, where ISCs are themselves located, in 
line with reports that stem cells do not have clock function 
[14, 168]. A bidirectional interaction between the circadian 
clock and c-Myc may enable a balance between circadian 
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clock control and stem cell driven processes [221], to coor-
dinate environmental signals with intestinal epithelial tissue 
renewal. Another link may exist between the Wnt pathway 
regulator, Gsk3b, which inhibits Wnt signal transduction but 
also regulates the phase of clock activity [222, 223]. How-
ever, again it is important to note that these ideas remain 
to be tested directly in ISCs, rather than other cell types. 
Circadian regulation of Wnt signaling in ISCs is a relatively 
unexplored area with many opportunities for future study.

Control of intestinal differentiation: a new role 
for the circadian clock?

The ISC niche maintains intestinal precursors in an undif-
ferentiated and proliferative state; outside the niche, cell 
signaling processes cause the progeny of ISCs to differenti-
ate. This delicate balance of ISC differentiation could be 
another mechanism through which the circadian clock regu-
lates ISCs, and early studies indicated that crypt cell number 
exhibits daily variation [224, 225]. The Bmp pathway plays 
a role in intestinal morphogenesis [226–228] and is a posi-
tive regulator of differentiation that opposes Wnt signaling 
during ISC niche formation [229, 230]. Loss of function 
mutations in Bmp have been shown to increase intestinal 
cell proliferation in mice [231] and Drosophila [115]. In 
mammals, Bmp ligands are found primarily in the villus 
region, where differentiated intestinal cells reside, whereas 
the Bmp antagonist, Noggin, is found near the crypt base, 
where ISCs are present [228, 232–234]. In the simplified 
niche of Drosophila, Bmp signaling is found primarily in the 
visceral muscle where it regulates stem cell division follow-
ing regeneration [115, 235]. Is Bmp signaling regulated by 
the clock? Bmp pathway components are transcriptionally 
targeted by Bmal1 in epidermal stem cells in mice [154, 
155]. Indeed the circadian regulation of the Bmp pathway to 
control differentiation has been documented in both fat and 
tendon tissues [236, 237]. Although it has not been studied 
in the intestinal crypt thus far, circadian clock regulation of 
the Bmp pathway is a potential mechanism.

Other pathways including the Mitogen-Activated Protein 
Kinase (Mapk/Erk) pathway, and the Notch pathway, also 
influence the balance between differentiation and prolifera-
tion in the intestinal epithelium. While it is beyond the scope 
of this review to fully cover these, in the Drosophila intes-
tine, Mapk/Erk signaling is well-established to regulate ISCs 
proliferation and rapid differentiation of progeny during the 
stress response [114, 238–240]. In the mouse intestine this 
same signaling pathway also promotes proliferation [200, 
205]. The Mapk/Erk pathway interacts with the circadian 
clock in many systems [241], and has been recently shown 
to promote Tim expression, and regulate the proliferation 
of cancer cells [242]. Its role in integrating environmental 
stresses in ISCs, as well as its role in modifying the circadian 

clock, warrants examining whether the Mapk/Erk pathway 
is regulated by the circadian clock in ISCs.

The Notch pathway has a complex role in the differen-
tiation of ISC progeny in both mammals and Drosophila, 
overall pushing cells toward the enterocyte cell fate in the 
intestine [101, 123]. Human epidermal stem cells have daily 
rhythms in the expression of Notch pathway components 
[155], and Per3 overexpression in cancer cells decreases 
Notch signaling components [243]. This suggests that 
Notch-driven ISC differentiation also could be regulated by 
the circadian clock. However, as is the case with Wnt sign-
aling, these pathways can be bidirectional, as disruption of 
Notch signaling in Drosophila ISCs results in arrhythmic 
clock activity [16]. Overall, the connections between ISC 
differentiation, clock activity, and the regulation of cell fate 
by the clock are worthwhile to consider. Indeed in the epi-
dermis, the transcription factor Klf9 establishes a precedent, 
as it functions downstream of the clock to drive rhythms in 
the differentiation of skin cells [160].

Feeding and the regulation of cell growth

The intestine receives food to digest and absorb, and it is 
highly sensitive to the timing of food intake. Normally 
the central pacemaker in the suprachiasmatic nucleus and 
peripheral pacemakers in the digestive tract work in con-
cert together, with periods of activity determining the time 
of food intake and subsequent changes in hormone levels. 
However, when food is presented during periods of inac-
tivity, peripheral digestive system clocks are synchronized 
independently from the central clock [85]. This is in part due 
to the levels of circulating insulin, which is elevated during 
feeding, and which is a strong entrainment cue for peripheral 
tissue cell clocks [93, 95]. Strikingly, it was recently shown 
that daily changes in proliferation of colon cells could be 
restored in Clock mutant mice under a restricted feeding 
paradigm [244]. Thus, the time of food intake can set into 
motion circadian-dependent signaling processes that could 
affect ISC biology. Insulin was recently shown to directly 
synchronize intestinal organoid cultures [95], making it a 
highly relevant candidate mechanism of how the circadian 
clock impact ISC activity.

In Drosophila insulin induces ISCs to grow and pro-
liferate, because it is a signal of overall nutrient levels in 
the body that guides tissue size expansion [107, 245–247]. 
Tissue growth is particularly important during develop-
ment and regeneration, and insulin signaling is critical to 
increase intestinal cell production at these times [245, 247]. 
However, in mammals the role of insulin signaling is not 
altogether clear. Insulin can affect mammalian ISC function, 
both directly and indirectly, through activation of the insu-
lin pathway component mammalian Target of Rapamycin 
(mTOR). During caloric restriction, Paneth cells, that are 
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an important part of the ISC niche, activate mTOR to aug-
ment ISC number [248]. In ISCs, mTOR can also cooperate 
with SIRT1 to enhance mTOR activity cell-intrinsically dur-
ing calorie restriction [249]. In both of these cases, calorie 
restriction (and thus presumably lower insulin) paradoxically 
increases ISC number but not necessarily tissue size [248]. 
Yet another phenomenon can also occur in this complex 
system during another physiological context: regeneration 
following acute fasting. In this case, a different population of 
non-Lgr5+ ISCs is activated to drive proliferation through 
mTOR to presumably restore tissue to its normal size fol-
lowing a period of fasting [250]. The precise role of the 
insulin pathway in mammalian ISCs is not wholly consist-
ent between Drosophila and mice, but taken together the 
pathway appears to regulate the ISCs of the intestinal epi-
thelium in a context-specific fashion, and its connection to 
the circadian clock, feeding behaviour, and digestive tract 
physiology, make it an attractive candidate for future stud-
ies. Indeed, the finding that Bmal1 is phosphorylated by the 
mTOR target S6K, to act as a positive regulator of transla-
tion, implicates the circadian clock system with the timing 
of protein production from mRNA [251]. This fundamental 
process means that the clock not only drives rhythms in tran-
script abundance but, in cooperation with insulin signaling, 
boosts the production of proteins from these transcripts.

Inflammation and the immune system

The immune system is highly active in the digestive tract, 
where many types of white blood cells interact with the 
microbiome of the intestinal lumen. Detection of patho-
gens by immune system cells stimulates an inflammatory 
response, that subsequently affects the intestinal epithelium. 
In Drosophila, bacterial infection results in large changes in 
epithelial gene expression [252] and activation of the Janus 
Kinase/Signal Transducers and Activators of Transcrip-
tion (Jak/Stat) pathway [253]. It is now well accepted that 
the Jak/Stat pathway functions in Drosophila ISCs to both 
promote differentiation of enterocytes [254] and rapid ISC 
proliferation during an inflammatory response [111, 112, 
245, 253]. In this system, the cytokines Upd1-3 function 
to activate Stat in ISCs, coordinating the stress/infection 
response to ISC proliferation to replace damaged epithelial 
cells. In mammals, the Jak/Stat pathway is conserved, where 
the cytokines IL-6, IL-22, and the transcription factor Stat3 
play a similar role in driving the proliferation of Lgr5+ ISCs 
during inflammation [255–257]. These studies reveal that 
the intestinal epithelium receives and translates pro-inflam-
matory signals into a potent ISC regenerative response.

In this context, it is important to note that many immune 
system functions have circadian effects including white 
blood cell proliferation [258] and circulation [259], and the 
susceptibility to infections [260, 261]. In Drosophila, the 

time of pathogen infection dictates survival and the immune 
system response downstream of the circadian clock [262, 
263]. In mice, monocytes [264], macrophages [265, 266], 
natural killer cells [267] and T cells [268, 269] have all been 
shown to possess cell-intrinsic circadian clocks. This is par-
ticularly well-established in macrophages, where approxi-
mately 8% of protein-coding genes including immune 
response, cytokine transcription and cytokine stability have 
circadian rhythmicity [265]. Pro-inflammatory interleu-
kins, such as IL-6, in macrophages mediate time-of-day-
dependent inflammatory responses that determine the body’s 
response to infection [270]. Circadian timing of the immune 
system output has emerged as an important physiological 
mechanism, that adjusts inflammatory timing to maintain 
homeostasis effectively [271–273].

Several studies have recently addressed the role of inflam-
mation in digestive tract circadian clocks. Immune system 
factors involved in the detection and clearance of infections, 
including Toll-like receptors and Cryptidins, display daily 
rhythms in the intestine [274, 275]. Furthermore, inflam-
mation and cytokine expression are affected by the time of 
infection [276], and direct the stress response of the dam-
aged intestinal epithelium. This results in different outcomes 
when mice are infected by gastrointestinal bacteria at dif-
ferent times of day, highlighting the circadian-dependence 
of the inflammatory response. Two recent studies have 
determined that the inflammasome, a sensor of bacterial 
or damage-related stresses, is regulated by the circadian 
clock through the inflammasome component, Nlrp3. In the 
liver, circadian regulation of the inflammasome in mac-
rophages primes the sensitivity of the tissue to acute toxic 
insults [277], and in the colon, acute colitis is worsened due 
to inappropriate Nlrp3 expression [278]. In both of these 
cases, Nlrp3 is a direct transcriptional target of Reverb, that 
is itself rhythmically expressed by the core circadian clock. 
This means that in peripheral tissues like the intestine, the 
circadian clock adjusts sensitivity to pathogenic responses 
according to time of day. Indeed, other components of the 
innate immune system in the intestine have been shown 
to oscillate under Clock/Bmal1 according to time of day 
[279], and cytokines such as Tnf are also under circadian 
clock regulation to drive daily rhythms in intestinal epi-
thelial proliferation [15]. This means that the intestine is 
likely to time the stress response as well as metabolic pro-
cesses, such as digestion and feeding, although it is not clear 
whether to coordinate or separate these two functions. In 
the nearby colon, the regenerative response to acute inflam-
matory bowel disease has a clock-dependent phenotype as 
well [26]. In this case, a mouse model indicates that Per1/2 
circadian clock mutants are highly susceptible to acute 
colitis, and have a poor regenerative response, consistent 
with Reverb/Nlrp3 studies [278]. Importantly, mice simply 
exposed to an altered photoperiod resembling shift-work 
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show these same effects, suggesting this is in fact a bona 
fide circadian phenomenon rather than a non-clock role for 
circadian clock genes [280]. Although these studies have not 
yet examined the inflammatory responses of ISCs directly, 
it is likely that these cells respond to the timing of cytokine 
release from the surrounding immune system cells.

Another possible mechanism that might regulate ISCs 
in the intestinal epithelium, is the microbiome, a topic of 
growing interest in the circadian biology field. The intestinal 
lumen contains a tremendous population of diverse micro-
biota which interacts with overall animal physiology [281, 
282]. Recent research has shown that intestinal microbiome 
composition varies over the course of the day and the micro-
biome can influence the host intestinal transcriptome [281]. 
This is in part because all animals exhibit circadian rhythms 
in food intake, carried out when they are active, that pro-
vide sustenance to the microbiome resident in the digestive 
tract. The microbiome in their turn influence host response 
and physiology. However, in the intestinal epithelium the 
clock target gene Nfil3, coordinates rhythms in the absorp-
tion of lipid nutrients, but requires microbiota to be present, 
revealing that microbiota is an active player in regulating cir-
cadian physiological rhythms [283]. Indeed, there are both 
evidence that the microbiota are required for normal circa-
dian transcription rhythms in the intestine [284], and evi-
dence that the clock functions independently of microbiota 
[139]. Many questions in this area need to be resolved, as the 
circadian timing of microbiotal activity clearly influences 
transcription and subsequent physiological responses in the 
intestinal epithelium [281]. A recent study has shown that 
microbiota is a source of important sex-specific signals, that 
affect male versus female daily microbial rhythms and sex-
specific growth hormone production [139]. The role of the 
microbiome in regulating organism physiology is an exciting 
area of research. The precise mechanisms connecting the 
microbiome and animal physiology are poorly understood, 
and how these may affect ISC function are an open question.

Circadian rhythms and gastrointestinal 
disease

Human beings experience both photoperiod and food-
induced circadian clock entrainment. In modern society, 
human circadian clocks are subject to socio-economic fac-
tors such as shiftwork, travel across time-zones, and the use 
of artificial light sources, that influence their synchroniza-
tion. In shift workers, who regularly experience disrupted 
circadian rhythms, meta-analyses of clinical studies have 
revealed that there is an increase in various gastrointestinal 
disease symptoms such as pain, and inflammation [285]. 
In particular, two specific diseases increased in shift work-
ers that are relevant to stem cell biology include colorectal 

cancer [286, 287], and inflammatory bowel disease (IBD) 
[288].

Colorectal cancer incidence has been examined exten-
sively in the nursing profession, and a significant increase 
in cancer risk has been found in nurses that perform shift 
work for > 15 years [286, 289]. However, no significant 
trends were observed in nurses that perform sporadic shift 
work, or fewer years of shift-work, suggesting that only 
long-term circadian disruption elicits these effects. In colo-
rectal cancer cells themselves, circadian clock genes have 
also been found to be dysregulated [23] with reduced Per1 
levels [290–292], and mutations in Per1 [293], a core genetic 
component of the circadian clock. Rorα, which regulates 
Bmal1 expression, has also been correlated with increased 
risk of colorectal cancer [294]. In addition, there are reports 
regarding the expression of the clock genes Bmal1, Cry1 
and Cry2 in colorectal cancer. Decreased Bmal1, Per1-3 and 
Cry2 levels have been observed in some studies [291], while 
others report decreased Per1 and Per3 levels and increased 
Clock expression [292], or increased Cry1 expression [295]. 
It is not clear why certain cancers show either increases or 
decreases in the expression of various clock gene alleles. 
This seemingly conflicting data could be simply due to het-
erogeneity within tumours, or variation between patients. It 
may reflect either clock gene mutation as a promoting factor 
in colorectal tumorigenesis during disease progression or as 
a passenger mutation effect of genetically unstable cancer 
cells. However, it is important to consider circadian dys-
function as a contributing factor to cancer growth, because 
the outputs of the circadian system can have multiple pro-
growth and pro-metabolic effects on proliferating cells. The 
connection between many types of cancer and the circadian 
clock has been reviewed extensively, and both epidemiologi-
cal and basic research suggests aberrant clock function is 
likely to be pro-tumorigenic [296, 297].

IBD involves the chronic inflammation of the gastrointes-
tinal tract, that is present in two subtypes of IBD: Crohn’s 
disease and Ulcerative Colitis. A large (> 1000 people) occu-
pational risk study analyzing health benefits in Germany has 
linked occupations with irregular shift-work to higher rates 
of IBD [288]. Socio-economic factors that alter circadian 
rhythms, such as poor sleeping habits on weekends, poor 
food timing, and sleep debt, have also been linked to aug-
mented IBD symptoms in a study of 115 IBD patients [298]. 
This suggests that disruption of circadian rhythms is one of 
the many factors that may influence IBD. Transcript analysis 
suggests that circadian clock genes, including Per1, Npas2, 
Cry1, and Rorα, have altered expression in intestinal mucosa 
biopsies from IBD patients [299, 300], as well as lower 
expression of many clock genes in their peripheral blood 
cells [300]. Young, untreated patients recently diagnosed 
with IBD also show low clock gene expression in the intesti-
nal mucosa and white blood cells [301]. Taken together, this 
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indicates that circadian dysfunction in white blood cells is 
a feature of IBD, and it remains to be determined whether 
the same is true for the different cells of the epithelium, and 
surrounding lamina propria. The precise mechanisms link-
ing circadian clock function to IBD remain to be tested, but 
given its role in regulating the immune system it is highly 
plausible that circadian disruption would increase inflamma-
tion in IBD patients [302–305]. Taken together, many stud-
ies suggest a role for circadian rhythms in gastrointestinal 
health and disease.

Conclusion

A healthy digestive tract is central to overall health. The high 
cellular turnover of the intestine in response to daily damage 
depends on a population of ISCs, that are highly sensitive to 
cell signaling pathways activated according to physiological 
need. Many of these pathways have shown circadian oscilla-
tions in Drosophila and mice which supports a role for the 
circadian clock in modulating the responsiveness of ISCs 
according to time of day. As well, the circadian clock has 
been shown to regulate a number of intrinsic cellular pro-
cesses including growth, proliferation, differentiation, and 
DNA damage, which are likely to be, in part, downstream 
of cellular signals. In essence, the circadian clock regulates 
both external physiological processes and internal processes 
in cells that establishes temporal connections between a spe-
cific cell type and the body. Although a number of studies 
have addressed these ideas in other cell types, much work 
needs to be done specifically in ISCs to test these relation-
ships. Further research will explore these possible connec-
tions, and provide critical information about the molecular 
details of the circadian biology of ISCs.

This work is highly relevant in understanding how the 
circadian clock impacts the health of the intestine, in biol-
ogy, medicine, and evolution. Why does the body coordi-
nate the timing of intestinal processes? One possibility 
is to increase certain physiological mechanisms to occur 
at optimal times of day. For instance, coordinating the 
time of cell growth and division with the time of activity 
and feeding, so that nutrients are readily available when 
growth is highest. Another possibility is that the circadian 
system coordinates the anti-phasic timing of incompat-
ible processes. For instance, separating the timing of cell 
growth and division from the timing of inflammation and 
DNA repair. These possibilities are not mutually exclusive 
and speak for a role of the circadian clock in optimiz-
ing health and fitness according to a 24-h schedule that is 
the result of millions of years of evolution. In this sense, 
the study of circadian clock regulation of ISCs can be an 
excellent model system to address fundamental questions 
about the biology of circadian systems in general. These 

same ISC-related processes are also relevant to our under-
standing the connections between ISCs and diseases such 
as colorectal cancer and IBD.

It is clear that these studies are highly impactful in both 
research and medicine. Circadian biology has aptly demon-
strated that, in the life sciences, the time of sample collec-
tion is a critical variable. As a gene of interest expression 
and activity oscillates according to time of day, interactions 
that occurred at one time may not be present at another. 
Circadian rhythms may function to synergize or separate 
incompatible biological processes within the same cell, or 
between cells of the body. As this field matures, it is impor-
tant that such a fundamental system is considered in many 
if not most life sciences research. For medicine, these con-
cepts provide important information for both the preven-
tion of disease and the treatment of disease. The concept 
of chronotherapy refers to the application of medical treat-
ments, such as the timing of drugs, according to an optimal 
physiological schedule. This has been supported experimen-
tally [17, 306], and is an important consideration in medical 
practice. In addition, knowing that human activities such as 
shift-work, travel across time zones, and social jetlag (the 
weekly shifting of sleep/wake schedules from weekday to 
weekend) affect circadian rhythms, implies that these activi-
ties are unhealthy. This adds circadian disruption to a list 
of avoidable social behaviors, especially in individuals that 
might have a genetic propensity in developing certain dis-
eases shown to have a circadian component. The role of the 
circadian clock in gastrointestinal research and health is an 
exciting area for future research with tremendous potential.
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