
Shrinkage with shrunken shoulders: Gibbs sampling shrinkage 
model posteriors with guaranteed convergence rates

Akihiko Nishimura*, Marc A. Suchard†

*Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health.

†Departments of Biomathematics, Biostatistics, and Human Genetics, University of California – 
Los Angeles.

Abstract

Use of continuous shrinkage priors — with a “spike” near zero and heavy-tails towards infinity 

— is an increasingly popular approach to induce sparsity in parameter estimates. When the 

parameters are only weakly identified by the likelihood, however, the posterior may end up with 

tails as heavy as the prior, jeopardizing robustness of inference. A natural solution is to “shrink 

the shoulders” of a shrinkage prior by lightening up its tails beyond a reasonable parameter range, 

yielding a regularized version of the prior. We develop a regularization approach which, unlike 

previous proposals, preserves computationally attractive structures of original shrinkage priors. 

We study theoretical properties of the Gibbs sampler on resulting posterior distributions, with 

emphasis on convergence rates of the Pólya-Gamma Gibbs sampler for sparse logistic regression. 

Our analysis shows that the proposed regularization leads to geometric ergodicity under a broad 

range of global-local shrinkage priors. Essentially, the only requirement is for the prior πlocal ⋅  on 

the local scale λ to satisfy πlocal 0 < ∞. If πlocal ⋅  further satisfies limλ 0πlocal λ /λa < ∞ for a > 0, as 

in the case of Bayesian bridge priors, we show the sampler to be uniformly ergodic.
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1 Introduction

Bayesian modelers are increasingly adopting continuous shrinkage priors to control the 

effective number of parameters and model complexity in a data-driven manner. These priors 

are designed to shrink most of the parameters towards zero while allowing for the likelihood 

to pull a small fraction of them away from zero. To achieve such effects, a shrinkage prior1 

aki.nishimura@jhu.edu . 
1We drop the word “continuous” since “shrinkage priors” are commonly understood in the literature as continuous ones, which 
exclude traditional discrete spike-slab mixtures.
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has a density with a “spike” near zero and heavy-tails towards infinity, encoding information 

that parameter values are likely close to zero but otherwise could be anywhere. Originally 

developed for the purpose of sparse regression (Carvalho et al., 2009), shrinkage priors have 

found applications in trend filtering of time series data (Kowal et al., 2019), (dynamic) factor 

models (Kastner, 2019), graphical models (Li et al., 2019), compression of deep neural 

networks (Louizos et al., 2017), among others.

Of particular interest in this paper is an application of Bayesian shrinkage to a 

logistic regression model yi ∣ xi, β Bernoulli logit−1 xi
⊤β  and computational properties of the 

corresponding posterior inference via Gibbs sampling. Due to the possibility of β being only 

weakly identifiable, use of a shrinkage prior on β here warrants proper modification of the 

prior’s tail in order to ensure reasonable computational and statistical behaviors. Under our 

tail regularization strategy, we show that the Gibbs sampler achieves geometric ergodicity 

under a broad range of shrinkage priors. Notably, our proof technique unifies analyses of the 

Gibbs samplers under various shrinkage priors, providing an easily verifiable condition for 

geometric and uniform ergodicity.

Shrinkage priors are often expressed as a scale mixture of Gaussians on the unknown 

parameter β = β1, …, βp  (Polson and Scott, 2010):

π βj ∣ τ, λj N 0, τ2λj
2 , λj πloc ⋅ .

(1.1)

This global-local representation simplifies the posterior conditionals and lead to 

straightforward inference via Gibbs sampling. The global scale τ controls the average 

magnitude of βj’s and hence overall sparsity level. The local scale λj is specific to individual 

βj and its density πloc ⋅  controls the size of the spike and tail behavior of the marginal βj ∣ τ. 

For instance, the popular horseshoe prior of Carvalho et al. (2010) uses πloc λ ∝ 1 + λ2 −1
, 

inducing a marginal π βj ∣ τ  with the spike proportional to −log βj/τ  as βj/τ 0 and the 

tail proportional to βj/τ −2 as βj/τ ∞. Another notable example is the Bayesian bridge 

prior of Polson et al. (2014), which generalizes the Bayesian lasso of Park and Casella 

(2008) with π βj ∣ τ  having a larger spike as βj/τ 0 and heavier tails as βj/τ ∞. Most 

importantly from the computational efficiency perspective, the bridge prior possesses a 

closed-form expression π βj ∣ τ ∝ exp − βj/τ a  for a ∈ 0,1  and thus allows for a collapsed 

Gibbs update from τ ∣ β with λj’s marginalized out.

For a simple purpose such as estimating the unknown means of independent Gaussian 

observations, a broad class of shrinkage priors achieve theoretically optimal performance 

(van der Pas et al., 2016; Ghosh and Chakrabarti, 2017). The lack of prior information in the 

tail of the distribution is problematic, however, in more complex models where parameters 

are only weakly identified. In such models, the posterior may have a tail as heavy as the 

prior, resulting in unreliable parameter estimates (Ghosh et al., 2018).
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To address the above shortcoming of shrinkage priors, we build on the work of Piironen 

and Vehtari (2017) and propose a computationally convenient way to regularize shrinkage 

priors. The basic idea is to modify the prior so that the marginal distribution of βj  has 

light-tails beyond a reasonable range. Our formulation has computational advantages over 

that of Piironen and Vehtari (2017) due to a subtle yet important difference. By preserving 

the global-local structure (1.1), our regularized shrinkage priors can benefit from partial 

marginalization approaches that substantially improve mixing of Gibbs samplers (Polson 

et al. 2014; Johndrow et al. 2018; Appendix E). In addition, our regularization leaves the 

posterior conditionals of λj’s unchanged, allowing their conditional updates via existing 

specialized samplers (Griffin and Brown 2010; Polson et al. 2014; Appendix F).2

Our regularized shrinkage priors allow for posterior inference via Gibbs sampler whose 

convergence rates often are provably fast. As an illustrative example, we consider Bayesian 

sparse logistic regression models, whose need for regularization motivated the work of 

Piironen and Vehtari (2017). Gibbs sampling via the Pólya-Gamma data augmentation of 

Polson et al. (2013) is a state-of-the-art approach to posterior computation under logistic 

model. When combined with advanced numerical linear algebra techniques, this Gibbs 

sampler is highly scalable to large data sets (Nishimura and Suchard, 2018), but its 

theoretical convergence rate has not been investigated. Assuming that the prior density πloc λ
is continuous and bounded except possibly at λ = 0, we establish that the Gibbs sampler 

is geometrically ergodic whenever πloc 0 < ∞. Stronger uniform convergence is achieved 

when ∫ λ−1πloc λ dλ < ∞. The integrability condition holds in particular when πloc λ = O λa

for a > 0 as λ 0, which is the case for normal-gamma priors with shape parameter larger 

than 1/2 (Griffin and Brown, 2010) and for Bayesian bridge priors (Polson et al. 2014 and 

Appendix E).

Previous studies of the convergence rates under shrinkage models have focused exclusively 

on linear regression with specific parametric families of shrinkage priors (Pal and Khare, 

2014; Johndrow et al., 2018). In contrast, our analysis requires no parametric assumptions 

on the shrinkage prior, at the same time extending the convergence results to the logistic 

model and, in Appendix A, to the probit model.

To summarize, this work provides two major contributions to the Bayesian shrinkage 

literature. First, we propose an effective and Gibbs-friendly approach to suitably modify 

shrinkage priors for use in weakly-identifiable models (Section 2). Second, we develop 

theoretical tools to study the behavior of shrinkage model Gibbs samplers near the spike 

βj = 0 without any parametric assumption on πloc ⋅ , thereby unifying convergence analyses 

of the logistic regression Gibbs samplers under a range of shrinkage priors (Section 3). 

We conclude the article in Section 4 by demonstrating a practical use case of regularized 

shrinkage models via simulation study, which emulates increasingly common situations 

where the sample sizes are large yet the signals are difficult to detect. Our simulation results 

in particular highlight the dual role of the regularization; by eliminating heavy-tails in the 

2Appendix F describes a simple and provably efficient rejection-sampler for the conditional distributions of local scale parameter λj’s 
under the horseshoe prior. Despite the horseshoe’s popularity, we find that no existing algorithm for the conditional update comes with 
theoretically guaranteed efficiency.
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shrinkage model posterior, it induces both more stable parameter estimates and faster mixing 

of the Gibbs sampler.

2 Regularized shrinkage prior

This section explains how our regularization approach allows us to incorporate prior 

information on the largest possible parameter values while maintaining the computational 

tractability of the original shrinkage prior.

Piironen and Vehtari (2017) proposes to control the tail behavior of a global-local shrinkage 

prior by defining its regularized version with slab width ζ > 0 as

βj ∣ τ, λj, ζ N 0, 1
ζ2 + 1

τ2λj
2

−1
,

(2.1)

with the prior πloc ⋅  on the local scale λj unmodified. This regularization ensures that the 

variance of βj ∣ τ, λj, ζ is upper bounded by ζ2 and hence βj ∣ ζ marginally has a density with 

Gaussian tails beyond βj > ζ. The slab width ζ can be either given a prior distribution or 

fixed at a reasonable value.3

While beneficial in improving statistical properties (Piironen and Vehtari, 2017), 

regularization the form (2.1) compromises the posterior conditional structures of shrinkage 

models. Specifically, the conditional distribution of τ, λ is altered through their dependency 

on ζ. This structural change is at best an inconvenience and potentially a cause of 

computational inefficiency, prohibiting the use of common acceleration techniques. For 

instance, the global scale τ is known to mix slowly when updating from its full conditional, 

so the state-of-the-art Gibbs samplers for Bayesian sparse regression marginalize out a 

subset of parameters when updating τ (Johndrow et al., 2018; Nishimura and Suchard, 

2018). The analytical tractabilities of the integrals, which these marginalization strategies 

rely on, is lost when using the regularization as in (2.1).

We propose a more computationally convenient formulation, which induces regularization 

similar to that of (2.1) while keeping τ and λ conditionally independent of ζ given β. Our 

regularized prior πreg ⋅  defines the distribution of βj, λj ∣ τ, ζ as

πreg βj, λj ∣ τ, ζ ∝ exp − βj
2

2ζ2
1

τλj
exp − βj

2

2τ2λj
2 πloc λj

  ∝ N βj ∣ 0, 1
ζ2 + 1

τ2λj
2

−1
1 + τ2λj

2

ζ2
−1/2

πloc λj

(2.2)

3While an appropriate choice of ζ is application specific, by way of illustration, we suggest ζ = 2 as a weakly informative and 
sensible starting point in biomedical applications with standardized predictors. Schuemie et al. (2018) surveys 59,196 published effect 
estimates in the observational study literature and finds only a small portion of them exceeds 2.
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where N ⋅ ∣ 0, σ2  denotes the centered Gaussian density with variance σ2. In other 

words, in addition to defining π βj ∣ τ, λj, ζ  as in (2.1), we alter the prior on λj as 

π λj ∣ τ, ζ ∝ πloc λj / 1 + τ2λj
2/ζ2. Incidentally, we see that our regularized prior is very similar 

to that of Piironen and Vehtari (2017), but has a slightly lighter tail due to the factor 

1/ 1 + τ2λj
2/ζ2 which, as λj ∞, behaves like ζ /τλj.

Alternatively, we can achieve the equivalent regularization through fictitious data that makes 

values βj ≫ ζ unlikely. While it may appear unnatural to introduce an auxiliary likelihood 

for the purpose of indirectly modifying a prior, this alternative formulation makes the 

regularization mechanism and resulting posterior properties more transparent. Figure 2.1 

schematically describes this alternative construction of our regularized prior as well as 

the corresponding posterior structure when data y and X inform β through the likelihood 

L y ∣ X, β .

Given a global-local prior βj ∣ τ, λj N 0, τ2λj
2 , we introduce fictitious data zj whose realized 

value and underlying distribution are assumed to be

zj = 0, zj ∣ βj, ζ N βj, ζ2

(2.3)

for j = 1, …, p. We then define the regularized prior as the distribution of βj conditional on 

zj = 0. Under this model, the distribution of βj ∣ τ, λj, ζ, zj = 0 coincides with that of (2.1). On 

the other hand, the scale parameters τ, λ are conditionally independent of the others given β, 

so that the posterior full conditional τ, λ ∣ β, ζ, z, y, X =
d

τ, λ ∣ β  has the same density as in the 

unregularized version. Our regularization thus allows the Gibbs sampler to update τ, λ with 

the exact same algorithm as the one designed for the original shrinkage prior. We summarize 

our discussion as Proposition 2.1 below.

Figure 2.1: 
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Directed acyclic graphical model (a.k.a. Bayesian network) representation of regularized 

shrinkage priors under the two alternative formulations.

Proposition 2.1. Consider a global-local shrinkage prior βj ∣ τ, λj N 0, τ2λj
2 , λj πloc ⋅  and 

τ πglo ⋅ . Introducing the fictitious data z = 0 as in (2.3) is equivalent to using the regularized 

prior (2.2) on βj, λj , yielding

βj ∣ τ, λj, ζ, zj = 0 N 0, 1
ζ2 + 1

τ2λj
2

−1
.

Or, with λj marginalized out, we have

π βj ∣ τ, ζ, zj = 0 ∝ π βj ∣ τ exp − βj
2

2ζ2 .

When the likelihood depends only on β, the posterior full conditional of τ, λ has density

π τ, λ β ∝ πglo τ ∏
j

1
τλj

exp − βj
2

2τ2λj
2 πloc λj .

(2.4)

3 Geometric and uniform ergodicity under regularized sparse logistic 

regression

Shrinkage priors’ popularity stems from, to a considerable extent, the ease of posterior 

computation via Gibbs sampling (Bhadra et al., 2017). As we have shown in Section 

2, shrinkage models can incorporate regularization without affecting its computational 

tractability. We now investigate how fast such Gibbs samplers converge. While 

regularization was originally motivated to remedy statistically problematic behavior of 

heavy-tailed shrinkage priors, our results show that it can also improve the Gibbs samplers’ 

convergence rates. The simulation results of Section 4 further corroborate the theory.

As a representative example where regularization is essential, we focus on Bayesian sparse 

logistic regression (Piironen and Vehtari, 2017; Nishimura and Suchard, 2018). To be 

explicit, we consider the model

yi ∣ xi, β Bernoulli logit−1 xi
⊤β ,

zj = 0 for zj ∣ βj N βj, ζ2 ,

βj ∣ τ, λj N 0, τ2λj
2 , τ πglo ⋅ , λj πloc ⋅ .

(3.1)

The Pólya-Gamma data-augmentation of Polson et al. (2013) is a widely-used approach to 

carry out the posterior computation under the logistic model. By introducing an auxiliary 
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parameter ω = ω1, …, ωn  having a Pólya-Gamma distribution, the Gibbs sampler induces 

a transition kernel: ω*, β*, λ*, τ* ω, β, λ, τ  through the following cycle of conditional 

updates:

1. Draw τ ∣ β*, λ* from the density proportional to (2.4). When using Bayesian 

bridge priors, draw from the collapsed distribution τ ∣ β* (Appendix E).

2. Draw λ ∣ β*, τ from the density proportional to (2.4).

3. Draw ωi ∣ β*, X PolyaGamma shape = 1, tilting = xi
⊤β*  for i = 1, …, n.

4. Draw β ∣ ω, τ, λ, y, X, z = 0 from the multivariate-Gaussian

β ∣ ω, τ, λ, y, X, z = 0 N Φ−1X⊤ y − 1
2 , Φ−1  for Φ = X⊤ΩX + ζ−2I + τ−2Λ−2,

(3.2)

where Ω = diag ω  and Λ = diag λ .

Note that the transition kernel actually depends neither on ω* nor τ* (nor λ* in the Bayesian 

bridge case) because of conditional independence. We refer readers to Polson et al. (2013) 

for more details on this data augmentation scheme. In our analysis, we do not use any 

specific properties of the Pólya-Gamma distribution aside from a couple of results from 

Choi and Hobert (2013) and Wang and Roy (2018).

The Pólya-Gamma Gibbs sampler for the logistic model has previously been analyzed under 

a Gaussian or flat prior on β (Choi and Hobert, 2013; Wang and Roy, 2018), but not 

under shrinkage priors. We establish geometric and uniform ergodicity — critical properties 

for any practical Markov chain Monte Carlo algorithms (Jones and Hobert, 2001). These 

properties imply the Markov chain central limit theorem and enables consistent estimation of 

Monte Carlo errors, ensuring that the Gibbs sampler reliably estimates quantities of interest 

(Flegal and Jones, 2011). To avoid cluttering notations and obscuring the main ideas, our 

analysis below assumes the slab width ζ to be fixed; however, the same conclusions hold if 

we only assume a prior constraint of the form ζ ≤ ζmax < ∞ (Remark 3.9).

Below are the main ergodicity results we will establish in this section, the uniform rate under 

Bayesian bridge and geometric rate under more general shrinkage priors:

Theorem 3.1 (Uniform ergodicity in the Bayesian bridge case). If the prior πglo  ⋅  is 

supported on τmin, ∞  for τmin > 0, then the Pólya-Gamma Gibbs sampler for regularized 

Baysian bridge logistic regression is uniformly ergodic.

Theorem 3.2 (Geometric ergodicity). Suppose that the local scale prior satisfies 
∥ πloc ∥∞ < ∞ and that the global scale prior πglo ⋅  is supported on τmin, τmax  for 

0 < τmin ≤ τmax < ∞. Then the Pólya-Gamma Gibbs sampler for regularized sparse logistic 

regression is geometrically ergodic.

Nishimura and Suchard Page 7

Bayesian Anal. Author manuscript; available in PMC 2024 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Remark. Uniform / geometric ergodicity is an essential requirement for, yet not a guarantee 

of, practically efficient Markov chains (Roberts and Rosenthal, 2004). In fact, the simulation 

results of Section 4 show that the benefit of regularization is greatest when ζ is chosen small 

enough to impose a reasonable prior constraint on the value of βj’s.

3.1 Proof approach: minorization and drift conditions

To establish Theorem 3.1 and 3.2, we verify that each Gibbs sampler satisfies the 

minorization and drift conditions, upon on which geometric and uniform ergodicity are 

immediately implied by the well-known theory of Markov chains (Meyn and Tweedie, 2009; 

Roberts and Rosenthal, 2004). Here we introduce the relevant notions in terms of a generic 

transition kernel P θ*,  dθ .

In the statements to follow, we assume that P θ*,  dθ  has a corresponding density function 

which, with slight abuse of notation, we denote by P θ ∣ θ* ; in other words, the two satisfy 

the relation P θ*, A = ∫AP θ ∣ θ* dθ. A chain on the space θ ∈ Θ with transition kernel 

P θ*,  dθ  is said to satisfy a minorization condition with a small set S if there are δ > 0 and a 

probability density π ⋅  such that

P θ ∣ θ* ≥ δπ θ  for all θ* ∈ S .

The chain is uniformly ergodic when S = Θ. Otherwise, the chain is geometrically ergodic if 

it additionally satisfies a drift condition i.e. there is a Lyapunov function V θ ≥ 0 such that, 

for γ < 1 and b < ∞,

PV θ* : = ∫  V θ P θ ∣ θ* dθ ≤ γV θ* + b

and S = θ:V θ ≤ d  is a small set for some d > 2b/ 1 − γ  (Rosenthal, 1995).

For a two-block Gibbs sampler on the space θ, ϕ  that alternately samples θ π ⋅ ∣ ϕ
and ϕ π ⋅ ∣ θ , geometric and uniform ergodicity of the joint chain follows from that 

of the marginal chain with transition kernel P θ ∣ θ* = ∫ π θ ∣ ϕ π ϕ ∣ θ* dϕ (Roberts and 

Rosenthal, 2001). In establishing the uniform ergodicity under the Bayesian bridge 

(Theorem 3.1), we decompose the collapsed Gibbs sampler into components β and ω, τ, λ
and study the marginal chain in β. In the subsequent analysis establishing the geometric 

ergodicity under a more general class of regularized shrinkage priors (Theorem 3.2), we 

decompose the Gibbs sampler into components β, λ  and ω, τ  and study the marginal chain 

in β, λ .

3.2 Behavior of shrinkage model Gibbs samplers near βj = 0
In many models, establishing minorization and drift condition amounts to quantifying the 

chain’s behavior in the tail of the target. In studying convergence rates under shrinkage 

models, however, we are faced with an additional and distinctive challenge: the need to 

establish that the chain does not get “stuck” near the spike at βj = 0 (Pal and Khare, 2014; 
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Johndrow et al., 2018). Regularization effectively eliminates the possibility of the chain 

meandering to infinity, making it relatively routine to analyze its behavior as βj ∞. On the 

other hands, the existing results provide no general insights into the behavior near βj = 0. In 

fact, a careful examination of the proofs by Pal and Khare (2014) and Johndrow et al. (2018) 

reveals that the analyses under various shrinkage priors could have been unified if we had a 

more general characterization of shrinkage model Gibbs samplers’ behavior near βj = 0.

To fill in this theoretical gap, we start our analysis by abstracting key model-agnostic results 

from our proofs of minorization and drift condition for the sparse logistic regression Gibbs 

sampler. Our Propositions 3.3 and 3.4 below characterize properties of the distribution of 

λj ∣ βj, τ — this distribution, due to conditional independence, typically coincides with the 

full posterior conditional of λj and critically informs behavior of the subsequent update of 

βj in a shrinkage model Gibbs sampler. Our proof techniques apply to a broad range of 

shrinkage priors, essentially requiring only that ∥ πloc ∥∞ ≔ maxλπloc λ < ∞.4

Proposition 3.3 below plays a critical role in our proof of minorization condition. The 

proposition tells us that a sample from λj ∣ βj
*, τ has a uniformly lower-bounded probability 

of λj ≥ a as long as βj
*/τ  is bounded away from zero. In turn, the subsequent update of 

βj conditional on λj should also have a guaranteed chance of landing away from zero. 

Intuitively, we can thus interpret the proposition as suggesting that a shrinkage model Gibbs 

sampler should not get “absorbed” to the spike at βj = 0. The difference in the limiting 

behavior as βj
*/τ 0, depending on whether ∫ λ−1πloc λ dλ < ∞, is also significant and leads 

to the difference between geometric and uniform convergence under the sparse logistic 

regression example through Theorem 3.6.

Proposition 3.3. For any a > 0, the tail probability ℙ λj ≥ a ∣ βj
*, τ  is a decreasing function 

of βj
*/τ . If ∫ λ−1πloc λ dλ = ∞, then as βj

*/τ 0 the tail probability converges to 0, i.e. the 

conditional λj ∣ βj
*, τ converges in distribution to a delta measure at 0. If ∫ λ−1πloc λ dλ < ∞, 

then the conditional λj ∣ βj
*, τ converges in distribution to π λj ∝ λj

−1πloc λj  as βj
*/τ 0.

Another key property of λj ∣ βj, τ, featured prominently in our proof of the drift condition 

(Theorem 3.8), is provided by Proposition 3.4 below. To briefly provide a context, a 

Lyapunov function of the form V β = ∑j βj
−α has proven effective in analyzing a shrinkage 

model Gibbs sampler (Pal and Khare 2014, Johndrow et al. 2018, Section 3.4). And 

bounding the conditional expectation of τ−αλj
−α as below often constitutes a critical step 

in establishing the drift condition.

Proposition 3.4. Let R > 0 and α ∈ 0,1 . If ∥ πloc ∥∞ < ∞, then there is an increasing function 

γ r > 0 with limr 0γ r = 0, for which the expectation with respect to λj ∣ βj
*, τ satisfies

4The results presented in this article, specifically those that depend on Proposition B.2 and Lemma B.3, implicitly assume that πloc λ
is absolutely continuous at λmin = inf λ:πloc λ > 0 . This is a purely technical assumption as any shrinkage prior in practice should 
satisfy πloc λ > 0 for λ > 0 and be a differentiable function of λ.
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E τ−αλj
−α ∣ τ, βj

* ≤ γ R/τ βj
* −α + R −α .

(3.3)

Proposition 3.3 and 3.4 are substantial theoretical contributions on their own, but we 

defer their proofs to Appendix B so that we can without interruption proceed to establish 

ergodicity results in the regularized sparse logisitic regression case.

Remark. The assumption ∥ πloc ∥∞ < ∞ is sufficient but not necessary one for the conclusion 

of Proposition 3.4 and later of Theorem 3.8. Following the analysis by Pal and Khare 

(2014), we can show that the conclusions also hold under normal-gamma priors with any 

shape parameter a > 0. These priors have the property πloc λ O λ2a − 1  as λ 0 and hence 

limλ 0π λ = ∞ for a < 1/2. We leave it as future work to characterize the behavior of 

general shrinkage priors with ∥ πloc ∥∞ = ∞.

Remark. In Appendix A, we show that Proposition 3.3 and 3.4 can also be applied to 

establish uniform/geometric ergodicity of a Gibbs sampler for Bayesian sparse probit 

regression, demonstrating their relevance beyond the sparse logistic regression example.

3.3 Minorization — with uniform ergodicity in special cases

Having described the noteworthy model-agnostic results within our proofs, from now on we 

focus exclusively on the regularized sparse logistic regression case. We first consider the 

Gibbs sampler with fixed τ in Lemma 3.5 and Theorem 3.6. While fixing the global scale 

parameter is a common assumption in the ergodicity proofs for shrinkage models (Pal and 

Khare, 2014), we subsequently show that this assumption can be replaced with much weaker 

ones; we only require τ πglo ⋅  to be supported away from 0 in Theorem 3.1 and additionally 

away from + ∞ in Theorem 3.7.

Let P β ∣ β*, τ, λ  denote the transition kernel corresponding to Step 3 and 4 of the Gibbs 

sampler as described in Page 6 and P β ∣ β*, τ  corresponding to Step 2 – 4. In other words, 

we define

P β ∣ β*, τ, λ = ∫ π β ∣ ω, τ, λ, y, X, z = 0 π ω ∣ β*, X dω,

P β ∣ β*, τ = ∫  P β ∣ β*, τ, λ π λ ∣ β* dλ .

The following lemma builds on a result of Choi and Hobert (2013) and plays a prominent 

role, along with Proposition 3.3, in our proofs of minorization conditions.

Lemma 3.5. Whenever minjτλj ≥ R > 0, there is δ′ > 0 — independent of τ and λ except 

through R — such that the following minorization condition holds:
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P β ∣ β*, τ, λ ≥ δ′N β; μR, ΦR
−1 ,

where ΦR = 1
2X⊤X + ζ−2I + R−2I and μR = ΦR

−1X⊤ y − 1/2 .

We defer the proof to Appendix C.

We now establish a minorization condition for the Gibbs sampler with fixed τ.

Theorem 3.6 (Minorization). Let ϵ, R > 0. On a small set β*:minj βj
*/τ ≥ ϵ , the marginal 

transition kernel satisfies a minorization condition

P β ∣ β*, τ ≥ δ τ N β; μR, ΦR
−1 ,

where μR and ΦR are defined as in Lemma 3.5, and δ τ > 0 is increasing in τ and otherwise 

depends only on ϵ, R, and πloc. Moreover, the minorization holds uniformly on β* ∈ ℝp in 

case the prior satisfies ∫0
∞λ−1πloc λ dλ < ∞.

Proof. Using Lemma 3.5, we have

P β ∣ β*, τ = ∫ P β ∣ β*, τ, λ π λ ∣ β*, τ dλ

≥ ∫minjτλj ≥ R
P β ∣ β*, τ, λ π λ ∣ β*, τ dλ

≥ δ′N β; μR, ΦR
−1 ∏

j
∫

R/τ

∞
π λj ∣ βj

*, τ dλj,

for δ′ > 0 depending only on R. Also, Proposition 3.3 implies that whenever βj
*/τ ≥ ϵ

R/τ

∞
π λj ∣ βj

*, τ dλj ≥ R
τ

∞
π λ β*/τ ∣ = ϵ dλ > 0 .

Hence, ∏j ∫R/τ
∞ π λj ∣ βj

*, τ dλj is lower bounded by a positive constant depending only on ϵ and 

R/τ. In case C = ∫0
∞λ−1πloc λ dλ < ∞, we can forgo the assumption βj

*/τ ≥ ϵ and obtain a 

uniform lower bound since

R

∞
π λj ∣ βj

*, τ dλj ≥ 1
C R

∞
λ−1πloc λ dλ > 0 .

We now relax the assumption of fixed τ. The results of van der Pas et al. (2017) suggest 

that a constraint of the form 0 < τmin ≤ τ ≤ τmax < ∞ can improve the statistical property of 

shrinkage priors. As it turns out, such a constraint also enables us to establish minorization 

conditions for the full Gibbs sampler under sparse logistic regression with τ update 

incorporated. We can in fact take τmax = ∞ in case of the Bayesian bridge prior, whose 

unique structure allows us to marginalize out λj’s when updating τ (Polson et al. 2014; 
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Appendix E). This collapsed update of τ from τ ∣ β makes it possible to deduce the uniform 

ergodicity result of Theorem 3.1 as an immediate consequence of Theorem 3.6 by studying 

the marginal transition β* β with kernel

P β ∣ β* = ∫
τmin

∞
P β ∣ β*, τ π τ ∣ β* dτ .

(3.4)

Proof of Theorem 3.1. It suffices to establish uniform minorization for the marginal 

transition kernel (3.4). Under the Bayesian bridge prior, we have πloc λ ∝ O λ2a  as λ 0

(Appendix E) and hence ∫ λ−1πloc λ < ∞. The minorization condition of Theorem 3.6 thus 

holds uniformly in β*, yielding

∫
τmin

∞
P β ∣ β*, τ π τ ∣ β* dτ ≥ N β; μR, ΦR

−1 ∫
τmin

∞
δ τ π τ ∣ β* dτ,

(3.5)

for R > 0. Theorem 3.6 further tells us that δ τ > 0 is increasing in τ, so we have

∫
τmin

∞
δ τ π τ ∣ β* dτ ≥ δ τmin > 0.

(3.6)

The inequalities (3.5) and (3.6) together establish uniform minorization. □

For more general shrinkage priors, the global scale τ must be updated from the full 

conditional τ ∣ β, λ. This makes it necessary to study the marginal transition β*, λ* β, λ , 

jointly in regression coefficients and local scales, with kernel

P β, λ ∣ β*, λ* = ∫
τmin

τmax
P β ∣ β*, τ, λ ∏j π λj ∣ βj

*, τ π τ ∣ β*, λ* dτ .

(3.7)

We establish a minorization condition for this general case in Theorem 3.7.

Theorem 3.7. If the prior πglo ⋅  is supported on τmin, τmax  for 0 < τmin ≤ τmax < ∞, then 

the marginal transition kernel P β, λ ∣ β*, λ*  of the Pólya-Gamma Gibbs sampler for 
regularized sparse logistic regression satisfies a minorization condition on a small set 

β*, λ* :0 < ϵ ≤ βj
* ≤ E < ∞  for all j .

Proof. By Lemma 3.5 and the fact τλj ≥ τminλj, we know that for R > 0

P β ∣ β*, τ, λ ≥ 1 minjτminλj ≥ R δ′N β; μR, ΦR
−1 .

(3.8)
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To lower bound the term ∏j π λj ∣ βj
*, τ  in (3.7), we first recall that

π λj ∣ βj
*, τ =

λj
−1exp −βj

* 2/2τ2λj
2 πloc λj

0

∞
λ−1exp −βj

* 2/2τ2λ2 πloc λ dλ
.

When τmin ≤ τ ≤ τmax and ϵ ≤ βj
* ≤ E, we have

exp −E2/2τmin
2 λ2 ≤ exp −βj

2/2τ2λ2 ≤ exp −ϵ2/2τmax
2 λ2 .

It follows from the above inequalities that

π λj ∣ βj
*, τ ≥

λj
−1exp −E2/2τmin

2 λj
2 πloc λj

0

∞
λ−1exp −ϵ2/2τmax

2 λ2 πloc λ dλ
≔ ηπlower λj

(3.9)

for η > 0 and density πlower ⋅  independent of βj
* and τ. Combining (3.8) and (3.9), we can 

lower bound the transition kernel (3.7) as

P β, λ ∣ β*, λ*

≥ δ′η1 min
j

λj ≥ R
τmin

N β; μR, ΦR
−1

j
πlower  λj

τmin

τmax

π τ ∣ β*, λ dτ

= δ′ηN β; μR, ΦR
−1

j
1 λj ≥ R

τmin
πlower  λj .

□

3.4 Drift condition and geometric ergodicity

Here we establish a drift condition for geometric ergodicity under sparse logistic regression. 

As discussed in Section 3.2, the regularization prevents the Markov chain from meandering 

to infinity, so the main question is whether the chain can get “stuck” for a long time near 

βj
* = 0. The following result shows that this does not happen as long as the global scale τ is 

bounded away from zero.

Theorem 3.8. Suppose that the local scale prior satisfies ∥ πloc ∥∞ < ∞ and that the global 

scale prior πglo ⋅  is supported on τmin, ∞  for τmin > 0. Then the marginal transition kernel 

P β, λ ∣ β*, λ*  satisfies a drift condition with a Lyapunov function V β = ∑j βj
−α for any 

0 ≤ α < 1.

Proof. Note that PV β*  can be expressed as a series of iterated expectations with respect to 

(1) β ∣ ω, τ, λ, y, X, z = 0, (2) ω ∣ β*, (3) λ ∣ β*, τ, and (4) τ ∣ β*, λ*. We will bound the iterated 

expectations of βj
−α one by one.
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Since β ∣ ω, τ, λ, y, X, z = 0 is distributed as Gaussian, denoting by μj and σj
2 the conditional 

mean and variance of βj, Proposition 3.10 below tells us that

E βj
−α ∣ ω, τ, λ, y, X, z = 0 ≤ Cα μj/σj σj

−α where sup 
t

Cα t ≤
Γ 1 − α

2
2α/2 π

 and Cα t = O t −α  as  t ∞ .

For the purpose of this proof, we can simply set Cα to be its global upper bound; however, 

a tighter bound may be obtained when the posterior concentrates away from zero and 

thereby resulting in μj/σj ∞ and Cα μj/σj 0 as the sample size increases. Combined 

with Proposition 3.11 below, the above inequality implies

1
Cα

E βj
−α ∣ ω, τ, λ, y, X, z = 0 ≤ τ−αλj

−α + ζ−α + 1 − α
2 + α

2 ∑
i = 1

n
ωixij

2 .

(3.10)

In taking the expectation of (3.10) with respect to ω ∣ β*, we use the result E ωj ∣ β* ≤ 1/4 of 

Wang and Roy (2018) to obtain

1
Cα

E βj
−α ∣ τ, λ ≤ τ−αλj

−α + ζ−α + 1 − α
2 + α

8 ∑
i = 1

n
xij

2 .

(3.11)

Taking the expectation of (3.11) with respect to λ ∣ τ, β*, we have

1
Cα

E βj
−α ∣ τ, β* ≤ E τ−αλj

−α ∣ τ, βj
* + C′ α, X  where C′ α, X = ζ−α + 1 − α

2 + α
8 ∑

i = 1

n
xij

2 .

(3.12)

Now choose R > 0 small enough that γ R/τ ≤ γ R/τmin < Cα
−1 in Proposition 3.4. Then we 

have the following inequality for γ′ ≔ Cαγ R/τmin < 1:

CαE τ−αλj
−α ∣ τ, βj

* ≤ γ′ βj
* −α + R −α

for all τ ≥ τmin. Incorporating the above inequality into (3.12), we obtain

E βj
−α ∣ τ, β* ≤ γ′ βj

* −α + γ′ R −α + CαC′ α, X .

Since π τ ∣ β*, λ*  is supported on τ ≥ τmin by our assumption, taking the expectation with 

respect to τ ∣ β*, λ* yield
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E βj
−α ∣ β*, λ* ≤ γ′ βj

* −α + γ′ R −α + CαC′ α, X .

Theorem 3.7 and 3.8 together imply the geometric ergodicity result of Theorem 3.2:

Proof of Theorem 3.2. We show that V β = ∑j βj
−α + ∥ β ∥2 is a Lyapunov function for the 

marginal transition kernel P β, λ ∣ β*, λ* . Note that

E ∥ β ∥2 ∣ ω, τ, λ, y, X, z = 0
= ∥ E β ∣ ω, τ, λ, y, X, z = 0 ∥2 + ∑j var βj

2 ∣ ω, τ, λ, y, X, z = 0

= ∥ ΣX⊤ y − 1
2 ∥

2
+ ∑j ej

⊤Σej

for Σ = X⊤ΩX + ζ−2I + τ−2Λ−2 −1
. Since Σ ≺ ζ2I, we have ej

⊤Σej ≤ ζ2 and 

∥ ΣX⊤ y − 1
2 ∥

2
≤ ζ2∥ X⊤ y − 1

2 ∥
2
. Thus we have

E ∥ β ∥2 ∣ ω, τ, λ, y, X, z = 0 ≤ ζ2∥ ΣX⊤ y − 1
2 ∥

2
+ nζ2 .

(3.13)

Since the right-hand side does not depend on ω, τ, λ, the expectation with respect to 

P β, λ ∣ β*, λ*  satisfies the same bound:

E ∥ β ∥2 ∣ β*, λ* ≤ ζ2∥ ΣX⊤ y − 1
2 ∥

2
+ nζ2 .

In addition to the above bound, we know that ∑j βj
−α is a Lypunov function by Theorem 

3.8. Hence, V β = ∑j βj
−α + ∥ β ∥2 is again a Lyapunov function. Moreover, by Theorem 

3.7, we know that the Gibbs sampler satisfies a minorization condition on the set 

β*:0 < ϵ ≤ βj
* ≤ E < ∞  for all j  for ϵ > 0 and E < ∞. Thus the sampler is geometrically 

ergodic. □

Remark 3.9. As mentioned earlier, the geometric and uniform ergodicity as well as 

analogues of the intermediate results continue to hold when we relax the assumption of 

fixed ζ to a prior constraint of the form ζ ≤ ζmax < ∞. The proof goes as follows. Due to 

the conditional independence, the Gibbs sampler on the joint space draws alternately from 

ζ ∣ β, z = 0 and β, ω, τ, λ ∣ y, X, z = 0, ζ. By repeating all the previous arguments with ζmax in 

place of ζ, we obtain essentially the identical minorization and drift bounds that hold for all 

ζ ≤ ζmax. Since the bounds hold uniformly on the support ζ ≤ ζmax, the identical bounds again 

hold when taking the expectation over ζ ∣ β, z = 0.

Auxiliary results for proof of geometric ergodicity—Proposition 3.10 and 3.11 

below are used in the proof of Theorem 3.8 and are proved in Appendix D. Proposition 3.10 
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is a refinement of Proposition A1 in Pal and Khare (2014) and of Equation (41) in Johndrow 

et al. (2018), neither of which have the D μ/σ  term.

Proposition 3.10. For α ∈ 0,1  and β N μ, σ2 , we have

E β

−α

≤
Γ 1 − α

2
2α/2 π

σ−αmin 1, D μ/σ ,

where D t = O t −α 0 as t ∞ and can be chosen as

D(t) = 1
B α

2 , 1 − α
2

2
5
2 − α
1 − α exp − t2

4 + 2
1
2 + αΓ α

2 | t|−α .

(3.14)

Proposition 3.11. The diagonals σj of Σ = X⊤ΩX + ζ−2I + τ−2Λ−2 −1
 satisfy the following 

inequality for 0 ≤ α < 1:

σj
−α ≤ τ−αλj

−α + ζ−α + 1 − α
2 + α

2 ∑
i = 1

n
ωixij

2 .

4 Simulation

We run a simulation study to assess the computational and statistical properties of 

the regularized sparse logistic regression model. We use the Bayesian bridge prior 

π βj ∣ τ ∝ τ−1exp − βj/τ a  to take advantage of the efficient global scale parameter update 

scheme. This prior also allows us to experiment with a range of spike and tail behavior by 

varying the exponent a, inducing larger spikes and heavier tails as a 0. For the global scale 

parameter, we chose the objective prior πglo τ ∝ τ−1 (Berger et al., 2015, Appendix E) with 

the range restriction 10−6 ≤ E βj ∣ τ ≤ 1 to ensure posterior propriety, though in practice 

we never observe a posterior draw of τ outside this range. For the posterior computations, 

we use the Pólya-Gamma Gibbs sampler provided by the bayesbridge package available 

from Python Package Index (pypi.org); the source code is available at the GitHub repository 

https://github.com/OHDSI/bayes-bridge.

4.1 Data generating process: “large n, but weak signal” problems

Piironen and Vehtari (2017) demonstrate the benefits of regularizing shrinkage priors in the 

“p > n” case, when the number of predictors p exceeds the sample size n. To complement 

their study, we consider the case of rare outcomes and infrequently observed features, 

another common situation in which regularizing shrinkage priors becomes essential. For 

example in healthcare data, many outcomes of interests have low incidence rates and many 

treatments are prescribed to only a small fraction of patients (Tian et al., 2018). This 

Nishimura and Suchard Page 16

Bayesian Anal. Author manuscript; available in PMC 2024 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pypi.org/
https://github.com/OHDSI/bayes-bridge


results in binary outcomes y and features xj filled mostly with 0’s, making the amount of 

information much less than otherwise expected (Greenland et al., 2016).

To simulate under these “large n, but weak signal” settings, we generate synthetic data with 

n = 2,500 and p = 500 as follows. We construct binary features with a range of observed 

frequencies by first drawing 2wj Beta 1/2,2  for j = 1, …, 500; this in particular means 

0 ≤ wj ≤ 0.5 and E wj = 0.1. For each j, we then generate xij Bernoulli wj  for i = 1, …, n. 

We choose the true signal to be βj = 1 for j = 1, …, 10 and βj = 0 for j = 11, …, 500. To 

simulate an outcome with low incidence rate, we choose the intercept to be β0 = 1.5 and draw 

yi Bernoulli logit −xi
⊤β , resulting in yi = 1 for approximately 5% of its entries.

4.2 Convergence and mixing: with and without regularization

With the above data generating process, outcome y and design matrix X barely contain 

enough information to estimate all the coefficients βj’s. In particular, sparse logistic model 

without regularization can lead to a heavy-tailed posterior, for which uniform and geometric 

ergodicity of the Pólya-Gamma Gibbs sampler becomes questionable.

These potential convergence and mixing issues are evidenced by the traceplot (Figure 

4.1a) of the posterior samples based on bridge exponent a = 1/16. As we are particularly 

concerned with the Markov chain wandering off to the tail of the target, we examine 

the estimated credible intervals to identify the coefficients with potential convergence and 

mixing issues. Plotted in Figure 4.1 are the coefficients with the widest 95% credible 

intervals; these coefficients also have some of the smallest estimated effective sample sizes, 

though the accuracy of such estimates is not guaranteed without geometric ergodicity. When 

regularizing the shrinkage prior with a slab width ζ = 1, the posterior samples indicate no 

such convergence or mixing issues (Figure 4.1b) and yield more sensible posterior credible 

intervals (Figure 4.2).
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Figure 4.1: 
Traceplot under the Bayesian bridge logistic regression with exponent 1/16. Shown are the 

three coefficients with most potentially problematic mixing behaviors; see the main text for 

the details on our criteria.

Figure 4.2: 
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Ten widest 95% posterior credible intervals under the Bayesian bridge logistic regression 

with (right) and without (left) regularization. Without regularization, the intervals are 

unrealistically large compared to the signal size of βj = 1 for j = 1, …, 10.

We emphasize that there is no fundamental change in the Gibbs sampler itself when 

incorporating the regularization, the only change being the addition of the ζ−2I term in the 

conditional precision matrix (3.2) when updating β. It is the change in the posterior - more 

specifically the guaranteed light tails of the β marginal — that induces faster convergence 

and mixing.

We also assess sensitivity of convergence and mixing rates on the slab width ζ. The 

regularized prior recovers the unregularized one as ζ ∞. This means that, as seen from 

the problematic computational behavior of the unregularized model, ζ cannot be taken too 

large in this limited data setting. In other words, the choice of ζ has to reflect some degree 

of prior information on βj’s. We need not assume strong prior information, however; Figure 

4.3 demonstrates that even small amount of regularization (e.g. ζ =  2 or 4) can noticeably 

improve the computational behavior over the unregularized case.

Figure 4.3: 
Traceplots under different slab widths: ζ = 2 (bottom) and ζ = 4 (top). The settings are 

otherwise identical to those of Figure 4.1. As before, the three coefficients with most 

problematic mixing behaviors do not always coincide across different slab widths.
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4.3 Statistical properties of shrinkage model for weak signals

To study the shrinkage model’s ability to separate out the non-zero βj from the βj = 0, we 

simulate 10 replicate data sets and estimate the posterior for each of them. In total, we obtain 

5,000 marginal posterior distributions — 10 independent replication for each of the p = 500
regression coefficients — with 100 for the signal βj = 1 and 4,900 for the non-signal βj = 0. 

As all the predictors xj’s are simulated in an exchangeable manner, the 100 (and 4,900) 

posterior marginals for the signal (and non-signal) are also exchangeable.

Figure 4.4 show the posterior credible intervals. Due to the low incidence rate and infrequent 

binary features, many of the signals are too weak to be detected. We also find that the 

credible intervals seemingly do not achieve their nominal frequentist coverage for signals 

below detection strength. This finding is consistent with the existing theoretical results on 

shrinkage priors and is unsurprising in light of the impossibility theorem by Li (1989) — 

confidence intervals cannot be optimally tight and have nominal coverage at the same time. 

Credible intervals produced by Bayesian shrinkage models tend to be optimally tight and 

thus require appropriate manual adjustments to achieve the nominal coverage (van der Pas et 

al., 2017). No statistical procedure is immune to this tightness-coverage trade-off; therefore, 

the apparent under-coverage should be seen not as a flaw but more as a feature of Bayesian 

shrinkage models.

We benchmark the signal detection capability of the posterior against the frequentist lasso, 

arguably the most widely-used approach to feature selection. Obtaining the lasso point 

estimates requires a selection of the hyper-parameter commonly referred to as the penalty 
parameter. For its choice, we first follow the standard practice of minimizing the ten-fold 

cross-validation errors (Hastie et al., 2009). However, this approach yields inconsistent 

and poor overall performance, detecting only 13 out of the 100 signals (Figure 4.4). Cross-

validation likely fails here because each fold does not capture the characteristics of the 

whole data when the signals are so weak. As a more stable alternative for calibrating 

the penalty parameter, we try an empirical Bayes procedure based on the Bayesian 

interpretation of the lasso (Park and Casella, 2008). We first estimate the posterior marginal 

mean of the penalty parameter from the Bayesian lasso Gibbs sampler. Conditionally on 

this value, we then find the posterior mode of β. This procedure seems to yield more 

consistent performance, detecting 39 out of the 100 signals albeit with the estimates more 

shrunk towards null than the Bayesian posterior means. The empirical Bayes procedure 

demonstrates more consistent behavior for the non-signals as well (Figure 4.5).

We also assess how the spike size and (pre-regularization) tail behavior of the prior influence 

statistical properties of the resulting posterior. For this purpose, we fit the regularized bridge 

model with the exponent a−1 ∈ 2,4, 8,16  to the same data sets. Figure 4.6 summarizes 

the credible intervals under the a = 1/4 case. The credible intervals are centered around the 

values similar to the a = 1/16 case (Figure 4.4), but are much wider overall. We observe 

the same pattern throughout the range of the exponent values: similar median values, but 

tighter intervals for the smaller exponents. In particular, as can be seen in Figure 4.7, more 

“extreme” shrinkage priors with larger spikes and heavier-tails seem to yield tighter credible 

intervals for the same coverage.
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Figure 4.4: 
The 95% posterior credible intervals for the signals βj = 1 (top) and non-signals βj = 0
(bottom) under the Bayesian bridge logistic regression with the bridge exponent 1/16. The 

intervals are sorted by the posterior means. To avoid clutter, the top plot shows only the non-

zero values of the lasso estimates. The lasso estimates for the non-signals are summarized in 

Figure 4.5 and are not shown in the bottom plot.
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Figure 4.5: 
Comparison of the 4,900 Bayesian bridge posterior means and lasso estimates for the 

non-signals βj = 0. Lasso with cross-validation produces a larger number of false positives. 

Lasso with the empirical Bayes calibration yields the estimates more in line with the bridge 

posterior.
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Figure 4.6: 
The 95% posterior credible intervals under the Bayesian bridge logistic regression with 

the bridge exponent 1/4. Compared with the 1/16 exponent case (Figure 4.4), the posterior 

distributions have similar means but much wider credible intervals.

Figure 4.7: 
Average width v.s. coverage of the credible intervals. The plots are produced by computing 

the equal-tailed credible intervals at a range of credible levels. The x-axis is in the log10 

scale for the non-signals.
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5 Discussion

Shrinkage priors have been adopted in a variety of Bayesian models, but the potential 

issues arising from their heavy-tails are often overlooked. Our method provides a simple 

and convenient way to regularize shrinkage priors, making the posterior inference more 

robust. Both the theoretical and empirical results demonstrate the benefits of regularization 

in improving the statistical and computational properties when parameters are only weakly 

identified. Much of the systematic investigations into the shrinkage prior properties has so 

far focused on rather simple models and situations in which signals are reasonable strong. 

Our work adds to the emerging efforts to better understand the behavior of shrinkage models 

in more complex settings.
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Appendix A: Further results on behavior of shrinkage model Gibbs 

samplers: probit regression as example

As we discussed in Section 3.2, Propositions 3.3 and 3.4 are quite general in scope and can 

provide insight into behavior of shrinkage model Gibbs samplers more broadly.

Here we demonstrate the broader relevance of these results, as well as of a few additional 

results, by applying them to establish uniform/geometric ergodicity of a Gibbs sampler for 

regularized Bayesian sparse probit regression. More explicitly, we consider the model

yi ∣ xi, β Bernoulli Φ xi
⊤β ,

zj = 0 for zj ∣ βj N βj, ζ2 ,

βj ∣ τ, λj N 0, τ2λj
2 , τ πglo ⋅ , λj πloc ⋅ ,

where Φ t  denotes the cumulative distribution function of the standard Gaussian. The 

corresponding Gibbs sampler induces a transition kernel β*, λ*, τ* β, λ, τ  through the 

following cycle of conditional updates:

1. Draw τ ∣ β*, λ* from the density proportional to (2.4). When using Bayesian 

bridge priors, draw from the collapsed distribution τ ∣ β* (Appendix E).

2. Draw λ ∣ β*, τ from the density proportional to (2.4).

3. Draw β ∣ τ, λ, y, X, z = 0 from the density proportional to
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π β ∣ τ, λ, y, X, z = 0 ∝ Lprobit y ∣ X, β L z = 0 ∣ β π β ∣ τ, λ
  ∝ Lprobit y ∣ X, β π β ∣ τ, λ, z = 0

(A.1)

where Lprobit y ∣ X, β = ∏i Φ xi
⊤β yi 1 − Φ xi

⊤β 1 − yi is the probit likelihood. The 

density (A.1) belongs to a unified skew-normal family, from which we can draw 

independent samples by the algorithm of Durante (2019).

Borrowing terminology from Durante (2019), we refer to the above Gibbs sampler as the 

conjugate Gibbs sampler for probit models to distinguish it from the more traditional one 

based on the data augmentation scheme of Albert and Chib (1993).

Theorems A.1 and A.2 below provide uniform and geometric ergodicity results for the 

conjugate Gibbs sampler and are exact analogues of the corresponding results Theorems 3.1 

and 3.2 for the logistic case.

Theorem A. 1 (Uniform ergodicity for probit model). If the prior πglo ⋅  is supported on 

τmin, ∞  for τmin > 0, then the conjugate Gibbs sampler for regularized Baysian bridge probit 

regression is uniformly ergodic.

Theorem A. 2 (Geometric ergodicity for probit model). Suppose that the local scale 
prior satisfies ∥ πloc ∥∞ < ∞ and that the global scale prior πglo ⋅  is supported on τmin, τmax

for 0 < τmin ≤ τmax < ∞. Then the conjugate Gibbs sampler for regularized sparse probit 

regression is geometrically ergodic.

A.1 Proofs of Theorem A.1 and A.2

The proof of Theorem A.1 (and A.2) above follows a path essentially identical to the 

proof of Theorem 3.1 (and 3.2) with most arguments carrying through verbatim or with 

trivial modifications; we only need to replace a few model-specific inequalities with 

the corresponding ones for the probit model. For establishing minorization conditions, 

Lemma A.3 below replaces Lemma 3.5. For establishing drift conditions, the bound on the 

conditional expectation of βj
−α in Lemma A.4 replaces Eq. (3.11), and the bound on the 

conditional expectation of ∥ β ∥2 in Lemma A.5 replaces Eq. (3.13). Remarkably, Lemma 

A.4 and A.5 only requires a likelihood L y ∣ X, β  to be a bounded function of β and thus 

may be applicable beyond the probit case.

We sketch out the proofs of Theorem A.1 and A.2 below. Again, the omitted details are 

essentially identical to the logistic case or, in fact, simpler because the probit case does not 

involve the additional Pólya-Gamma parameter.

Proof of Theorem A.1. A minorization result analogous to Theorem 3.6 follows from 

Proposition 3.3 and Lemma A.3. This minorization result straightforwardly implies a 

uniform minorization under Bayesian bridge priors as in Theorem 3.1. See the proofs of 

Theorem 3.6 and 3.1 for details. □
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Proof of Theorem A.2. A minorization result analogous to Theorem 3.7 follows 

from Lemma A.3. Proposition 3.4, Lemma A.4, and Lemma A.5 together imply that 

V β = ∑j βj
−α + ∥ β ∥2 is a Lyapunov function as in the proofs of Theorem 3.8 and 3.2. 

The geometric ergodicity then follows from the minorization and drift condition. See the 

proofs of Theorem 3.7, 3.8, and 3.2 for details. □

A. 2 Minorization lemma for probit model

Lemma A.3. Whenever minjτλj ≥ R > 0, there are δ, δ′ > 0 — independent of τ and λ except 

through R — such that the following minorization condition holds:

π β ∣ τ, λ, y, X, z = 0
≥ δLprobit  y ∣ X, β N β; 0, ζ−2 + R−2 −1I

≥ δ′N β; 0, X⊤X + ζ−2 + R−2 I −1 .

(A.2)

Proof. The conditional distribution of β ∣ τ, λ, y, X is given by

π β ∣ τ, λ, y, X, z = 0 = Lprobit y ∣ X, β π β ∣ τ, λ, z = 0
∫  Lprobit y ∣ X, β′ π β′ ∣ τ, λ, z = 0 dβ′ .

(A.3)

Since Φ t = 1 − Φ − t ≤ 1 for all t, we have ∥ Lprobit ∥∞ ≤ 1 and

∫  Lprobit  y ∣ X, β′ π β′ ∣ τ, λ, z = 0 dβ′ ≤ ∫  π β′ ∣ τ, λ, z = 0 dβ′ = 1 .

(A.4)

Also, we can easily verify that the following inequality holds whenever minjτλj ≥ R:

π β ∣ τ, λ, z = 0 = ∏
j

1
2π ζ−2 + τ−2λj

−2 1/2exp − 1
2 ζ−2 + τ−2λj

−2 βj
2

  ≥ ∏
j

1
2πexp − 1

2 ζ−2 + R−2 βj
2 .

(A.5)

Combining (A.4) and (A.5), we can lower bound (A.3) with δ > 0 as

π β ∣ τ, λ, y, X, z = 0 ≥ δLprobit  y ∣ X, β N β; 0, ζ−2 + R−2 −1I ,

(A.6)

establishing the first inequality in (A.2).
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To establish the second inequality in (A.2), we will show that

min Φ t , 1 − Φ t ≥ min 1 − Φ 1 , 1
2 2π exp −t2 ;

(A.7)

this will imply Lprobit y ∣ X, β ≥ min 1 − Φ 1 , 2 2π −1 exp − ∥ Xβ ∥2  and complete the 

proof. Eq 7.1.13 of Abramowitz and Stegun (1965) tells us that

1 − Φ t ≥ 1
2π

t
t2 + 1

exp − t2
2 .

(A.8)

We therefore have

1 − Φ t ≥ 1
2 2π

1
t exp − t2

2 ≥ 1
2 2πexp −t2  for t ≥ 1;

(A.9)

the latter inequality follows from the fact that t−1 ≥ exp −t2/2  for t ≥ 1, which can be 

proven, for example, by noting that d
dt texp −t2/2 ≤ 0 for t ≥ 1. For t ≤ 1, we have 

1 − Φ t ≥ 1 − Φ 1  since Φ t  is increasing in t. Combining the lower bounds for t ≥ 1 and 

t ≤ 1, we obtain

1 − Φ t ≥ min 1 − Φ 1 , 1
2 2πexp −t2 ≥ min 1 − Φ 1 , 1

2 2π exp −t2 .

Since Φ t = 1 − Φ − t , the same lower bound also holds for Φ t , yielding (A.7). □

A. 3 Drift condition lemmas for bounded likelihood models

As we mentioned in Section A.1, Lemma A.4 and A.5 here apply not only to the probit 

case but also to any model whose likelihood is a bounded function of β. Lemma A.4 in 

particular holds with or without the fictitious likelihood L z = 0 ∣ β  for regularization. While 

stated in terms of a generic bounded likelihood L y ∣ X, β , Lemma A.4 can be applied to 

regularized models simply by replacing the likelihood β L y ∣ X, β  in its statement with 

the regularized one β L y ∣ X, β L z = 0 ∣ β .

Lemma A.4. Let α ∈ 0,1 . Suppose the likelihood satisfies ∥ L ∥∞ ≔ supβL y ∣ X, β < ∞
and is strictly positive and continuous at β = 0. Then the following inequality holds for the 
conditional expectation under β ∣ τ, λ, y, X with constants C, C′ < ∞ depending only on α and 
functionals of the likelihood β L y ∣ X, β :
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E βj
−α ∣ τ, λ, y, X ≤ C τλj

−α + C′ .

(A.10)

Proof. The conditional distribution of β ∣ τ, λ, y, X is given by

π β ∣ τ, λ, y, X = L y ∣ X, β π β ∣ τ, λ
∫  L y ∣ X, β′ π β′ ∣ τ, λ dβ′ .

(A.11)

We consider the conditional expectation (A.10) under two separate cases: maxjτλj ≤ ϵ and 

minjτλj ≥ ϵ, where ϵ > 0 is any value small enough to guarantee the likelihood to be positive 

on the set ∥ β′ ∥∞ = maxj βj
′ ≤ ϵ.

When maxjτλj ≤ ϵ, we have

∫  L y ∣ X, β′ π β′ ∣ τ, λ dβ′   ≥
∥ β′ ∥∞ ≤ ϵ

L y ∣ X, β′ π β′ ∣ τ, λ dβ′

  ≥ min
∥ β′ ∥∞ ≤ ϵ

L y ∣ X, β′
j −ϵ

ϵ

π βj
′ ∣ τ, λj dβj

′

  ≥ min
∥ β′ ∥∞ ≤ ϵ

L y ∣ X, β′ Φ 1 − Φ −1
p
,

where Φ ⋅  is the cumulative distribution function of the standard Gaussian. Using the above 

lower bound on the numerator, we can bound (A.11) as

π β ∣ τ, λ, y, X ≤ Cϵπ β ∣ τ, λ

(A.12)

for Cϵ = ∥ L ∥∞ / min∥ β′ ∥∞ ≤ ϵL y ∣ X, β′ Φ 1 − Φ − 1 p. It now follows that

E βj
−α ∣ τ, λ, y, X ≤ CϵE βj

−α ∣ τ, λ = CαCϵ τλj
−α,

(A.13)

where the latter equality with Cα = Γ 1 − α
2 /2α/2 π derives from the formula for negative 

moments of Gaussians (Winkelbauer, 2012).

Turning to the case minjτλj ≥ ϵ, we have
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π β ∣ τ, λ, y, X =
L y ∣ X, β

j
exp − βj

2

2τ2λj
2

∫  L y ∣ X, β′
j
exp − β2

′2

2τ2λj
2 dβ′

  ≤ ∥ L ∥∞

∫  L y ∣ X, β′ jexp −βj
′2/2ϵ2 dβ′

≔ Cϵ
′ .

(A.14)

Using the above bound on the conditional density, we obtain

E βj
−α ∣ τ, λ, y, X ≤ 1 + E βj

−α1 βj ≤ 1 ∣ τ, λ, y, X

  ≤ 1 + Cϵ
′∫

−1

1
βj

−αdβj 

  = 1 + 2Cϵ
′ / 1 − α .

(A.15)

The bounds (A.13) and (A.15) together show that an inequality of the form (A.10) holds for 

any value of τ and λ, whether in maxjτλj ≤ ϵ  or minjτλj ≥ ϵ . □

Lemma A.5. Suppose the likelihood satisfies the assumptions as in Lemma A.4. Then 
the conditional expectation of βj

2 under β ∣ τ, λ, y, X, z = 0 is bounded by a constant which 

depends only on ζ and functionals of the likelihood β L y ∣ X, β .

Proof. We will derive the following bound on the conditional density

π β ∣ τ, λ, y, X, z = 0 ≤ CN β; 0, ζ2I 1 + N β; 0, τ2Λ2 = CN β; 0, ζ2I + C τ2λj
2 + ζ2 −1/2N

β; 0, τ−2Λ−2 + ζ−2I −1 ,

(A.16)

which will imply the desired bound on the conditional expectation:

E βj
2 ∣ τ, λ, y, X, z = 0 ≤ Cζ2 + C τ2λj

2 + ζ2 −1/2 τ−2λj
−2 + ζ−2 −1

= Cζ2 + Cζ2τ2λj
2 τ2λj

2 + ζ2 −3/2

≤ Cζ2 + Cζ2 τ2λj
2 + ζ2 −1/2

≤ Cζ2 + Cζ .

To complete the proof, therefore, it remains to establish (A.16). Our argument here closely 

follows those we use in deriving the bounds (A.12) and (A.14) in the proof of Lemma A.4. 

The conditional distribution of β ∣ τ, λ, y, X, z = 0 is given by
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π β ∣ τ, λ, y, X, z = 0 = L y ∣ X, β L z = 0 ∣ β π β ∣ τ, λ
∫  L y ∣ X, β′ L z = 0 ∣ β π β′ ∣ τ, λ dβ′ .

(A.17)

As before, we choose ϵ > 0 to be any value small enough to guarantee the likelihood to 

be positive on the set ∥ β′ ∥∞ = maxj βj
′ ≤ ϵ. We can repeat an argument analogous to the 

derivation of the bound (A.12) to conclude that, when maxjτλj ≤ ϵ,

π β ∣ τ, λ, y, X, z = 0 ≤ CϵL z = 0 ∣ β π β ∣ τ, λ

(A.18)

for Cϵ = ∥ L y ∣ X, β ∥∞ / min∥ β′ ∥∞ ≤ ϵL y ∣ X, β′ L z = 0 ∣ β Φ 1 − Φ − 1 p with the ∥ ⋅ ∥∞

norm taken with respect to β. For the case minjτλj ≥ ϵ, we follow the derivation of the bound 

(A.14) to conclude that

π β ∣ τ, λ, y, X = Cϵ
′L z = 0 ∣ β  where Cϵ

′   = ∥ L y ∣ X, β ∥∞

∫  L y ∣ X, β′ L z = 0 ∣ β jexp −βj
′2/2ϵ2 dβ′

.

(A.19)

Combining (A.18) and (A.19) yields the desired bound (A.16). □

Appendix B: Proofs for Section 3.2

B. 1 Proof of Proposition 3.3

The key ingredient in our proof of Proposition 3.3 is the following general result on 

the stochastic ordering of tilted densities. The result allows us to study the behavior of 

π λ ∣ β*, τ  viewed as a product of f λ = λ−1πloc λ  and G λ = exp −β * 2/2τ2λ2 .

Proposition B.1. Consider probability densities πG λ ∝ G λ f λ  and πH λ ∝ H λ f λ
on λ ∈ 0, ∞  for f, G, H ≥ 0. Suppose that f satisfies ∫u

∞f λ dλ < ∞ for u > 0. 

Suppose also that G and H are absolutely continuous and increasing, G ≤ H, and 
limλ ∞G λ = limλ ∞H λ . Then πG is stochastically dominated by πH i.e.

∫
a

∞
πG λ dλ ≤ ∫

a

∞
πH λ dλ for any a ∈ ℝ .

(B.1)

Proof. Multiplying G and H with an appropriate constant if necessary, without loss of 

generality we can assume limλ ∞G λ = limλ ∞H λ = 1 so that G and H can be interpreted 

as cumulative distribution functions.
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We first deal with the case G 0 = H 0 = 0; when ∫ f λ dλ = ∞, this assumption is in fact 

implied by the integrability of G λ f λ  and H λ f λ . In this case, we have G λ = ∫0
λg u du

and H λ = ∫0
λℎ u du for density functions g, ℎ ≥ 0. As can be verified using Fubini’s theorem 

for positive functions, we can express πG and πH as

πG ⋅ = ∫  f ⋅ ∣ u g u du and πH ⋅ = ∫  f ⋅ ∣ u ℎ u du,

where f ⋅ ∣ u  for u > 0 denote a probability density

f ⋅ ∣ u = f λ 1 λ > u
u
∞f λ dλ

.

Again by Fubini’s theorem for positive functions, we have

∫
a

∞
πG λ dλ = ∫   Fa u g u du and ∫

a

∞
πH λ dλ = ∫   Fa u ℎ u du

(B.2)

where

Fa u = ∫
a

∞
f λ ∣ u dλ = ∫max a, u

∞ f λ dλ
∫u

∞f λ dλ
.

Note that the integrals in (B.2) can be represented as expectations with respect to 

distributions G and:

∫
a

∞
πG λ dλ = EU G Fa U  and  ∫

a

∞
πH λ dλ = EU H Fa U .

(B.3)

Since Fa is an increasing function and G is stochastically dominated by H by our 

assumption, the representation (B.3) implies the desired inequality (B.1).

Earlier, we made a simplifying assumption G 0 = H 0 = 0. More generally, we have the 

relation G λ − G 0 = ∫0
λg u du and H λ − H 0 = ∫0

λℎ u du for integrable functions g, ℎ ≥ 0. 

Essentially the identical arguments as before show that the identity (B.3) and hence the 

conclusion (B.1) still hold in this case. □

Proof of Proposition 3.3. Note that

π λj ∣ βj
*, τ ∝ exp −c2/λj

2 λj
−1πloc λj  for c = c βj

*/τ = βj
*

2τ .
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Applying Proposition B.1 with f λ = λ−1πloc λ , we see that

ℙ λj > a ∣ βj
*, τ ≤ ℙ λj > a ∣ βj

* ′, τ

whenever βj
*/τ ≥ βj

* ′/τ .

Suppose now that ∫ λ−1πloc λ dλ = ∞. For any βj
*/τ, we have

∫
a

∞
exp − βj

*2

2τ2λj
2 λj

−1πloc λj dλj ≤ ∫
a

∞
λj

−1πloc λj dλj ≤ 1/a .

(B.4)

On the other hand, by Fatou’s lemma,

lim inf
βj

*/τ 0
∫  exp − βj

* 2

2τ2λ2 λ−1πloc λ dλ ≥ ∫  λ−1πloc λ dλ = ∞ .

(B.5)

From (B.4) and (B.5), we conclude that for any a > 0

ℙ λj > a ∣ βj
*, τ = a

∞

exp − βj
* 2

2τ2λj
2 λj

−1πloc λj dλj

∫  exp − βj
* 2

2τ2λ2 λ−1πloc λ dλ
0 as  βj

*/τ 0,

i.e. π λj ∣ βj
*, τ  converges in distribution to a delta measure at 0.

We now turn to quantifying the limiting behavior when ∫ λ−1πloc λ dλ < ∞. For any 

a ∈ 0, ∞ , the dominated convergence theorem yields

lim
βj

*/τ 0 0

a

exp − βj
* 2

2τ2λj
2 λj

−1πloc λj dλj =
0

a

λ−1πloc λ dλ .

The above convergence result implies the point-wise convergence of the cumulative 

distribution function:

lim
βj

*/τ 0
ℙ λj ≤ a ∣ βj

*, τ = 0
aλj

−1πloc λj dλj

∫  λ−1πloc λ dλ
.
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B. 2 Proof of Proposition 3.4

Proof. In upper-bounding E λj
−α ∣ τ, β* , we can without loss of generality assume that 

π 0 > 0 by virtue of Proposition B.2 below. In terms of the constants ϵ and C′′ α, πloc  as 

defined in Lemma B.3 below, let

γ r = C′′ α, πloc /log 1 + 4ϵ2
r2 .

(B.6)

By Lemma B.3 and the monotonicity of γ r , we then have

E τ−αλj
−α ∣ τ, βj

* ≤ γ R/τ βj
* −α whenever  βj

* ≤ R .

On the other hand, since the distribution λj ∣ τ, βj
* stochastically dominates λj ∣ τ, βj

* ′ whenever 

βj
* ≥ βj

* ′ (Proposition 3.3), we have

E τ−αλj
−α ∣ τ, βj

* ≤ E τ−αλj
−α τ, βj

* ′ = R  whenever  βj
* ≥ R .

(B.7)

Combining (B.6) and (B.7) yields the inequality (3.3).

Proposition B.2. Given a prior πloc ⋅  such that πloc 0 = 0 and ∥ πloc ∥∞ < ∞, there is 

a density πloc
′ ⋅  such that πloc

′ λ  is continuous at λ = 0, πloc
′ 0 > 0, ∥ πloc

′ ∥∞ < ∞, and 

πloc λ ∝ G λ πloc
′ λ  for a bounded increasing function G ≥ 0. Consequently, a density π ⋅

stochastically dominates π′ ⋅  when π λ ∝ f λ πloc λ  and π′ λ ∝ f λ πloc
′ λ  for f ≥ 0. By 

taking f λ = λ−1exp −βj
* 2/2τ2λj

2  in particular, we have the following inequality between the 

expectations with respect to π ⋅  and π′ ⋅ :

E λj
−α ∣ τ, βj

* ≤ E′ λj
−α ∣ τ, βj

*  for α ≥ 0 .

(B.8)

Proof. Redefining πloc λ  as πloc λ − λmin  for λmin = inf λ:πloc λ > 0  if necessary, we can 

without loss of generality assume that πloc λ > 0 for all sufficiently small λ > 0. Define

G λ = min πloc ∞,∫
0

λ
max 0, dπloc

dλ u du .

(B.9)

Then G is clearly increasing and bounded. The definition (B.9) further guarantees 

that limλ 0πloc λ /G λ = 1, πloc ≤ G, and limλ ∞G λ = ∥ πloc ∥∞. Define πloc
′ ⋅  via the 
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relation πloc
′ λ ∝ πloc λ /G λ  for λ > 0 and πloc

′ 0 ≔ limλ 0πloc
′ λ . Then πloc

′ ⋅  satisfy 

∥ πloc
′ ∥∞ = πloc

′ 0 = ∫ π λ /G λ dλ −1 > 0, as well as all the other desired properties.

When π λ ∝ f λ πloc λ  and π′ λ ∝ f λ πloc
′ λ , the densities satisfies the relation 

π′ λ ∝ G λ π λ . By applying Proposition B.1 with H = ∥ G ∥∞, we conclude that π ⋅
stochastically dominates π′ ⋅ . The inequality (B.8) is an immediate consequence of this 

stochastic ordering. □

Lemma B.3. Suppose that πloc λ  is continuous at λ = 0 and πloc 0 > 0. For α ∈ 0,1  and ϵ > 0
small enough that minλ ∈ 0, ϵ πloc λ ≥ πloc 0 /2, we have the following inequality:

E τ−αλj
−α ∣ τ, β* ≤ C′′ α, πloc βj

* −α/log 1 + 4τ2ϵ2

βj
* 2 ,

where C′′ α, πloc > 0 is a constant depending only on α and πloc ⋅  given by

C′′ α, πloc = 22 + α/2∥ πloc ∥∞
πloc 0 0

∞ 1
λ1 + αexp − 1

λ2 dλ .

Proof. Observe that

E λj
−α ∣ τ, β* = ∫

0

∞ 1
λ1 + αexp − cj

2

λ2 πloc λ dλ/∫
0

∞ 1
λexp − cj

2

λ2 πloc λ dλ,

(B.10)

where cj = c τ, βj = βj / 2τ. With the change of variable λ λ/cj, we can write the right-hand 

side of (B.10) as

1
cj

α∫
0

∞ 1
λ1 + αexp − 1

λ2 πloc cjλ dλ/∫
0

∞ 1
λexp − 1

λ2 πloc cjλ dλ .

(B.11)

We can upper bound the numerator as

1
cj

α∫
0

∞ 1
λ1 + αexp − 1

λ2 πloc cjλ dλ ≤ 1
cj

α πloc ∞∫
0

∞ 1
λ1 + αexp − 1

λ2 dλ .

(B.12)

To lower bound the denominator, we restrict the range of integration to 0, ϵ/cj  for ϵ > 0 and 

apply the change of variable ϕ = λ−2:
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0

∞ 1
λexp − 1

λ2 πloc cjλ dλ ≥ min
0, ϵ

πloc
0

ϵ/cj
1
λexp − 1

λ2 dλ

  = min
0, ϵ

πloc
cj2/ϵ2

∞

ϕ−1exp −ϕ dϕ .

The inequality of Gautschi (1959) tells us that ∫a
∞ϕ−1exp − ϕ dϕ ≥ log 1 + 2a−1 /2, so we 

obtain

∫
0

∞ 1
λexp − 1

λ2 πloc cjλ dλ ≥ min
0, ϵ

πloc
1
2log 1 + 2ϵ2

cj
2 .

(B.13)

From the upper bound (B.12) of the numerator and lower bound (B.13) of the denominator, 

it follows that the ratio (B.11) is upper bounded by

cj
−α 2∥ πloc ∥∞

min 0, ϵ πloc log 1 + 2ϵ2cj
−2

0

∞
1

λ1 + αexp − 1
λ2 dλ .

Substituting cj = βj / 2τ into the above expression completes the proof. □

Appendix C: Proof of Lemma 3.5

Our proof of Lemma 3.5 builds on the known fact below.

Proposition C.1 (Choi and Hobert, 2013). For fixed τ and λ, the marginal transition kernel 
satisfies the minorization condition

P β ∣ β*, τ, λ ≥ δτλN β; μτλ, Φτλ
−1

where Φτλ = 1
2X⊤X + ζ−2I + τ−2Λ−2, μτλ = Φτλ

−1X⊤ y − 1/2 , and

δτλ = Cn
ζ−2I + τ−2Λ−2 1/2

Φτλ
1/2 exp 1

2w⊤ Φτλ
−1 − ζ−2I + τ−2Λ−2 −1 w

(C.1)

for w = X⊤ y − 1/2  and Cn > 0 depending only on n.

Proposition C.2 and C.3 below are the main workhorses for our proof of Lemma 3.5 along 

with Proposition C.1. We first state the results and use them to prove Lemma 3.5, before 

proceeding to prove the results themselves.
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Proposition C.2. As a function of τλ, the minorization constant (C.1) is uniformly bounded 
below by a positive constant on the set minjτλj ≥ R > 0.

Proposition C.3. If two precision matrices Φ and Φ′ satisfy Φ ≺ Φ′, then a minorization 

N β; μ, Φ−1 ≥ δN β; μ′, Φ′ − 1  holds for δ > 0 given by

δ = inf
β

N β; μ, Φ−1

N β; μ′, Φ′ − 1

  = Φ 1/2

Φ′ 1/2exp − 1
2 μ′ − μ ⊤Φ Φ′ − Φ −1 Φ′μ′ − Φμ − μ .

(C.2)

When the means take the form μ = Φ−1w and μ′ = Φ−1w, (C.2) simplifies to

δ = Φ 1/2

Φ′ 1/2exp 1
2w⊤ Φ−1 − Φ′ − 1 w ≥ Φ 1/2

Φ′ 1/2 .

Proof of Lemma 3.5. On the set λ:minjτλj ≥ R , Proposition C. 1 implies that

P β ∣ β*, τ, λ ≥ min
τλj ≥ R

δτλ N β; μτλ, Φτλ
−1 ,

where minτλj ≥ Rδτλ is guaranteed to be strictly positive by Proposition C.2.

We complete the proof by showing that the following inequality holds whenever minjτλj ≥ R:

N β; μτλ, Φτλ
−1 ≥ Φ∞

1/2

ΦR
1/2 N β; μR, ΦR

−1

(C.3)

for Φ∞ = 1
2X⊤X + ζ−2I. When minjτλj > R, we have R−2 − τ−2λj

−2 > 0 and hence

ΦR − Φτλ = R−2I − τ−2Λ−2 ≻ 0 .

By Proposition C.3, it follows that

N β; μτλ, Φτλ
−1 ≥ Φτλ

1/2

ΦR
1/2 N β; μR, ΦR

−1 .

(C.4)
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The above inequality in fact holds not only on the set λ:τλj > R  but also on the closure 

λ:minjτλj ≥ R  since all the quantities depend continuously on τλj. The inequality (C.3) 

follows from (C.4) by observing that Φτλ ≻ Φ∞ and hence Φτλ ≥ Φ∞ . □

Proof of Proposition C.2 and C.3

In the proofs to follow, we will make use of the following elementary linear algebra 

facts about positive definite matrices. We will denote the largest, ith largest, and smallest 

eigenvalue of a matrix A as νmax A , νi A , and νmin A . The determinant of A is denoted by 

A  and the trace by tr A . The notation A ≺ B means that B − A is positive definite or, 

equivalently, v⊤Av < v⊤Bv for any vector v ≠ 0.

Proposition C.4. Given positive definite matrices A and B, we have

1. A + B −1 ≺ A−1.

2. A + B −1 ≻ A−1 − A−1BA−1

3. νi A + νmin B ≤ νi A + B ≤ νi A + νmax B  for all i.

4. A < A + B .

5. A + B ≤ A exp νmax B tr A−1 .

When A ≺ C for another positive definite matrix C, we can apply above results with 
B = C − A ≻ 0 to obtain analogous inequalities.

Proof. The eigenvalues of I + B are given by 1 + νi B  and those of I + B −1 by 

1/ 1 + νi B < 1, so we have I + B −1 ≺ I. This result holds when B is replaced by 

A−1/2BA−1/2 and thus implies that

v⊤ A + B −1v = v⊤A−1/2 I + A−1/2BA−1/2 −1A−1/2v⊤

  < v⊤A−1/2A−1/2v⊤

for v ≠ 0. Hence we have A + B −1 < A−1.

To prove Property 2, we first show I + B −1 ≻ I − B. By applying a change of basis if 

necessary, we can assume that B is diagonal. Since 1 + Bii
−1 > 1 − Bii, we have

v⊤ I + B
−1

v = ∑
i

1 + Bii
−1vi

2 > ∑
i

1 − Bii vi
2 = v⊤ I − B v .

Since the result I + B −1 ≻ I − B holds when B is replaced by A−1/2BA−1/2, we obtain
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A + B −1 = A−1/2 I + A−1/2BA−1/2 −1A−1/2

  ≻ A−1/2 I − A−1/2BA−1/2 A−1/2

  = A−1 − A−1BA−1 .

Property 3 is Theorem 8.1.5 of Golub and Van Loan (2012) and immediately implies 

Property 4.

For Property 5, observe that

A + B =
i

νi A + B ≤
i

νi A + νmax B .

Taking the logarithm and applying the inequality log 1 + x ≤ x, we have

log A + B − log A ≤ ∑
i

log 1 + νmax B
νi A

  ≤ ∑
i

νmax B
νi A

  = νmax B tr A−1 .

□

Proof of Proposition C.2. Throughout the proof, we use the notation Φ∞ = 1
2X⊤Xζ

−2
I so 

that Φτλ = Φ∞ + τ−2Λ−2. By Proposition C.4, we have

ζ−2I + τ−2Λ−2 ≥ ζ−2I

Φ∞ + τ−2Λ−2 ≤ Φ∞ exp maxjτ−2λj
−2 tr Φ∞

−1 .

The above inequalities imply that

ζ−2I + τ−2Λ−2 1/2

Φ 1/2 ≥
ζ−2I
Φ∞

exp − 1
minjτ2λj

2 tr Φ∞
−1 .

(C.5)

Also by Proposition C.4, we have

ζ−2I + τ−2Λ−2 −1   ≺ ζ2I

Φ∞ + τ−2Λ−2 −1 ≻ Φ∞
−1 − Φ∞

−1τ−2Λ−2Φ∞
−1 .

We therefore have
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w⊤ Φτλ
−1− ζ−2I + τ−2Λ−2 −1 w

≥ w⊤Φ∞
−1w − w⊤Φ∞

−1τ−2Λ−2Φ∞
−1w − ζ−2 ∥ w ∥2

≥ w⊤Φ∞
−1w − 1

minjτ2λj
2 ∥ Φ∞

−1w ∥2 − ζ−2 ∥ w ∥2 .

(C.6)

From (C.5) and (C.6), we see that for all minjτλj ≥ R

δτλ ≥ Cn
ζ−2I 1/2

Φ∞
1/2 exp w⊤Φ∞

−1w − ζ−2 ∥ w ∥2 − tr Φ∞
−1 + ∥ Φ∞

−1w ∥2

R2 .

□

Proof of Proposition C.3. Note that

inf
β

N β; μ, Φ−1

N β; μ′, Φ′ − 1 = Φ 1/2

Φ′ 1/2exp 1
2inf

β
Δ β ,

where

Δ β = β − μ′ ⊤Φ′ β − μ′ − β − μ ⊤Φ β − μ .

The quadratic function Δ β  has a unique global minimum since the Hessian ∂β
2 Δ = Φ′ − Φ is 

positive definite by our assumption. Differentiating Δ β , we see that the minimum occurs at 

β̂ such that

Φ′ β̂ − μ′ − Φ β̂ − μ = 0,  or equivalently β̂ = Φ′ − Φ −1 Φ′μ′ − Φμ .

The minimum Δ = Δ β̂  can be expressed as

Δ = − μ′ − μ ⊤Φ β − μ

  = − μ′ − μ ⊤Φ Φ′ − Φ −1 Φ′μ′ − Φμ − μ .

In the special case μ = Φ−1w and μ′ = Φ′ − 1w, we have

Δ = − μ′ − μ ⊤Φμ = − Φ′ − 1w − Φ−1w ⊤w = w⊤ Φ−1 − Φ′ − 1 w ≥ 0,

where the last inequality follows from Φ−1 ≻ Φ′ − 1. □
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Appendix D: Proof of Proposition 3.10 and 3.11

Proof of Proposition 3.10. Winkelbauer (2012) tells us that a negative moment of Gaussian 

is given by

E β

−α

=
Γ 1 − α

2

2
α
2 π

σ−αM α
2 , 1

2 , − μ2
2σ2 ,

where M ⋅ , ⋅ , ⋅  is Kummer’s confluent hypergeometric function (see Proposition D.1). 

To complete the proof, therefore, it suffices to show that M α
2 , 1

2 , − μ2
2σ2  is bounded by the 

smaller of 1 and the function D μ/σ  as given in (3.14).

Since α/2 < 1/2, Proposition D.1 tells us that M α
2 , 1

2 , − μ2
2σ2  is bounded by 1 and admits the 

integral representation

M α
2 , 1

2 , − μ2
2σ2 = 1

B α
2 , 1 − α

2 0

1

1 − u

1 − α
2 − 1

u
α
2 − 1exp − μ2

2σ2u du .

(D.1)

To bound the integral, we break up the domain of integration into [0, 1/2] and [1/2, 1] and 

observe that

∫
1/2

1
(1 − u)

1 − α
2 − 1u

α
2 − 1exp − μ2

2σ2u du ≤ 21 − α
2 exp − μ2

4σ2 ∫
1/2

1
(1 − u)

1 − α
2 − 1 du

= 2
5
2 − α
1 − α exp − μ2

4σ2 ,

(D.2)

and that

∫
0

1/2
(1 − u)

1 − α
2 − 1u

α
2 − 1exp − μ2

2σ2u du ≤ 21 − 1 − α
2 ∫

0

1/2
u

α
2 − 1exp − μ2

2σ2u du

= 2
1 + α

2 μ2
2σ2

− α
2∫

0

μ2
4σ2 v

α
2 − 1exp −v dv

≤ 2
1 + α

2 μ2
2σ2

− α
2∫

0

∞
v

α
2 − 1exp −v dv

= 2
1
2 + α μ

σ
−α

Γ α
2 .

(D.3)
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By (D.1), (D.2), and (D.3), we obtain

M α
2 , 1

2 , − μ2
2σ2 ≤ 1

B α
2 , 1 − α

2

2
5
2 − α
1 − α exp − μ2

4σ2 + 2
1
2 + αΓ α

2
μ
σ

−α

□

Proposition D.1. For b > a > 0, Kummer’s confluent hypergeometric function 1) satisfies the 
inequality M a, b, z ≤ max 1, exp z  and 2) admits the integral representations

M a, b, z = 21 − bez/2
B a, b − a ∫

−1

1
(1 − u)b − a − 1(1 + u)a − 1ezu/2 du

(D.4)

= 1
B a, b − a ∫

0

1
(1 − u)b − a − 1ua − 1ezu du .

(D.5)

Proof. Kummer’s function can be represented as the following infinite series (Gradshteyn 

and Ryzhik 2014, Section 9.210):

M a, b, z = 1 + a
b

z
1! + a a + 1

b b + 1
z2
2! + a a + 1 a + 2

b b + 1 b + 2
z3
3! + … .

Since b > a > 0, the series representation immediately implies

M a, b, z ≤ 1 + z
1! + z2

2! + z3
3! + … = exp z .

(D.6)

for z ≥ 0. For z ≤ 0, we first note that

M a, b, z = exp z M b − a, a, − z

(D.7)

by the identity (9.212.1) in Gradshteyn and Ryzhik (2014). Since b > b − a > 0 and −z ≥ 0, 

we can apply our previous bound (D.6) to conclude that M b − a, a, − z ≤ exp − z . 

Combined with (D.7), this yields M a, b, z ≤ 1 for z ≤ 0.

The integral representation (D.4) is given in Section 9.211 of Gradshteyn and Ryzhik (2014). 

To obtain (D.5), we apply the change of variable v = 1 + u /2:
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M a, b, z = 21 − bez/2
B a, b − a

0

1

2 1 − v
b − a − 1

2v
a − 1

ez 2v − 1 /22 dv

= 1
B a, b − a 0

1
1 − v

b − a − 1
va − 1ezv dv

□

Proof of Proposition 3.11. A conditional precision (in expectation) is always larger than the 

marginal one, so we have

σj
−2 ≤ Σ−1

jj
= ζ−2 + τ−2λj

−2 + ∑
i = 1

n
ωixij

2 .

Exponentiating both sides of the inequality, we obtain

σj
−α ≤ ζ−2 + τ−2λj

−2 + ∑
i = 1

n
ωixij

2
α/2

≤ ζ−α + τ−αλj
−α + ∑

i = 1

n
ωixij

2
α/2

(D.8)

≤ ζ−α + τ−αλj
−α + 1 + α

2 ∑
i = 1

n
ωixij

2 − 1 ,

(D.9)

where (D.8) follows from the property of Lα-norm a + b α ≤ a α + b α and (D.9) from 

the Taylor expansion of the concave function x xα at x = 1. □

Appendix E: Properties of Bayesian bridge prior

Bayesian bridge is characterized by the density of βj ∣ τ given as

π β ∣ τ ∝ τ−1exp − β /τ a .

(E.1)
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We obtain the global-local representation of (E.1) with the conditional β ∣ τ, λ N 0, τ2λ2

when

πloc λ ∝ λ−2πst λ−2/2 ,

where πst ⋅  denote the density of the one-sided stable distribution, characterized by location 

μ = 0, skewness β = 1, characteristic exponent a/2, and scale c = cos aπ/4 2/a (Hofert, 2011). 

This follows from the Laplace transform identity for the stable distribution:

exp − β /τ a = 1
2

0

∞

exp − ϕβ2

2τ2 πst
ϕ
2 dϕ

  ∝
0

∞
N β; 0, τ2ϕ−1 π ϕ dϕ,

for π ϕ ∝ ϕ−1/2πst ϕ/2 , the density of ϕ = λ−2.

We can characterize the behavior of πloc λ  at λ ≈ 0 from the following asymptotic behavior 

of the stable distribution as x 0 (Nolan, 2018).

πst x 1
x 1 + a sin ϖa Γ a + 1

ϖ

where ϖ ≈ 3.14159 is Archimedes' constant. In particular, we have

πloc λ = O λ2a  as λ 0 .

The availability of the marginal π βj ∣ τ = ∫ N βj; 0, τ2λj
2 πloc λj dλj allows for a Gibbs update 

of τ from the posterior with the local scale parameters λj’s marginalized out. More precisely, 

instead of drawing from τ ∣ β, λ, the Bayesian bridge Gibbs sampler can directly target the 

conditional

π τ ∣ β ∝ τ−p
j = 1

p
exp − βj

τ
a

πglo τ .

Since β ∣ τ belongs to the location-scale family, the reference prior is πglo τ ∝ τ−1 (Berger 

et al., 2015), which also happens to be a conjugate prior. More generally, in terms of the 

parametrization ϕ = τ−α, a prior ϕ Gamma shape  = s, rate = r   belongs to a conjugate family, 

yielding the posterior conditional

π ϕ ∣ β Gamma shape = s + p, rate = r + ∑j = 1
p βj .
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In the limit s, r 0, the gamma prior on ϕ recovers the reference prior πglo τ ∝ τ−1 which is 

invariant under reparametrization,

Appendix F: Sampler for local scale posterior under horseshoe prior

Our theoretical results on convergence rate assume the ability to sample independently from 

the conditionals λj ∣ βj, τ for j = 1, …, p. While not necessarily trivial, this task is typically 

quite manageable given the wide range of algorithms available to deal with univariate 

distributions (Devroye, 2006; Ripley, 2009).

As an illustration, we present a simple rejection sampler for the conditional λj ∣ βj, τ under the 

prior πloc λj ∝ 1/ 1 + λj
2  — corresponding to the horseshoe prior, arguably the most popular 

of the existing shrinkage priors (Bhadra et al., 2017). The rejection sampler, as we will show, 

has uniformly high acceptance probability for all βj and τ with the minimum acceptance 

probability ≈ 0.6975 (Figure F.3). On the precision scale ηj = λj
−2, the prior is given by

πloc ηj = πloc λj dλ/dηj ∝ 1
1 + ηj

−1 ηj
−3/2 = 1

ηj
1/2 1 + ηj

.

The full conditional ηj ∣ βj, τ has the density

π ηj ∣ βj, τ ∝ πloc ηj π βj ∣ τ, ηj ∝ 1
1 + ηj

exp −ηj
βj

2

2τ2 .

The task of sampling from the local scale posterior, therefore, boils down to that of sampling 

from the family of univariate densities

π η ∝ 1
1 + ηexp −bη for b > 0 .

(F.1)

To sample from (F.1), the online supplement of Polson et al. (2014) describes a slice 

sampling approach and Makalic and Schmidt (2015) a data augmentation method. However, 

we find that both approaches suffer from slow-mixing as b 0 and the slow-decaying term 

1 + η −1 becomes significant (Figure F.1 and F.2).

F. 1 Rejection sampler algorithm

Our rejection sampler acts on a transformed parameter ψ = log 1 + η  that maps back as 

η = eψ − 1. The density of ψ is given by

π ψ ∝ π η dη/dψ = 1
eψ exp −beψ eψ = exp −beψ  on ψ ≥ 0 .

We now define a function gb that upper bounds the unnormalized target density
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fb ψ ≔ exp −beψ .

For b ≥ 1, we set

gb ψ = exp − b 1 + ψ ,

which coincides with an unnormalized density of the distribution exp rate  = b . For b < 1, we 

set

gb ψ = exp − b  for ψ ≤ log 1/b
exp − 1 − ψ − log 1/b  for ψ ≥ log 1/b ,

which coincides with an unnormalized density of a mixture of Uniform 0, log 1/b  and 

Exp(1) shifted by log 1/b . To draw a random variable X from this mixture, we set 

X Uniform  0, log 1/b  with probability log 1/b / log 1/b + eb − 1  and X − log 1/b exp 1
otherwise. R and Python code of the rejection sampler are available at https://github.com/

aki-nishimura/horseshoe-scale-sampler.

Figure F.1: 
Trace and auto-correlation plots when slice sampling η from (F.1) as proposed in Polson 

et al. (2014). For the two different values of b = βj
2/2τ2, the auto-correlations at stationarity 

are computed from 10,000 iterations of the sampler to demonstrate how the mixing rate 

degrades as b 0.
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Figure F.2: 
Trace and auto-correlation plots when sampling η from (F.1) with the data-augmentation 

scheme of Makalic and Schmidt (2015). The auto-correlations at stationarity are computed 

from 10,000 iterations of the sampler.
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Figure F.3: 
Acceptance probability of the proposed rejection sampler as a function of b = βj

2/2τ2. 

The probability is uniformly lower-bounded and increases to 1 as b 0 and b ∞ (see 

Theorem F.1). The minimum probability is ≈ 0.6975.

F. 2 Analysis of acceptance probability

The acceptance probability of a rejection sampler is given by the ratio of the integrals of the 

target to the bounding density (Ripley, 2009). In particular, the rejection sampler described 

in Section F.1 has the acceptance probability

A b = 0
∞fb η dη
0
∞gb η dη

.

(F.2)

Figure F.2 plots the acceptance probability A b , evaluated to high accuracy via numerical 

integration of the integrals in (F.2), and supports the theoretical results below.

Theorem F.1. The acceptance probability A b  is uniformly lower bounded over b > 0 by a 
positive constant. Moreover, A b  converges to 1 as b 0 and b ∞.

Proof. We can show that both the denominator and numerator of (F.2) depend continuously 

on b, and so does A b , by a simple application of the dominated convergence theorem. The 
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continuity of A b  implies a uniform lower bound on b ∈ 0, ∞  as soon as we establish 

A b 1 towards the boundary b 0 and b ∞.

We establish a lower bound on the acceptance probability (F.2) by explicitly computing the 

denominator and then lower bounding the numerator. We first consider the case b ≥ 1, when 

the denominator is given by

∫
0

∞
gb η dψ = ∫

0

∞
exp −b 1 + ψ dψ = b−1e−b .

(F.3)

Then, using Taylor’s theorem and the fact d2

 dψ2eψ = eψ, we have

0 ≤ eψ − 1 + ψ ≤ ψ2 max
ψ′ ∈ 0, ψ

eψ′ = ψ2eψ .

The above inequality in particular implies that

fb ψ = exp −beψ ≥ exp −b 1 + ψ exp −bψ2eψ .

(F.4)

We now apply (F.4) to lower bound the numerator of (F.2); for any L > 0,

∫
0

∞
exp −beψ dψ ≥ ∫

0

L
exp −b 1 + ψ exp −bψ2eψ dψ

≥ exp −bL2eL ∫
0

L
exp −b 1 + ψ dψ

= b−1e−bexp −bL2eL 1 − e−bL .

(F.5)

From (F.3) and (F.5), we obtain the following lower bound on the acceptance probability, 

which holds for any L > 0:

A b ≥ exp −bL2eL 1 − e−bL .

Choosing L = log κb /b with κ > 1, for example, we obtain the lower bound

A b ≥ exp − logκb 2
b κ1/bb1/b 1 − 1

κb .

(F.6)
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It is straightforward to show that, for example by the derivative test, the function b b1/b

has the global maximum exp e−1  on b > 0. We can therefore simplify the lower bound (F.6) 

to

A b ≥ exp −exp e−1 κ
1
b

logκb 2
b 1 − 1

κb .

(F.7)

The lower bound in (F.7), and hence A b , converges to 1 as b ∞.

We now turn to establishing a lower bound on the acceptance probability in the case b < 1. 

We have

0

∞
gb ψ dψ =

0

log 1/b
e−b dψ +

log 1/b

∞
exp − 1 − ψ + logb dψ

  = e−blog 1/b + e−1 .

(F.8)

To lower bound ∫ fb ψ dψ, we first observe that, by the change of variable ψ′ = ψ /log 1/b

0

log 1/b
exp −beψ dψ = log 1

b C b  where C b =
0

1
exp −b1 − ψ′ dψ′ .

(F.9)

On the interval ψ′ ∈ 0,1 , the integrand converges to 1 as b 0 and hence the dominated 

convergence theorem implies C b 1 as b 0. On the interval ψ ∈ log 1/b , ∞ , we have

∫
log 1/b

∞
exp −beψ dψ = ∫

log 1/b

∞
exp −belog 1/b eψ − log 1/b dψ = ∫

0

∞
exp −eψ dψ ≥ e−1C′ κ  for C′ κ

= exp −(logκ)2κ 1 − 1
κ ,

(F.10)

where the last inequality follows from (F.5) with b = 1 and L = log κ  for κ > 1. It follows 

from (F.8), (F.9), and (F.10) that for b < 1

A b ≥
log 1/b C b + e−1C′ κ

e−blog 1/b + e−1 ,

(F.11)

where limb 0C b = 1 and C′ κ ≈ 0.264 for κ = 1.57. The lower bound in (F.11), and hence 

A b , converges to 1 as b 0. □
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