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Abstract
Hearing loss is a common affection mainly resulting from irreversible loss of the sensory hair cells of the cochlea; therefore, 
developing therapies to replace missing hair cells is essential. Understanding the mechanisms that drive their formation will 
not only help to unravel the molecular basis of deafness, but also give a roadmap for recapitulating hair cells development 
from cultured pluripotent stem cells. In this review, we provide an overview of the molecular mechanisms involved in hair 
cell production from both human and mouse embryonic stem cells. We then provide insights how this knowledge has been 
applied to differentiate induced pluripotent stem cells into otic progenitors and hair cells. Finally, we discuss the current 
limitations for properly obtaining functional hair cell in a Petri dish, as well as the difficulties that have to be overcome prior 
to consider stem cell therapy as a potential treatment for hearing loss.
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Introduction

Hearing loss affects more than 16% of the worldwide 
population and this percentage may increase as a result of 
increased life expectancy. For the majority of patients, irre-
versible deafness results from an alteration of the auditory 
portion of the inner ear, the so-called sensorineural hearing 
loss. This type of deafness is mainly due to a loss of hair 
cells, the sensory cells that transform the mechanical signal 
of sound waves into electrical signals. The survival of hair 
cells can be impaired by exposure to loud sounds, environ-
mental toxins or ototoxic drugs, and mutations in numerous 
genes can also contribute to their death. Unfortunately, the 
absence of hair cells prevents sound amplification provided 
by hearing aids. Moreover, the lack of hair cells and the 
essential neurotrophic factors they secrete lead secondar-
ily to spiral ganglion neuron death, precluding the use of 
cochlear implants since these otic neurons constitute the 
first auditory relay to the central nervous system. Therefore, 

there is a need to develop stem cell therapy to be able to 
replace missing hair cells. In this review, we first provide a 
brief overview of the main steps involved in hair cell forma-
tion in vivo. We then describe impressive progress made to 
date in differentiating stem cells into hair cell-like cells, but 
also the numerous hurdles that still have to be considered 
and overcome before considering stem cell therapy to treat 
deafness.

Embryonic development of the cochlea

Understanding the molecular mechanisms underlying inner 
ear development is crucial to enable the successful differ-
entiation of pluripotent stem cells into hair cells in vitro. At 
the beginning of mammalian embryonic development, the 
fertilized egg—the zygote—undergoes a series of duplica-
tions to form the blastocyst, a structure composed of the 
trophoblast and the inner cell mass, which will give rise 
to the extraembryonic tissues and the embryo, respectively. 
The pluripotent inner cell mass cells will then generate the 
three germ layers. The first step of the inner ear develop-
ment consists of the formation of the non-neural ectoderm 
(NNE) (Fig. 1), a part of the anterior ectoderm. The ecto-
dermal germ layer starts to differentiate into NNE following 
BMP signalling activation around embryonic day 6.5–7.5 
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(E6.5–7.5) in mice [1] and approximately around E17–18 
in humans [2]. The NNE is characterised by the expression 
of different transcription factors, including Tfap2a, Tfap2c, 
Foxi1 and Gata3. The successive inhibition of BMP and 

Wnt pathways together with the activation of FGF signalling 
allows the formation of the preplacodal region (PPR) within 
the NNE [1, 3]. Several genes can be used as markers of the 
PPR, such as Six1, Six4, Eya1 and Eya4 [4]. The PPR further 

Fig. 1   Different steps of embryonic development from the blastocyst 
to the inner ear hair cells. Pluripotent inner cell mass of the blasto-
cyst can generate the three germ layers: the endoderm, the mesoderm 
and the ectoderm. Transient BMP activation induces the differentia-
tion of the ectoderm into the non-neural ectoderm (NNE), character-
ised by the expression of Tfap2a, Tfap2c, and Gata3. Combination of 
FGF activation, and Wnt and BMP inhibition leads to the formation 
of the preplacodal region (PPR) expressing Six 1, Eya1 and Eya4 
transcription factors. The difference cranial sensory organs arise from 

this PPR. Its most posterior part, the otic and epibranchial placode 
domain (OEPD) further differentiates into the otic placode under the 
control of FGF and Wnt pathways. Some otic placode-derived pro-
genitors will then differentiate into spiral ganglion neurons as other 
will proliferate in a region called the prosensory domain to give rise 
to the Sox2-positive prosensory progenitors. Through lateral inhibi-
tion of Notch signalling pathway, those progenitors will differentiate 
into hair cells and supporting cells
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differentiates into patches that will give rise to the differ-
ent cranial sensory organs around E8–9 in mice and E22 in 
humans. The combined expression of Pax8 and Pax2 defines 
the otic epibranchial placode domain (OEPD) [5, 6]. The 
specification of the otic placode from the OEPD is mediated 
by Wnt signalling that induces an increase of Pax2 expres-
sion [7]. Between E10 and E12 in mice, Sox2-positive otic 
progenitor cells proliferate in a region called the prosensory 
domain and will progressively become post-mitotic accord-
ing to an apex-to-base wave [8]. Shortly after cell cycle exit, 
the Sox2-positive otic progenitors differentiate either in sen-
sory hair cells or in supporting cells in an opposite base-to 
apex wave [9–11]. The hair cell fate is profoundly linked 
to the expression of the transcription factor Atoh1. Indeed, 
Atoh1 is initially expressed in nascent hair cells and acti-
vates its own transcription, as well as the expression of hair 
cell specific genes such as Pou4f3 [12]. Moreover, lateral 
inhibition of Atoh1 mediated by Notch signalling pathway 
leads to the differentiation of adjacent cells into supporting 
cells. Hair cells express Notch ligands—such as DELTA-1 
or JAGGED-2—that will activate trans-membrane Notch 
receptors of adjacent cells and lead to the upregulation of 
transcriptional inhibitors of Atoh1 such as Hes1 or Hes5 [13, 
14]. First hair cells appear around E15.5 in mice and around 
the gestational weeks 10–11 in humans, and are classically 
identified with specific markers such as parvalbumin, Myo-
sin 6 (MYO6) or Myosin 7a (MYO7A). Supporting cells 
can be identified following immunostaining with P27KIP1, 
HES5 or SOX2 antibodies [15].

Mouse embryonic stem cells

Mouse embryonic stem cells (mESCs) have been cultured 
for the first time in 1981 [16] on a feeder layer of mitotically 
inactivated mouse embryonic fibroblasts (MEFs) in presence 
of fetal calf serum (FCS). Several years later, feeder-free 
cultures of mESCs appeared following the identification of 
leukemia inhibitory factor (LIF) as the main factor secreted 
by fibroblasts [17, 18]. Later on, the activation of Wnt sig-
nalling using a GSK3 inhibitor has been reported to stimu-
late self-renewal of mESCs [19, 20]. In addition, the com-
bination of CHIR99021 (CHIR), a highly selective GSK3 
inhibitor, with a MEK1/2 inhibitor (PD0325901) preserves 
the pluripotent and proliferative state of mESCs [20]. This 
so-called 2i medium replaces efficiently FCS to maintain 
mESCs in culture.

It has been shown that mESCs display important tran-
scriptomic and DNA methylation differences depending on 
the medium used for their maintenance [21–23]. It seems 
that when maintained in 2i/LIF medium, mESCs are close 
to E3.75–E4.5 pre-implantation embryonic cells and are 
the so-called ground or naïve stem cells. When mESCs are 

cultured in serum/LIF condition, they present a pluripotency 
state closer to the one of post-implantation blastocyst cells, 
called epiblast stem cells or EpiSCs [24]. Interestingly, it 
is possible to switch from one condition to another in one 
passage just by changing the culture medium [25, 26]. It has 
been recently reported that culturing mESCs in 2i medium 
dramatically impacts their developmental potential and their 
chromosomal stability due to the long-term inhibition of 
MEK1/2. However, it seems that this issue can be overcome 
using a Src inhibitor instead of a MEK1/2 inhibitor [27].

Hair cell differentiation from mESCs

Over the years, numerous protocols have been developed 
to differentiate mESCs into hair cells (Fig. 2). For all of 
them, an initial step of embryonic bodies (EBs) formation 
is performed prior to culturing cells in adherent conditions 
to trigger the differentiation toward an ectodermal fate, con-
firming that EBs promote the secretion of differentiation fac-
tors. Several factors can be added to support the anterior 
ectodermal induction, e.g. transforming growth factor beta 
(TGF-β) and Wnt inhibitors, known to induce ectodermal 
fate, or insulin-like growth factor 1 (IGF-1), promoting ante-
rior ectoderm formation [28–32]. Activation of the FGF sig-
nalling pathway seems to be necessary for otic induction as it 
increases the expression level of different otic markers such 
as Pax2, Pax8 or Six1 [28–32]. Withdrawal of growth fac-
tors and serum was sufficient to observe specific markers of 
hair cells such as MYO7A and ESPIN [28]. Co-culture with 
different stromal cell types, including inactivated chicken 
utricle or mouse bone marrow ST2 line, helps to further 
differentiate the otic progenitors into more mature hair cells 
that harbour electrophysiologically functional hair bundles 
at their apical surface [30, 32, 33].

To be closer to in vivo embryogenesis, 3D culture models 
recently emerged with the advantage to favour self-organ-
isation of cells, the only way to obtain mature cell types 
in vitro. In these protocols, aiming at reproducing all the 
developmental steps leading to otic placode differentia-
tion, mESCs are cultured on ultra-low adherence plates to 
form aggregates. EBs are then exposed to TGF-β inhibitor 
(SB-431542) and BMP4 for a short period to induce a NNE 
fate. Cells are treated with BMP inhibitor (LDN-193189) to 
give rise to PPR cells and with FGF2 to direct them towards 
OEPD stage. This differentiation protocol considerably 
shortens the process of generating OEPD cells, as they are 
obtained after only 8 days in culture. At that time, aggregates 
are cultured in a maturation medium containing a Wnt acti-
vator (CHIR99021) and cells continue their self-organisation 
in complex structures. After 12 days of maturation, aggre-
gates present inner ear organoids containing a high number 
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of mechanosensitive hair cells (around 1500 per aggregate) 
but also cells expressing supporting cell markers [1, 34–36].

Human models

Mouse models are powerful research tools to study develop-
mental mechanisms as well as pathologies. However, many 
fundamental disparities exist between mice and human. Con-
sidering the inner ear development, the mouse cochlea is still 
immature at birth, while human cochlea is completely func-
tional at embryonic week 20. Moreover, numerous promis-
ing drugs failed to translate into the clinic mainly due to 
large discrepancies between mouse and human intracellular 
machinery. Several studies showed that genetic, molecular, 
immunologic and anatomic differences between humans and 
rodents hinder the ability to effectively mimic disease and 
predict toxicity [37–39]. Therefore, both human embryonic 
stem cells (hESCs) and human-induced pluripotent stem 
cells (hiPSCs) constitute a unique opportunity to create 
human-specific models.

Human embryonic stem cells (hESCs) were derived for 
the first time in 1998 by James Thomson and co-workers 
from human blastocysts [40]. These hESCs share com-
mon characteristics with mESCs, such as their capacity to 

proliferate indefinitely and their pluripotent status. How-
ever, major differences between mouse and human early 
embryonic development exist, especially regarding the 
extra-embryonic structures, and suggest that significant dif-
ferences could also exist between hESCs and mESCs. While 
both ES cells can be maintained in an undifferentiated state 
on MEF feeder cells, feeder-free cultures supplemented by 
LIF are not appropriate to maintain pluripotency of hESCs 
[40, 41], suggesting that other factors play a role to ensure 
their stem cell identity. The inability to maintain hESCs in 
2i medium reinforces this hypothesis.

Induced pluripotent stem cells

Although working with ESCs was a major step forward in 
disease modeling and a promising tool to find new therapeu-
tic approaches, the ethical considerations surrounding the 
use of ESCs but also their non-autologous state limits their 
potential for clinical applications. Takahashi and Yamanaka 
have overcome this issue in 2006 and 2007 with the trans-
duction of mouse or human fibroblasts with four key tran-
scription factors, C-MYC, KLF4, SOX2 and OCT3/4, induc-
ing their successful reprogramming. This process resulted in 
induced pluripotent stem cells (iPSCs) that have self-renewal 
and pluripotency properties comparable to ESCs [42, 43]. 

Fig. 2   Comparison of published protocols for hair cell-like cells dif-
ferentiation of mESCs. BMP bone morphogenetic protein, EB embry-
oid bodies, EGF epidermal growth factor, FGF fibroblast growth 

factor, IGF-1 insulin-like growth factor-1, LIF leukemia inhibitory 
factor, mESCs mouse embryonic stem cells, NNE non neural ecto-
derm, PPR pre placodal region, TGF-β transforming growth factor-β
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While SOX2 and OCT3/4 directly act to maintain pluripo-
tency [44, 45], the roles of the two tumour-related factors 
C-MYC and KLF4 are less clear. It seems that C-MYC may 
allow the binding of OCT3/4 and SOX2 to their target genes 
through histone acetylation [46], while KLF4 might reduce 
apoptosis associated to C-MYC activation [42, 43]. However, 
in addition to the use of these two tumour-related factors, 
this reprogramming technique involves retroviral vectors 
that are integrated in the host genome, increasing the risk 
of mutagenesis and cancer and limiting their potential for 
clinical applications [47]. Therefore, finding non-integrating 
safer options for reprogramming adult cells became essen-
tial, and several methods quickly emerged to transfect cells 
with the 4 transcription factors such as non-integrative Sen-
dai viral vectors [48], recombinant proteins [49] or synthetic 
modified mRNAs [50].

Mouse ESCs are easy to obtain and maintain in culture. 
Therefore, the advantage of working with mouse induced 
pluripotent stem cells (miPSCs) instead of mESCs for dif-
ferentiation into hair cells is not crucial, explaining why so 
little has been done with these cells.

Hair cell differentiation from hSCs

Two different strategies have been developed for generating 
hair cells from human ES or iPS cells (both called hSCs). 
While one method relies on the direct induction of otic pro-
genitors from hSCs, the other one involves intermediate 
stages of NNE and PPR differentiation (Fig. 3).

The induction of otic progenitors directly from hSCs has 
been achieved with the activation of FGF signalling path-
way, reliably giving rise to two kinds of otic progenitors: 
otic neural progenitors (ONPs) and otic epithelial progeni-
tors (OEPs) [51, 52]. Enrichment of OEPs was performed 
with sequential dissociation and maintenance in a prolifera-
tive medium. OEPs were then derived in cells expressing 
specific hair cell markers such as ATOH1, BRN3C and/or 
MYO7A after 2–4 weeks exposure to all-trans retinoic acid 
(RA) and epidermal growth factor (EGF), two factors pre-
viously demonstrated to promote hair cell differentiation in 
the mammalian cochlea. However, these differentiated cells 
failed to exhibit stereociliary hair bundles at their apical sur-
face [51, 52], indicating that these factors were not sufficient 
to drive the full program of hair cell maturation. However, 
electrophysiologically functional hair cell-like cells were 
derived from OEPs when co-cultured with chicken utricle 
stromal cells complemented or not with RA and EGF treat-
ment [52–54], demonstrating that, as for mES cells, chicken 
utricle stromal cells provide factors required for human hair 
cell development. Adding a step of PPR induction prior to 
the otic induction step also gave rise to hair cell-like cells 
[55]. Unfortunately, the hair cell differentiation efficiency of 
these protocols remained very low.

Recently, more complex protocols starting with a step of 
anterior NNE induction have been developed to reproduce/
simulate more adequately the normal embryonic develop-
mental stages. As demonstrated for mESC, a medium con-
taining TGF-β and WNT pathway inhibitors allows NNE 
generation from hESCs [56, 57], but replacing WNT inhibi-
tor by activators of FGF and BMP pathways seems even 
more efficient [2]. Then, activation of the FGF pathway is 
necessary to induce PPR fate [2, 56, 57] but high yields of 
PPR cells necessitate either RA [58] or inhibition of BMP 
pathway [2]. To progress throughout normal development, 
transient activation of Wnt signalling is necessary to obtain 
otic placode precursors. Indeed, starting from competent 
preplacodal tissue, activated Wnt pathway promotes the gen-
eration of otic placode tissue at the expense of the epidermis 
in embryonic mice [59]. Finally, induction towards hair cells 
can be actively led by culturing otic placode precursors in 
3D [2] while activation of BMP and FGF pathway failed to 
efficiently trigger full maturation [57] even in combination 
with Wnt activation [56].

Culturing cells in 3D allowed secretion of undefined 
factors favouring the differentiation process but also the 
self-organisation of cells, giving rise to complex vesicles 
containing hair cell-like cells, which harbour apical kino-
cilium and stereocilia bundles, as well as neurons expressing 
synaptic ribbon proteins specific of the mammalian sensory 
organs. However, derived hair cells exhibited electrophysi-
ological properties typical of vestibular hair cells in accord-
ance with the vestibular morphology of their stereocilia 
bundles, suggesting that additional signalling modulations 
are necessary to obtain cochlear hair cells. Taken together, 
these data prove how delicate the differentiation process is 
and the fundamental importance of deeply understanding the 
molecular mechanisms regulating the physiological inner 
ear development in humans. Indeed, modulating signalling 
pathways at the wrong time point could dramatically reduce 
the efficiency of the differentiation into hair cell-like cells 
[57]. Moreover, single cell analysis throughout the process 
of hSC monolayer differentiation into posterior placode 
cells revealed crucial differences between hESCs and hiP-
SCs cells [56] and even between two different iPS lines, 
indicating that culture conditions should be adapted to each 
cell line to promote otic lineage differentiation and finally 
hair cell-like cells.

Potentials and limitations of stem cells 
therapies

Replacement therapies relying on stem cells have been 
successfully led for more than 20 years. Indeed, mesen-
chymal stem cells (MSC) were first used in 1995 for bone 
marrow recovery after cancer treatment [60], and they are 
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now routinely used as curative therapy. Moreover, more 
than 2500 clinical trials involving stem cells have been per-
formed and 644 are still ongoing (https​://clini​caltr​ials.gov/), 
making them attractive for treating many diseases includ-
ing deafness. In 2015, a clinical trial was conducted to test 
the effectiveness of autologous bone marrow-derived MSC 
transplantation in patients with sensorineural hearing loss 
[61]. Cells were intravenously injected in two patients with 
no side effects reported 3 years after the injection. Unfortu-
nately, there was no hearing improvement 1, 6 or 12 months 
later. More recently, injection of autologous umbilical cord 
stem cells has started for the treatment of acquired hearing 
loss in 11 children. Audition, but also language develop-
ment, is recorded for 1 year after the transplantation (https​://

clini​caltr​ials.gov/). These clinical trials represent the starting 
point towards stem cell therapy for hearing loss.

For the last 15 years, impressive work has been per-
formed in the field of otic differentiation from both mouse 
and human SCs. Numerous studies succeeded to obtain func-
tional hair cell-like cells, even if the differentiation efficiency 
still remains low. However, these derived-hair cell-like cells 
exhibit a vestibular phenotype, characterised by a distinctive 
hair bundle at their surface and a typical electrophysiological 
response [1, 2, 34, 35, 62, 63], suggesting that more investi-
gations have to be pursued to unravel the factors implicated 
in cochlear hair cell differentiation. Nevertheless, the ability 
to derive hair cell-like cells from SCs combined with the lat-
est gene editing tool—CRISPR/Cas9 technology—is a new 

Fig. 3   Comparision of published protocols of human ES and iPS 
cell differentiation into hair cell-like cells. BMP bone morphogenetic 
protein, EB embryoid bodies, EGF epidermal growth factor, FGF 
fibroblast growth factor, hESCs human embryonic stem cells, hPSCs 

human induced pluripotent sten cells, IGF-1 insulin-like growth fac-
tor 2, LIF leukemia inhibitory factor, NNE non neural ectoderm, 
OEPD otic epibranchial placode domain, PPR pre placodal region, 
RA retinoic acid, TCF-β transforming growth factor-β

https://clinicaltrials.gov/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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promising step for treating human hereditary deafness [53, 
54]. Indeed, CRISPR/CAS9 system was successfully used 
to correct deafness-associated mutations in hiPSCs. The 
stem cell-derived hair cell-like cells that present mutation 
in MYO7 or MYO15 gene harboured defects in stereocilia 
bundles. The correction of gene mutation using CRISPR/
CAS9 technology restored the morphology of hair bundles 
and the functionality of the derived hair cells [53, 54].

Numerous issues need to be addressed before testing the 
efficacy of human hair cell-like cell transplantation. First, we 
need a homogeneous hair-cell like population to avoid trans-
plantation of non-differentiated cells and potential tumour 
formation [64]. Second, the grafted cells have to be able to 
integrate into the organ of Corti following their injection. 
This is not a trivial problem since the compartment of cell 
injection, the scala media, is filled with endolymph a unique 
compartment containing a particularly high potassium con-
centration that may be toxic for injected cells [65–67]. 
Moreover, if cells survive, they have to reach the damaged 
portion of the sensory epithelium and correctly integrate into 
it. Finally, the grafted cells should also establish functional 
synaptic connections with spiral ganglion neurons.

Many pitfalls have to be surpassed before using hiPSCs 
as a treatment for hearing loss. The emergence of hiPSCs 
offered a priceless answer to the ethical considerations of 
using ES cells and to the immuno-incompatibility of non-
autologous transplantations [68]. Unfortunately, significant 
variability exists between hiPSC lines [69] and conse-
quently developing iPSC lines for each patient is currently 
too expensive and time-consuming to be conceivable [68]. 
Nevertheless, in vitro human models are an essential tool 
for new drug discovery. Indeed, many clinical trials failed 
because of discrepancies between human and mouse metab-
olisms. Therefore, human stem cell-derived cultures repre-
sent an interesting alternative to animal models.

In summary, stem cell therapy has still many challenges 
to address prior applying it for hearing restoration. How-
ever, this field has quickly progressed over the last decade, 
and promises to make further major strides in the next few 
years, remaining an ambitious but relevant line of research 
for hearing loss treatment.
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