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Abstract
Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit 
excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhib-
iting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory 
synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development 
of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. 
Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at 
later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of 
endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development 
may be effective for treating epilepsy and epileptogenesis.
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Introduction

Epilepsy is a chronic neurological disease with various 
causes, characterized by paroxysmal recurrent episodes of 
symptoms, termed epileptic seizures. The estimated propor-
tion of the general population with epilepsy at any given 
time is between 3 and 7 per 1000 people [1] and its incidence 
is 50.4 per 100,000 people per year [2]. Treatment of epi-
lepsy usually starts with medications to prevent the occur-
rence of seizures. Most conventional antiepileptic drugs 
such as valproate, carbamazepine, phenytoin, and benzodi-
azepines act via blockade of  Na+ and/or  Ca2+ channels, or 
activation of  GABAA receptors [3]. However, approximately 
30 percent of patients have uncontrollable episodes of sei-
zures with current medications [4]. Hence, there is a critical 

unmet need for developing new anti-epileptic drugs with 
novel mechanisms of action.

Endocannabinoid signaling is a potential candidate for 
the development of a novel anti-epileptic treatment [5–7]. 
Endocannabinoids are a group of lipid substances that act 
as endogenous ligands for cannabinoid receptors to which 
active components of marijuana bind. Endocannabinoid 
signaling is known to regulate neuronal excitability via 
multiple mechanisms. In this review, we will first provide a 
brief overview of the physiological roles of endocannabinoid 
signaling in the control of synaptic transmission, synaptic 
plasticity, and neuronal excitability. We will then review and 
discuss how endocannabinoid signaling is involved in sei-
zures and epileptogenesis.

Endocannabinoids

Marijuana is prepared from the plant Cannabis sativa 
and has been used for recreation as well as treatment of a 
variety of diseases for thousands of years. In 1964, Δ-9-
tetrahydrocannabinol (Δ9-THC) was identified as the main 
psychoactive chemical component in marijuana [8]. Almost 
3 decades after the discovery of THC, cannabinoid type 1 
 (CB1) and type 2  (CB2) receptors were cloned in 1990 [9] 
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and 1993 [10], respectively. In parallel with these events, 
the endogenous ligands for cannabinoid receptors were 
sought. N-arachidonoyl ethanolamine (anandamide, AEA) 
and 2-arachidonoyl glycerol (2-AG) were eventually identi-
fied as the endogenous ligands for cannabinoid receptors in 
1992 [11] and 1995 [12, 13], respectively.

Physiological roles of  CB1 receptor‑mediated 
endocannabinoid signaling

The  CB1 receptor is a seven-transmembrane receptor cou-
pled to  Gi/o protein [9] and is mainly expressed in the central 
nervous system. Activation of the  CB1 receptor is known to 
influence a wide range of effector molecules including volt-
age-gated  Ca2+ channels,  K+ channels, and protein kinase 
A [14–16]. In 2001, endocannabinoids were discovered to 
function as retrograde messengers that mediate signals from 
depolarized postsynaptic neurons to presynaptic  CB1 recep-
tors and causing a transient suppression of synaptic trans-
mission [17–19]. Subsequently, endocannabinoid-mediated 
long-term suppression of synaptic transmission was reported 
[20–22]. Many studies thereafter have revealed detailed 
mechanisms of endocannabinoid-mediated retrograde sup-
pression of inhibitory and excitatory synaptic transmission. 
In particular, the finding that endocannabinoid-mediated 
retrograde synaptic suppression is abolished in mice defi-
cient in diacylglycerol lipase α (DGLα), a major enzyme 
that produces 2-AG from diacylglycerol [23], clarified that 
2-AG is the retrograde messenger for synaptic suppression 
[24, 25]. Although the majority of short-term and long-term 
depression (STD and LTD, respectively) of synaptic trans-
mission through the  CB1 receptor is mediated by 2-AG [26, 
27], AEA is reported to be necessary for LTD at several 
types of synapse [28, 29]. As the mechanism of endocannab-
inoid-mediated regulation of synaptic transmission has been 
described in detail in several excellent reviews [27, 30, 31], 
we will briefly describe the 2-AG- and AEA-mediated STD 
and LTD of excitatory and inhibitory synaptic transmission.

Production of 2-AG is induced by increased activity of 
postsynaptic neurons. 2-AG-mediated STD occurs when the 
postsynaptic neuron is depolarized and intracellular  Ca2+ 
levels are elevated following  Ca2+ influx through voltage-
gated  Ca2+ channels (Fig. 1). This form of 2-AG-mediated 
STD of excitatory or inhibitory synaptic transmission is 
called depolarization-induced suppression of excitation 
(DSE) or inhibition (DSI), respectively (Fig. 1). DSE/DSI 
is completely abolished in mice deficient in DGLα [24, 25]. 
Calcium influx into the postsynaptic neuron through NMDA 
receptors can also induce 2-AG-mediated STD [32] (Fig. 1). 
The increase in intracellular  Ca2+ levels to several μM alone 
can trigger the biosynthesis of 2-AG, termed  Ca2+-driven 
endocannabinoid release (Ca-ER) [33–35]. 2-AG then acts 
retrogradely upon  CB1 receptors on presynaptic terminals, 

which suppresses neurotransmitter release mainly by inhib-
iting presynaptic voltage-gated  Ca2+ channels (Fig.  1). 
Another pathway for 2-AG production is via  Gq/11 protein-
coupled receptors such as group I metabotropic glutamate 
receptors (mGluRs) and  M1/M3 muscarinic acetylcholine 
receptors. This pathway is termed receptor-driven endo-
cannabinoid release (RER) [34–37]. Activation of these 
receptors induces degradation of phosphatidylinositol into 
diacylglycerol by phospholipase Cβ, followed by production 
of 2-AG from diacylglycerol by DGLα (Fig. 1) [24, 25, 38]. 
The production of 2-AG is strongly elevated when the acti-
vation of  Gq/11 protein-coupled receptors occurs simultane-
ously with the elevation of intracellular  Ca2+ levels, termed 
 Ca2+-assisted receptor-driven endocannabinoid release (Ca-
RER) (Fig. 1) [33–35, 39]. 2-AG is thought to pass through 

Fig. 1  Schematic illustration of the molecular mechanisms underpin-
ning endocannabinoid-mediated short-term synaptic plasticity. When 
a large  Ca2+ elevation is caused by the activation of voltage-gated 
 Ca2+ channels (VGCC) or NMDA receptors, 2-arachidonoyl glycerol 
(2-AG) is generated in a diacylglycerol lipase (DGL) α-dependent 
manner. This process is termed  Ca2+-driven endocannabinoid release 
(Ca-ER). The target enzyme, which is activated by  Ca2+ eleva-
tion to produce diacylglycerol (DG), has yet to be identified. When 
phospholipase C (PLC) β is stimulated by the activation of metabo-
tropic glutamate receptors (mGluR) 1/5 or other  Gq/11-coupled recep-
tors, DG is generated from phosphatidylinositol 4,5-bisphosphate 
(PIP2) and converted to 2-AG by DGLα (receptor-driven endo-
cannabinoid release; RER). When the activation of  Gq/11-coupled 
receptors and intracellular  Ca2+ elevation occur simultaneously, 
the production of 2-AG is accelerated through PLCβ-dependent 
pathways  (Ca2+-assisted receptor-driven endocannabinoid release; 
 Ca2+-assisted RER). 2-AG is released from postsynaptic neurons, 
activates presynaptic  CB1 receptors, and induces transient suppres-
sion of transmitter release through inhibition of voltage-gated  Ca2+ 
channels and additionally through activation of  K+ channels
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the plasma membrane due to its lipophilic nature and diffuse 
towards presynaptic terminals. However, the precise details 
of these processes remain unknown. The amount of 2-AG 
may be regulated in postsynaptic neurons by 2-AG-hydro-
lyzing enzymes, namely α/β-hydrolase domain containing 
(ABHD) 6 and 12 [40], and by a 2-AG-oxygenizing enzyme, 
cyclooxygenase (COX)-2 [41].

At the presynaptic terminal, 2-AG binds to and activates 
 CB1 receptors as a full agonist [42] and suppresses neuro-
transmitter release mainly by inhibiting voltage-gated  Ca2+ 
channels [14, 16]. Furthermore, 2-AG suppresses neuro-
transmitter release through  CB1 receptors by inhibiting the 
action of a presynaptic protein, Munc18-1, through phos-
phorylation by extracellular-regulated kinase (ERK) [43]. 
The actions of 2-AG are terminated upon degradation by 
monoacylglycerol lipase (MGL). MGL is densely expressed 
in the cytoplasm of subsets of presynaptic terminals and in 
astrocytes surrounding excitatory and inhibitory synapses 
[44–46]. Due to the highly heterogeneous expression pat-
tern of MGL, 2-AG is thought to be degraded in a synapse 
non-specific manner [45].

In addition to STD, presynaptic forms of LTD are induced 
in several brain regions after activation of  CB1 receptors 
by 2-AG derived from postsynaptic neurons. Production 
and release of 2-AG in LTD occur in a similar manner to 
that in STD, but prolonged 2-AG production and resultant 
 CB1 receptor activation for several minutes are required for 
the induction of LTD. At inhibitory synapses in the hip-
pocampus, LTD induction requires 5–10 min of continuous 
activation of  CB1 receptors and presynaptic activity [47]. 
The activation of  CB1 receptors mobilizes  Gi/o protein, 
decreases cAMP production and PKA signaling, and even-
tually results in persistent reduction of the efficacy of neu-
rotransmitter release [48]. Once this machinery is switched 
on, the suppression is sustained without further activation 
of  CB1 receptors. Presynaptic proteins such as RIM1α [48], 
calcineurin [49], and potassium channels [50] are involved 
in the expression of 2-AG-mediated LTD. Furthermore, it 
has recently been shown that protein synthesis at presynaptic 
sites is necessary for the expression of  CB1-mediated LTD 
at inhibitory synapses in the hippocampus [51].

As described above, phasic suppression of synaptic trans-
mission at excitatory and inhibitory synapses may occur 
when the activity of postsynaptic neurons is elevated. In 
addition, endocannabinoid signaling is reported to medi-
ate tonic suppression of synaptic transmission at inhibitory 
synapses in the CA3 area of the hippocampus [52]. In this 
report, the authors tested the fidelity of synaptic transmis-
sion from cholecystokinin-positive inhibitory interneurons 
onto CA3 pyramidal cells, which usually show extremely 
low fidelity of synaptic transmission, in acute hippocampal 
slices treated with a  CB1 antagonist (AM251; 10 µM). They 
demonstrated that the  CB1 antagonist raised the fidelity of 

inhibitory synaptic transmission, suggesting that persistently 
active cannabinoid receptors mute the output of cholecys-
tokinin-positive inhibitory interneurons in the hippocampal 
CA3 area.

In addition to 2-AG, the other major endocannabinoid 
AEA is crucial for the induction of  CB1-mediated LTD 
at inhibitory synapses in the striatum [28] and amygdala 
[53]. In addition, AEA-mediated LTD through the vanil-
loid receptor TRPV1 was reported at perforant path-gran-
ule cell synapses in the dentate gyrus [54] and in dopamine 
D2 receptor-positive medium spiny neurons in the nucleus 
accumbens [55]. Biochemical pathways for the synthesis of 
AEA are not fully understood, but a relevant signaling cas-
cade involves the synthesis of N-acylphosphatidylethanola-
mine (NAPE) from phospholipid by N-acyltransferase [56] 
and the lysis of NAPE by NAPE-specific phospholipase D 
(NAPE-PLD) into AEA [57, 58]. AEA is cleaved by fatty 
acid amide hydrolase (FAAH) into arachidonic acid [59]. 
Similar to 2-AG, AEA is also degraded by COX-2 at post-
synaptic sites [60].

CB2 receptor‑mediated signaling

The  CB2 receptor is  Gi/o coupled and is the other canoni-
cal cannabinoid receptor that is involved in 2-AG-mediated 
signaling. This receptor is mainly expressed in immune cells 
such as T cells, B cells, and monocytes, and is responsi-
ble for the anti-inflammatory effects of cannabis. However, 
recent reports describe  CB2 receptor mRNA expression in 
neurons using fluorescent in situ hybridization [61, 62]. 
Although the expression of  CB2 receptor protein in neurons 
remains to be confirmed, several studies using  CB2 knockout 
mice demonstrated that  CB2 receptors were involved in the 
regulation of neuronal excitability and synaptic transmis-
sion. Li and Kim [63] demonstrated that the amplitude of 
field excitatory post-synaptic potentials and the magnitude 
of LTP at Schaffer collateral-CA1 pyramidal cell synapses 
were reduced in  CB2 knockout mice. In contrast, there was 
no difference in paired-pulse facilitation at the same syn-
apses between  CB2 knockout and wild-type littermates, sug-
gesting that the decrease in excitatory synaptic transmission 
is of postsynaptic origin. The authors claim that  CB2 recep-
tor signaling is required for maintaining excitatory synap-
tic transmission. In contrast, Stempel et al. compared  CB2 
knockout mice to DGLα knockout mice and reported that 
 CB2 receptor signaling mediated activity-dependent long-
lasting hyperpolarization and inhibition of CA3 pyramidal 
cells [62]. This study suggests that  CB2 receptor signaling 
has inhibitory actions on the excitability of hippocampal 
CA3 pyramidal neurons. In line with this study, excitabil-
ity of dopamine neurons in the ventral tegmental area was 
reported to decrease through activation of  CB2 receptors 
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[64]. Thus, the effects of  CB2 receptor signaling on neuronal 
excitability may differ in different brain areas and cell types.

Because of the suppressive effect of  CB1 receptor signal-
ing on synaptic transmission and the potential regulation of 
neuronal excitability by  CB2 receptors, many studies have 
been conducted regarding the roles of endocannabinoid sign-
aling in the control of neuronal hyperexcitability, seizures, 
and epilepsy. Next, we provide an overview of studies on 
human epileptic patients with respect to endocannabinoid 
signaling.

Endocannabinoid signaling and epilepsy

Possible involvement of endocannabinoid signaling 
in epileptic patients

The brains of patients with mesial temporal lobe epilepsy 
(mTLE) with hippocampal sclerosis show reduced expres-
sion of DGLα mRNA compared to specimens from a non-
epileptic control group [65] (Fig. 2). In contrast, no differ-
ences were found between control and epileptic patients 
in the expression levels of NAPE-PLD, MGL, or FAAH 
mRNA. These results suggest that there may be a selective 
reduction in 2-AG production, whereas 2-AG degradation, 
AEA production, and AEA degradation remain normal 
in the hippocampi of patients with mTLE. On the other 

Fig. 2  Schematic illustration 
of changes in 2-AG and  CB1 
receptor signaling observed in 
epileptic patients and animal 
models of epilepsy. Localization 
and expression of molecules 
involved in endocannabinoid 
production and degradation 
around synapses in a non-
epileptic control brain (upper 
panel) and in an epileptic brain 
(lower panel). A significant 
decrease in the expression of 
DGLα may result in decreased 
production of 2-AG during the 
ictal phase. The expression 
of  CB1 receptors decreases at 
excitatory synapses, whereas 
it increases at axon terminals 
of cholecystokinin-positive 
(CCK+) interneurons. The 
expression of  CB1 receptors 
is detectable in hippocampal 
astrocytes in epileptic patients, 
whereas it is hardly detectable 
in non-epileptic control tissue. 
The expression of monoacylg-
lycerol lipase (MGL) and α/β-
hydrolase domain containing 6 
(ABHD6) remains unchanged. 
These changes are thought to 
underlie the excessive glu-
tamatergic transmission and 
scarce GABAergic inhibition 
in the epileptic brain. The 
expression of cyclooxygenase 
(COX)-2 increases in hip-
pocampal astrocytes in severe 
epileptic patients, which may 
reduce  CB1 receptor signal-
ing in the astrocytes of these 
patients
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hand, the concentration of AEA in the cerebrospinal fluid 
is reduced in untreated patients with mTLE, whereas the 
level of 2-AG was similar between untreated patients and 
control subjects [66]. In this report, however, the concen-
trations of 2-AG and AEA were measured in the non-ictal 
state. It is, therefore, possible that the concentrations may 
differ during ictal activity when the production of endo-
cannabinoids may be enhanced.

Ludányi et al. reported that the mRNA level of  CB1 
receptors in the hippocampus was reduced in patients with 
mTLE compared to control subjects [65]. This reduction 
was even more significant in mTLE patients with hip-
pocampal sclerosis, suggesting a negative correlation 
between mRNA levels and the severity of disease. Immu-
nohistochemical analysis of  CB1 receptor expression in the 
inner molecular layer of the dentate gyrus demonstrated a 
significant reduction in mTLE patients, and the expression 
had almost completely disappeared in sclerotic hippocam-
pal samples [65]. Further analysis with electron micros-
copy revealed that in addition to a decrease in the total 
number of excitatory synapses, the loss of  CB1 receptors in 
excitatory axon terminals was responsible for the reduced 
expression of  CB1 receptors in the inner molecular layer 
(Fig. 2) [65]. No changes were observed in the expression 
levels of  CB1 receptors at inhibitory axon terminals or in 
the number of inhibitory axon terminals in the dentate 
gyrus. In the hippocampus proper of mTLE patients with 
hippocampal sclerosis, an increase in the expression of 
 CB1 receptors was observed in the stratum oriens of the 
hippocampal CA2 and CA3 regions [65].

In contrast to the report described above, Maglóczky et al. 
found an increase in the expression of  CB1 receptors in the 
hippocampal dentate gyrus in patients with mTLE [67]. A 
previous study [68] using the same antibody against  CB1 
receptors reported that the antibody exclusively labeled  CB1 
receptors at inhibitory presynaptic terminals that expressed 
a high density of  CB1 receptors. Therefore, it is reasonable 
to assume that the expression of  CB1 receptors at inhibi-
tory synapses may be increased in patients with mTLE 
(Fig. 2). However, it was unclear in the report by Maglóczky 
et al. [67] whether  CB1 receptors were expressed at excita-
tory synapses in the dentate gyrus of mTLE patients. As 
mentioned previously, increased  CB1 receptor expression 
at inhibitory synapses potentially causes disinhibition of 
postsynaptic neurons in a tonic and phasic manner. Consist-
ent with the report by Maglóczky et al. [67], another study 
using positron emission tomography showed that in mTLE 
patients with hippocampal sclerosis, the availability of  CB1 
receptors in the ipsilateral temporal lobe was increased com-
pared to healthy controls [69]. Based on these results, the 
disruption or strengthening of endocannabinoid signaling 
at excitatory synapses or inhibitory synapses, respectively, 
may potentially underpin the increased excitability of neural 

circuits which underlies the chronic susceptibility to seizures 
observed in epileptic patients.

Recently, it was reported that over half of the hippocam-
pal specimens taken from epileptic patients expressed  CB1 
receptors in astrocytes. In contrast, there was minimal 
expression of  CB1 receptors in hippocampal astrocytes in 
non-epileptic control subjects (Fig. 2) [70]. In mice, activa-
tion of astrocytic  CB1 receptors caused glutamate release 
from astrocytes [71], suggesting that the elevated expression 
of  CB1 receptors in astrocytes observed in epileptic patients 
may increase the excitability of neural circuits. However, the 
influence of increased astrocytic  CB1 receptor expression 
may be small in patients with hippocampal sclerosis, since 
the expression of an endocannabinoid degradation enzyme, 
COX-2, is elevated in the hippocampal astrocytes of these 
patients [72].

Studies on genetic mutations in human epileptic patients 
may reveal causal relationships between the changes in 
endocannabinoid signaling and epilepsy. It is known that 
patients with mTLE often have histories of febrile seizures. 
When the frequency of single nucleotide polymorphisms 
(SNPs) in CNR1 gene was compared between patients who 
experience febrile seizures and normal control subjects, no 
significant differences were observed [73], suggesting that 
SNPs in CNR1 gene are not the cause of febrile seizures. 
Recently, a paper investigating the contribution of human 
genetic variations in DAGLA and CNR1 to disease pheno-
types was published [74]. In this study, a high incidence of 
seizures was observed in people with mutations in DAGLA, 
suggesting that the disruption of 2-AG-mediated endocan-
nabinoid signaling in humans may cause epilepsy. The 
DAGLA mutation observed in this study may also contribute 
to the decrease in mRNA reported by Ludányi et al. [65].

In the next section, we review how alterations in endo-
cannabinoid signaling are implicated in animal models of 
epilepsy.

Epileptogenesis

Epilepsy is caused by various factors, ranging from heredi-
tary genetic mutations to traumatic brain injuries in adults. 
A group of patients with epilepsy have a specific episode 
such as febrile seizures, central nervous system infections, or 
traumatic brain injuries several years before the onset of par-
oxysmal, recurrent episode of seizures. The period between 
the initial insult and the onset of epileptic seizures is called 
the latent period. During the latent period, it is hypothesized 
that anatomical and physiological changes gradually occur, 
resulting in the development of epileptic foci from which 
seizures arise. This process is known as epileptogenesis.

To investigate epileptogenesis, two different strategies are 
typically employed in animal models. One strategy involves 
the application of severe initial insults such as sustained, 
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generalized tonic–clonic seizures called status epilepticus 
(SE), prolonged febrile seizures, and traumatic brain injury. 
These severe insults trigger epileptogenic changes in neural 
circuits and usually result in spontaneous seizures several 
weeks after the initial insults. Spontaneous seizures in these 
models are also useful for the evaluation of ictogenesis in 
the epileptic brain. The other strategy is kindling, in which 
sub-convulsive stimuli are initially applied in an intermittent 
fashion instead of strong initial insults. This makes it pos-
sible to observe the process of epileptogenesis in a stepwise 
manner [75]. In conventional kindling, electrical stimula-
tion to the lateral amygdala or to the perforant path is used 
as a model of mTLE. Other protocols for kindling include 
transcorneal electrical stimulation and chemical kindling 
with pentylenetetrazole (PTZ) or picrotoxin. PTZ and pic-
rotoxin are  GABAA receptor antagonists and are considered 
to evoke seizures by strong disinhibition. All of the kindling 
protocols fulfill the condition of “seizure beget seizure”, 
meaning that a seizure promotes epileptogenesis.

The disruption of long-term synaptic plasticity via 
blockade of NMDA receptor or mGluR1/5 receptor sign-
aling affects epileptogenesis [76–78]. Moreover, electrical 
stimulation protocols used for the induction of LTD delay 
kindling epileptogenesis [79, 80]. As endocannabinoid sign-
aling mediates long-term synaptic plasticity, it is possible 
that the initial insult strongly mobilizes 2-AG and AEA, 
which may induce long-term synaptic plasticity and affect 
the process of epileptogenesis. In addition, intense and 
prolonged activation of  CB1 receptors by 2-AG can cause 
downregulation of cannabinoid receptors [81–83], possibly 
resulting in the disruption of 2-AG signaling. Furthermore, 

endocannabinoids are known to exert protective effects on 
neurons [84]. Given that neuronal damage caused by brain 
injury, infection, seizures, or hypoxia can trigger epilep-
togenesis, neuroprotection by endocannabinoid signaling 
may prevent epileptogenesis.

In this section, we provide an overview of stud-
ies on the involvement of endocannabinoid signaling in 
epileptogenesis.

Involvement of 2‑AG and AEA (Fig. 2, Table 1)

The activation of mGluR1/5 receptors and the increase in 
intracellular  Ca2+ concentration induce the production of 
2-AG. It is highly likely that this process occurs during SE or 
febrile seizures. Indeed, the production of 2-AG is enhanced 
by seizures [85, 86]. Intraperitoneal (i.p.) administration of 
pilocarpine, a muscarinic acetylcholine receptor agonist, 
causes SE. When the concentration of 2-AG was assessed 
in rat hippocampi 15 min after the initiation of pilocarpine-
induced SE (375 mg/kg, i.p.) with high-performance liquid 
chromatography, the level of 2-AG exhibited an approxi-
mately 1.5-fold increase compared to that of control [85]. 
Elevation of 2-AG levels was also observed in the brains of 
animals with kainate-induced epilepsy [86]. Kainate is an 
agonist of the kainate-type ionotropic glutamate receptor and 
triggers SE when administered intraperitoneally in a man-
ner similar to pilocarpine. In the aforementioned report, the 
authors measured the level of 2-AG in brain tissue 100 min 
after kainate (30 mg/kg, i.p.) or vehicle injection in 8-week-
old rats and observed that the concentration was 1.5-fold 
higher in the kainate-treated group than in the control group 

Table 1  Epileptogenesis and ictogenesis modulated by manipulations of endocannabinoid signaling

Cells in the leftmost column indicate the manipulations and those in the first and second rows denote the types of animal models. The observed 
effects are represented as follows: ○: suppresses ictogenesis or epileptogenesis, ≈: no change, ×: promotes ictogenesis or epileptogenesis, ?: 
unknown. Excitatory: results observed in mice with excitatory neuron-specific deletion of cannabinoid type 1  (CB1) receptors; inhibitory: results 
observed in mice with inhibitory neuron-specific deletion of  CB1 receptors

Epileptogenesis Ictogenesis

Kainate 
Pilocarpine 
Febrile seizure 
Trauma
Spontaneous

Kindling Kainate
Pilocarpine

Pentylenetetrazole
Bicuculine

Electrical stim. Spontaneous
seizure

2-AG↑ × [95] ○ [90, 92, 93] ○ [90] ○ [117], ≈ [93] ○ [90, 92, 93] ○ [90, 117]
2-AG↓ ○ [95] × [90] × [90], ≈ [114] ? × [90] ?
AEA↑ ○ [100], × [101] ≈ [99] ○ [86, 122], × [101] ○ [123], × [101] ○ [121] ?
CB1↑ ○ [111], × [101] ○ [99] ○ [130, 131] × [123], ○ [136] ○ [134, 135] ○ [85]
CB1↓ ○ [105, 108, 110]

× [113]
≈ [90, 112] × [87, 132]

× Excitatory [129]
≈ Inhibitory [129]

≈ [117], × [123] × Excitatory [112]
○ Inhibitory [112]

× [85, 90]

CB2↑ ? ? ? × [139] ? ?
CB2↓ × [113] ≈ [90] × [90] × Kindled rat[138]

× [117]
≈ [137]
× [90]

?
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[86]. They also measured the enzymatic activity of DGLα, 
MGL, NAPE-PLD, and FAAH under the same schedule 
and found that the enzymatic activity of DGLα increased, 
whereas that of NAPE-PLD decreased after kainate admin-
istration. In contrast, the activity of MGL and FAAH was the 
same between the kainate and vehicle-treated groups. Inter-
estingly, the changes in endocannabinoid levels showed the 
opposite trend in 14-day-old rats, whereby 2-AG decreased 
whereas AEA increased significantly after kainate treatment 
[86], suggesting that the changes may depend on the age of 
animal.

In contrast to these reports, other studies have failed to 
report changes in 2-AG levels in kainate-induced epilepsy. 
Marsicano et al. used the kainate-induced epilepsy model 
and measured the concentration of 2-AG and AEA [87]. 
They reported that the concentration of 2-AG in the hip-
pocampi of adult mice 20 min after kainate injection (30 mg/
kg, i.p.) did not change, while that of AEA showed a sig-
nificant rise up to 300% of pre-treatment levels [87]. The 
concentration of AEA returned to baseline within 1 h after 
kainate injection [87]. A recent study [88] assessed the lev-
els of various lipid substances 1 h after kainate injection 
(30 mg/kg, i.p.) and reported that the levels of AEA and 
2-AG remained unchanged in the cerebral cortex, striatum, 
hippocampus, thalamus, hypothalamus, and cerebellum 
compared to those of the vehicle-treated group [88]. The 
reasons for these variable results regarding 2-AG levels in 
the brain after kainate application remain unclear. In con-
trast, the increase in brain AEA levels after kainate applica-
tion may reflect the production of AEA through activation 
of the postsynaptic kainate receptor, GluK2. Lourenço et al. 
applied kainate (3 μM) to hippocampal slices for 100 s and 
observed a significant increase in AEA levels with no change 
in 2-AG levels [89]. This increase was abolished in GluK2 
knockout mice or by manipulating the chelation of  Ca2+ in 
postsynaptic neurons [89], suggesting that AEA was mobi-
lized by GluK2 activation and elevation of postsynaptic  Ca2+ 
concentration.

The enzymes involved in 2-AG production and degrada-
tion undergo changes in expression during epileptogenesis. 
We recently reported a significant decrease in the expression 
of DGLα in the hippocampal CA1 and dentate gyrus of mice 
that received unilateral intrahippocampal kainate injections 
(0.2 µg) 4 weeks before immunohistochemical analysis [90]. 
The decrease in DGLα in the hippocampus is consistent with 
the findings observed in the hippocampi of mTLE patients, 
which may result in insufficient 2-AG production when it is 
required for retrograde suppression of excitatory synaptic 
transmission. On the other hand, there were no changes in 
2-AG and AEA levels in the hippocampus after 4 weeks of 
PTZ kindling [91], suggesting that basal levels of 2-AG and 
AEA during the inter-ictal period were maintained during 
the course of epileptogenesis.

Decreased expression of DGLα in patients with mTLE 
and animal models of kainate-induced epilepsy provide 
potential explanatory mechanisms for the process of epi-
leptogenesis. Recently, we demonstrated that kindling epi-
leptogenesis with electrical stimulation of the perforant 
path was significantly promoted in DGLα knockout mice 
compared to wild-type littermates [90]. In line with these 
results, manipulations that increase 2-AG levels suppress 
kindling epileptogenesis (Table 1). For example, the MGL 
inhibitor JZL184 (4 mg/kg, i.p., twice/day) significantly 
delayed epileptogenesis induced by perforant path kin-
dling in wild-type mice [90]. This result is consistent with 
the effect of JZL184 (8 mg/kg/day, i.p.) on the amygdala 
kindling model [92] and with that of the MGL inhibitor 
SAR127303 [30 mg/kg/day, per os (p.o.)] on the corneal 
kindling model [93]. Furthermore, in cultured hippocam-
pal slices with intense activation of NMDA receptors 
(50 μM NMDA for 4 h), the increase in 2-AG levels by 
JZL184 (1 μM) prevented cell death in the CA1 region 
[94]. These results indicate that 2-AG prevents epilep-
togenesis by kindling procedures, and imply that eleva-
tion of 2-AG levels can delay epileptogenesis and prevent 
cell death.

However, contrasting results regarding the effect of 2-AG 
have been reported in epileptogenesis after SE. When DGLα 
was blocked by RHC80267 (1.3 µmol, intracerebroven-
tricular; i.c.v.) for 7 days commencing immediately after 
the termination of pilocarpine-induced SE, the frequency 
of spontaneous seizures and the occurrence of cell death 
decreased [95], suggesting that 2-AG promotes SE-induced 
epileptogenesis (Table 1). The pro-epileptogenic effect of 
2-AG during the initial 7 days after SE may be ascribed to 
downregulation of  CB1 receptor signaling. In rat organo-
typic cultured hippocampal slices, the concentration of 2-AG 
increased 24–72 h after NMDA treatment (50 μM) [94]. 
Moreover, 5 days of 2-AG upregulation by JZL treatment 
(16 mg/kg, i.p.) was sufficient to induce downregulation of 
 CB1 receptor signaling in non-epileptic wild-type mice [83]. 
It is, therefore, likely that downregulation of  CB1 receptor 
signaling occurs due to a sustained increase in 2-AG con-
centration in the initial stage of SE-induced epileptogenesis.

In an in vitro model of epilepsy [96–98], continuous epi-
leptiform high-frequency bursts were induced in primary 
cultures of hippocampal neurons by the application of low 
 Mg2+ artificial cerebrospinal fluid (aCSF) for 3 h. After res-
toration of normal  Mg2+ concentration, spontaneous recur-
rent burst activity appeared within 5 min and persisted for 
more than 24 h. Application of a synthetic cannabinoid ago-
nist, WIN55212-2, for 24 h after restoration of  Mg2+ signifi-
cantly increased neuronal burst activity and decreased the 
expression of  CB1 receptors [96]. These results are consist-
ent with  CB1 receptor activation after initial insults down-
regulate  CB1 receptor expression.
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In contrast to 2-AG, an increase in AEA by the FAAH 
inhibitor URB597 (3 mg/kg, i.p.) did not change kindling 
epileptogenesis [99]. However, when kainate-induced sei-
zures were mild, elevation of AEA levels by i.cv. administra-
tion of URB597 (10 μg/μl for 10 days beginning 24 h after 
kainate administration) was able to reduce kainate-induced 
cell death in the hippocampal CA1 [100]. In contrast, when 
the concentration of AEA was further elevated by the dele-
tion of FAAH combined with AEA administration (50 mg/
kg, i.p.), severe neuronal cell death was observed in the hip-
pocampus after administration of kainate (15 mg/kg, i.p.) 
or bicuculline (4 mg/kg, i.p.) [101]. Surprisingly, neuronal 
cell death after bicuculline administration was prevented by 
injection of a  CB1 antagonist, SR141716A (3 mg/kg, i.p.) 
[101]. These results suggest that the effects of AEA on epi-
leptogenesis may be concentration-dependent.

Involvement of  CB1 and  CB2 receptors (Fig. 2, Table 1)

Similar to DGLα, the expression of  CB1 receptors is 
affected by epileptogenic processes. Pilocarpine-induced 
SE (375 mg/kg, i.p.) induced a time-dependent redistribu-
tion of hippocampal  CB1 receptors in rats [102, 103]. Within 
1 week after SE, there was a pronounced loss of  CB1 recep-
tor expression throughout the hippocampus. By 2 weeks 
after SE, the decreased  CB1 receptor expression was mostly 
restored in the CA1 but not in the dentate gyrus. By 1 month 
after SE, pilocarpine-treated rats began to show spontaneous 
seizures. Concurrently, a characteristic redistribution of  CB1 
receptors was observed in chronic epileptic rats, whereby 
 CB1 receptor immunoreactivity in the dentate gyrus inner 
molecular layer and the CA1 pyramidal cell layer was spe-
cifically decreased; conversely, that in the strata oriens and 
radiatum of the CA1–3 was increased [103]. This unique 
redistribution of  CB1 receptors persisted for up to 6 months 
in chronic epileptic rats, which is consistent with the distri-
bution of  CB1 receptors in the hippocampi of chronic mTLE 
patients [65, 67]. As described, we also investigated the dis-
tribution of  CB1 receptors 4 weeks after kainate-induced 
SE in mice [90]. The pattern of  CB1 receptor distribution 
was similar to that observed in rat 7 days after pilocarpine-
induced SE: i.e., a pronounced loss in  CB1 receptor expres-
sion throughout the hippocampus. Since we were able to 
observe spontaneous seizures 4 weeks after kainate-induced 
SE, we propose that the decrease in  CB1 receptors in the 
inner molecular layer of the dentate gyrus and the pyramidal 
cell layer of the hippocampal CA1 are responsible for the 
occurrence of spontaneous seizures, rather than a successive 
increase of  CB1 receptors in the strata oriens and radiatum 
of the CA1–3.

Chen et al. [104] used a rat model of mTLE induced 
by febrile seizures and observed changes in  CB1 receptor 
expression. On postnatal day 10, the body temperature of 

rat pups was raised to 41–42 °C to evoke febrile seizures for 
approximately 20 min. Febrile seizures induced persistent 
enhancement of DSI in hippocampal CA1 pyramidal cells 
for up to 5 weeks [104], which resulted from an increase in 
 CB1 receptors associated with inhibitory inputs from chol-
ecystokinin-positive interneurons. Following the period of 
febrile seizures, no significant effects were observed either 
on DSE in CA1 pyramidal neurons at 5 weeks or on 2-AG 
and anandamide levels at 1 week. These results suggest that 
febrile seizures induce changes in  CB1 receptor expression, 
which may disinhibit hippocampal neural circuits thus con-
tributing to the development of epileptic foci. In this model, 
decreased  CB1 receptors in the inner molecular layer of the 
dentate gyrus and pyramidal cell layer of the hippocampal 
CA1 was not observed. Therefore, decreased suppression of 
excitatory synaptic transmission is unlikely to be the cause 
of increased seizure susceptibility in this model. Instead, 
disinhibition due to increased  CB1 receptor expression could 
be the major cause of heightened seizure susceptibility.

Chen et al. monitored DSI following a single injection of 
a  CB1 antagonist, SR141716A (1 mg/kg, i.p.) into rat pups 
1 h before the start of febrile seizures [105]. Although the 
biological half-life of SR141716A measured in blood sam-
ples is 4.95 h in mice [106] and 6–9 days in humans [107], 
the acute injection of SR141716A blocked febrile seizure-
induced enhancement of DSI, increase in  CB1 receptors, 
and worsening of acute kainate-induced seizures 6 weeks 
after the febrile seizure [105]. These results underscore the 
pertinence of the immediate anatomical and physiological 
changes in the endocannabinoid system after febrile seizures 
for elucidating key epileptogenic processes as well as the 
development of novel therapeutics.

As discussed previously, prolonged activation of  CB1 
receptors causes their downregulation, which accounts for 
the decrease in  CB1 receptors at the initial stage of SE-
induced epileptogenesis. However, at later stages of SE- 
or febrile seizure-induced epileptogenesis,  CB1 receptor 
expression is increased. Notably, this effect can be blocked 
by  CB1 receptor antagonists in the febrile seizure model. 
Therefore, heightened activation of  CB1 receptors at the ini-
tial stage of epileptogenesis may trigger the elevation of  CB1 
receptor expression at later stages as well as the decrease in 
receptor expression at the initial stage. The detailed molecu-
lar mechanisms underlying these phenomena are unclear. 
It has been reported that an increase in interleukin β was 
observed up to 12 h after febrile seizures and administra-
tion of an interleukin 1 receptor antagonist (100 ng, i.c.v.) 
prevented the increase in  CB1 receptors after febrile seizures 
in rats [108].

Almost 10% of patients with traumatic brain injury later 
acquire epilepsy during their lifetime [109]. In animal mod-
els, brain injury also induces persistent hyperexcitability 
of neural circuits. In a rat model of traumatic brain injury, 
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Echegoyen et al. demonstrated that treatment with a  CB1 
antagonist, SR141716A (10  mg/kg, i.p.), immediately 
after injury to the cerebral cortex prevented the long-term 
increase in seizure susceptibility induced by kainate (5 mg/
kg, i.p.) [110]. This result is consistent with the findings 
in the febrile seizure model described above,and indicates 
that short-term blockade of  CB1 receptors may be broadly 
applicable for the prevention of epileptogenesis.

The evidence presented suggests that epileptogenesis may 
be promoted when  CB1 receptor signaling is activated for 
several hours immediately after the initial insult. In contrast, 
epileptogenesis may be suppressed when  CB1 receptor acti-
vation is commenced sub-acutely and continues for longer 
periods (Table 1). Di Maio et al. reported that treatment with 
a  CB1 agonist, WIN55212-2 (2 mg/kg/day, i.p.), for 2 weeks 
starting 1 day after pilocarpine-induced SE (360 mg/kg 
i.p.) significantly reduced the number of seizures observed 
1–6 months after SE [111].

CB1 receptor expression was increased by approximately 
three- to fourfold in the hippocampal CA1 and dentate gyrus 
after amygdala kindling [112]. The role of  CB1 receptors 
in kindling epileptogenesis has also been examined using 
knockout mice or pharmacological interventions (Table 1). 
Examination of amygdala kindling in conditional  CB1 recep-
tor knockout mice in forebrain principal neurons revealed 
that  CB1 receptors expressed in these neurons decreased the 
duration of afterdischarges by amygdala stimulation [112]. 
However, there was no difference between conditional  CB1 
knockout mice and their control littermates in the number 
of kindling stimuli necessary for the development of gen-
eralized tonic–clonic seizures [112]. Thus, the lack of  CB1 
receptor signaling in principal neurons does not affect kin-
dling epileptogenesis. The role of  CB1 receptors in inhibi-
tory neurons has also been investigated by crossing Dlx5-
Cre mice and  CB1-floxed mice. In these crossed transgenic 
mice, the specific deletion of  CB1 receptors in inhibitory 
terminals shortened the duration of afterdischarge without 
affecting the development of the kindling response. These 
findings are in contrast with the results obtained from DGLα 
knockout mice that present faster kindling development [90]. 
In addition, both WIN 55212-2 (4 mg/kg, i.p.) [99] and 
2-AG augmentation [90, 92, 93] exert suppressive effects 
on kindling epileptogenesis. The reasons for the phenotypic 
differences between mouse models with genetic manipula-
tion of  CB1 receptor expression and those of 2-AG levels 
remain unclear. However, our recent results suggest that  CB2 
receptors may be involved in kindling development [90]. We 
reported that blockade of  CB1 or  CB2 receptors alone with 
AM251 (20 mg/kg, i.p., twice/day) or AM630 (2 mg/kg, i.p., 
twice/day), respectively, did not promote epileptogenesis in 
the perforant path kindling model [90]. In contrast, block-
ade of both  CB1 and  CB2 receptors significantly reduced 
the number of perforant path stimuli required to develop 

generalized tonic–clonic seizures, which is consistent with 
the results obtained in DGLα knockout mice [90]. A recent 
study demonstrated that spontaneous seizures were present 
in  CB1 and  CB2 double knockout mice [113]. Importantly, 
 CB1 or  CB2 single knockout mice did not show spontane-
ous seizures, demonstrating complementary roles played by 
 CB1 and  CB2 receptors on the prevention of epileptogenesis 
[113].

Collectively, these results suggest that  CB2 and  CB1 
receptor signaling act in concert to block epileptogenesis. 
Further studies using  CB2 receptor knockout mice and/
or  CB1 and  CB2 receptor double knockout mice will be 
required to elucidate the precise role of each receptor in 
epileptogenesis.

Ictogenesis

Ictogenesis is the process of transition from the non-ictal 
state to a seizure. This process is often investigated in ani-
mals showing spontaneous seizures or reduced seizure 
thresholds. Ictogenesis is also investigated by applying 
chemical convulsants or electrical stimulation to non-epi-
leptic animals or tissues.

Involvement of 2‑AG (Table 1)

To clarify how 2-AG signaling influences ictogenesis, we 
used mouse models of acute kainate administration or acute 
electrical stimulation [90]. After administration of kain-
ate (30 mg/kg, i.p.), DGLα knockout mice exhibited faster 
development of tonic–clonic seizures and a higher mortal-
ity rate than wild-type mice. Furthermore, afterdischarges 
in the dentate gyrus evoked by perforant path stimulation 
were longer in DGLα knockout mice than in wild-type 
mice. Combined administration of the  CB1 blocker AM251 
(20 mg/kg, i.p.) and the  CB2 blocker AM630 (2 mg/kg, i.p.) 
abolished the difference in the duration of afterdischarge 
between DGLα knockout and wild-type mice. These results 
indicate that 2-AG reduces the duration of afterdischarge 
through both  CB1 and  CB2 receptor-dependent mechanisms. 
Taken together, 2-AG seems to be crucial for the suppression 
of seizures [90].

Contrasting results have been reported in mice with virus-
mediated overexpression of MGL in excitatory neurons of 
the dentate hilus, CA1, and CA3 [114]. In these mice, DSE 
was abolished in pyramidal cells, although DSI showed no 
difference compared to wild-type mice. Therefore, 2-AG 
signaling in these mice was functionally comparable to that 
in mice with conditional deletion of  CB1 receptors at hip-
pocampal excitatory synapses. In mice with MGL overex-
pression, no differences were observed in the severity of 
kainate-induced seizures (35 mg/kg i.p.), which contrasts 
with the aforementioned results in DGLα knockout mice 
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[90]. It may be possible that the difference in seizure sus-
ceptibility between the mice with MGL overexpression and 
DGLα knockout mice is due to different concentrations of 
2-AG in hippocampal tissue. In the hippocampi of MGL-
overexpressed mice, the level of 2-AG was approximately 
half that of control mice, while that in DGLα knockout mice 
was reduced to approximately 1/10 that of wild-type mice 
[24]. In hippocampal homogenate samples, the efficiency of 
G protein activation by  CB1 receptors was higher at gluta-
matergic synapses than at inhibitory synapses [115]. How-
ever, it has been clearly shown that the cannabinoid sensitiv-
ity of excitatory presynaptic terminals is considerably lower 
than that of inhibitory synaptic terminals in hippocampal 
slices and cultures. Therefore, DSE requires a substantially 
higher transient elevation of endocannabinoid levels than 
DSI [116]. Thus, even if DSE is absent in the hippocam-
pus of mice with MGL overexpression, the occurrence of 
kainate-induced seizures may be alleviated by the remaining 
levels of 2-AG, which are presumably sufficient to trigger 
normal DSI.

The augmentation of 2-AG concentration above physio-
logical levels can ameliorate seizures. Administration of the 
MGL inhibitor JZL184 (40 mg/kg, i.p.) to wild-type mice 
prior to kainate injection significantly reduced the incidence 
of tonic–clonic seizures [90]. Moreover, administration of 
JZL184 (40 mg/kg, i.p.) shortened the duration of afterdis-
charge and reduced the minimal current intensity required 
to elicit afterdischarges in response to electrical stimulation 
of the amygdala or perforant path [90, 92]. A different MGL 
inhibitor, SAR127303 (30 mg/kg, p.o.), suppressed seizures 
caused by transcorneal electrical stimulation [93]. In mice 
with PTZ-induced seizures (50 mg/kg, i.p.), the severity of 
seizures was reduced by administration of WWL123 (10 mg/
kg, i.p.) [117], an inhibitor of a postsynaptic 2-AG degrad-
ing enzyme, ABHD6. This indicates that augmented 2-AG 
effectively suppresses seizures evoked by disinhibition of 
neural circuit activity by the  GABAA receptor blocker PTZ. 
Surprisingly, as this effect was observed in  CB1 and  CB2 
knockout mice, the suppressive effect on seizures seems to 
be independent of  CB1 or  CB2 receptor-mediated mecha-
nisms. It has been reported that 2-AG acted directly on 
 GABAA receptors and enhanced the inhibitory effect of 
GABA [117]. The blockade of ABHD6 and the resulting 
increase in postsynaptic 2-AG levels seem to be crucial for 
2-AG-mediated enhancement of  GABAA receptor signaling. 
Conversely, increased 2-AG levels in presynaptic terminals 
by the application of the MGL inhibitor SAR127303 (30 mg/
kg, p.o.) did not change the minimal dose of PTZ required 
to induce seizures [93].

The effects of 2-AG signaling on the occurrence of 
spontaneous seizures in the epileptic brain have been 
investigated. As discussed in the previous section, expres-
sion of DGLα and  CB1 receptors may have been altered 

from physiological levels during the onset of spontaneous 
seizures. Therefore, it is necessary to investigate whether 
2-AG signaling exerts similar suppressive effects on sei-
zures in the epileptic brain. We have recently reported that 
the MGL inhibitor JZL184 (4 mg/kg, i.p.) has a suppres-
sive effect on the frequency of spontaneous seizures after 
kainate-induced SE (0.2 μg in 100 nl saline, intra-hip-
pocampus) [90]. Naydenov et al. (2014) investigated the 
R6/2 mouse strain [117], which has spontaneous seizures 
without any preceding treatment. Although the etiology of 
these seizures in the R6/2 mouse strain is unknown, they 
demonstrated that pharmacological blockade of ABHD6 
with WWL123 (10 mg/kg, i.p.) completely suppressed the 
occurrence of spontaneous seizures. These results suggest 
that augmentation of 2-AG signaling effectively suppresses 
ictogenesis in the epileptic brain.

The mechanisms underlying the suppressive effect of 
2-AG signaling on ictogenesis can be classified into can-
nabinoid receptor-dependent and -independent mecha-
nisms. Cannabinoid receptor-dependent mechanisms 
consist of  CB1 receptor-mediated suppression of synaptic 
transmission, as well as mechanisms involving  CB2 recep-
tor signaling. The  CB1 receptor-dependent mechanism 
is considered to be dominant relative to  CB2 receptor-
dependent mechanisms, since the deletion of  CB1 recep-
tors can explain the majority of the epileptic phenotypes in 
DGLα knockout mice [90]. The contribution of each can-
nabinoid receptor to seizures will be discussed in the fol-
lowing section. On the other hand, cannabinoid receptor-
independent mechanisms include enhancement of  GABAA 
receptor-mediated currents by 2-AG [117, 118]. In Xen-
opus oocytes, Sigel et al. showed that 2-AG increased 
GABA (1 µM)-induced currents through interaction with 
β2 subunits [118], indicating that 2-AG exerts allosteric 
modulation of GABAergic inhibition. However, this effect 
was not corroborated at synaptic  GABAA receptors [118]. 
A possible explanation for the cannabinoid receptor-
independent suppressive effect of 2-AG on ictogenesis is 
the modulation of AMPA receptor currents via the post-
synaptic degradation enzyme, ABHD6. ABHD6 is inte-
grated into the AMPA receptor channel complex as an 
auxiliary protein [119]. Inactivation of ABHD6 by short 
hairpin RNAs increased the frequency of AMPA recep-
tor-mediated miniature excitatory post-synaptic currents 
(EPSCs) in hippocampal neurons [120]. Therefore, damp-
ening AMPA receptor signaling by the binding of 2-AG to 
ABHD6 protein during seizures may be beneficial in epi-
lepsy. However, application of WWL70 (10 μM), a specific 
inhibitor of ABHD6-mediated degradation of 2-AG, onto 
hippocampal slices did not affect the suppressive effect of 
ABHD6 on AMPA receptor-mediated miniature EPSCs 
[120], suggesting that 2-AG binding to ABHD6 may not 
alter AMPA receptor currents.
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Involvement of AEA (Table 1)

The threshold of acute seizures induced by transcorneal 
electrical stimulation increased when AEA (300 mg/kg, i.p.) 
was directly administered or its degradation was blocked by 
the FAAH inhibitor O-1812 (5 mg/kg, i.p.) before the induc-
tion of seizures [121]. Since these suppressive effects were 
no longer observed when the  CB1 antagonist SR141716A 
(10 mg/kg, i.p.) was co-administered, the suppressive effect 
of AEA on seizure seems to be mediated by  CB1 receptors. 
Moreover, subsequent studies in rats showed that an FAAH 
inhibitor, AM374 (8 mg/kg, i.p.), alleviated acute seizures 
induced by kainate (10 mg/kg, i.p.) [122], and a different 
FAAH inhibitor, URB-597 (0.3–3 mg/kg, i.p.), reduced the 
dose of PTZ required to induce seizures [123].

Disparate results regarding the effect of AEA on seizures 
in FAAH knockout mice have been reported. Degradation 
of AEA was slower and AEA levels in the cortex, hip-
pocampus, and cerebellum were 10 times higher in FAAH 
knockout mice than in wild-type mice. However, seizures 
induced by intraperitoneal administration of 30 mg/kg of 
kainate were more severe in FAAH knockout mice than in 
wild-type mice [101]. Interestingly, seizures did not worsen 
when the  GABAA receptor antagonist bicuculline (4 mg/kg, 
i.p.) was administered to naïve FAAH knockout mice. When 
AEA (25 mg/kg, i.p.) was administered to FAAH knockout 
mice to further increase the concentration of AEA, seizures 
induced by intraperitoneal administration of 15 mg/kg of 
kainate or 4 mg/kg of bicuculline worsened. Furthermore, 
kainate-induced cell death was enhanced by pre-treatment 
with AEA. These results indicate that AEA aggravates sei-
zures, presumably through suppression of GABA release 
from inhibitory presynaptic terminals. In support of this, 
kainate suppresses evoked inhibitory postsynaptic currents 
in the hippocampal CA1 region through activation of  CB1 or 
 GABAB receptors [89]. Suppression of inhibitory postsynap-
tic currents by kainate (3 µM) was not blocked by the DGLα 
inhibitor THL (5 µM) or the MGL inhibitor JZL184 (1 μM). 
However, the FAAH inhibitor URB597 (1 μM) significantly 
prolonged the effect of kainate, suggesting that AEA causes 
disinhibition of hippocampal CA1 neurons after administra-
tion of kainate.

AEA acts as a partial agonist of the  CB1 receptor [42] 
as well as a full agonist of the TRPV1 receptor [124], a 
cation channel that depolarizes cells when activated. TRPV1 
activation suppressed 2-AG synthesis and increased tonic 
inhibition through the reduction of tonic endocannabi-
noid signaling in CA1 pyramidal cells [125]. Moreover, it 
increased AMPA receptor endocytosis at excitatory synapses 
and decreased excitatory synaptic transmission in dentate 
granule cells [54]. These results suggest that TRPV1 activa-
tion suppresses activity of CA1 and dentate granule cells. 
However, the overall effect of TRPV1 activation seems to 

be pro-convulsive, since i.c.v. application of the TRPV1 
agonist, capsaicin (10 or 100 μg, i.c.v.), aggravated seizures 
[126].

Involvement of  CB1 receptors (Table 1)

Early studies reported suppressive effects of Δ9-THC on 
ictogenesis [127, 128]. However, Marsicano et al. were the 
first to clearly demonstrate a protective effect of  CB1 recep-
tor signaling against acute seizures [87]. Administration of 
kainate (30 mg/kg, i.p.) exacerbated acute seizures in  CB1 
knockout mice compared to wild-type mice. Moreover, 
acute seizures induced by kainate (30 mg/kg i.p.) were more 
severe in mice carrying CaMKII-positive neuron-specific 
 CB1 receptor deletion, as well as in virus-mediated condi-
tional knockout mice carrying  CB1 deletion specifically in 
hippocampal excitatory neurons compared to control mice 
[129]. Nevertheless, there was no observable difference 
compared to control mice when  CB1 receptors were knocked 
out specifically in inhibitory neurons [129]. This indicates 
that  CB1 receptors in hippocampal excitatory neurons are 
necessary to suppress kainate-induced seizures. Overexpres-
sion of  CB1 receptors in pyramidal cells of the hippocampal 
CA1, CA2, and CA3 regions; and in hilar mossy cells in 
the dentate gyrus significantly alleviated kainate-induced 
SE (30 mg/kg, i.p.) [130], suggesting that  CB1 receptors 
at these excitatory synaptic terminals are involved in the 
suppression of ictogenesis. Furthermore, expression of  CB1 
receptors in excitatory neurons of the cerebral cortex, hip-
pocampus, and amygdala of global  CB1 receptor knockout 
mice prevented the exacerbation of seizures induced by kain-
ate (30 mg/kg, i.p.) [131]. Taken together,  CB1 receptors at 
excitatory synaptic terminals in the hippocampus are crucial 
for the suppression of kainate-induced seizures.

Seizure and cell death induced by administration of pilo-
carpine (250 mg/kg, i.p.) were more severe in  CB1 knock-
out mice than in wild-type littermates [132]. Moreover, 
pretreatment of wild-type mice with the  CB1 antagonist 
SR141716 (10 mg/kg) exacerbated pilocarpine-induced 
acute seizures [132]. In contrast, administration of the  CB1 
agonist WIN55212-2 (10 mg/kg, i.p.) ameliorated pilocar-
pine-induced seizures (350 mg/kg, i.p.) [133]. These results 
indicate that endocannabinoid signaling mediated by  CB1 
receptors effectively suppresses seizures induced by kain-
ate receptor activation and those induced by activation of 
muscarinic acetylcholine receptors with pilocarpine.

Seizures induced by electrical stimulation of the amyg-
dala were also more severe in excitatory neuron-specific  CB1 
knockout mice than in wild-type mice [112]. Conversely, 
seizures induced by amygdala stimulation were milder 
in inhibitory neuron-specific  CB1 knockout mice than in 
wild-type mice [112]. Moreover, augmentation of  CB1 
receptor signaling effectively suppressed seizures evoked 
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by electrical stimulation [134, 135]. These results indicate 
that the activation of  CB1 receptors at excitatory synapses 
prevent, whereas those at inhibitory synapses exacerbate, 
seizures induced by electrical stimulation.

In marked contrast to seizures induced by kainate, pilo-
carpine, or electrical stimulation, no significant difference 
was found between  CB1 receptor knockout mice and wild-
type littermates in the severity of disinhibition-induced 
seizures by administration of PTZ (70 mg/kg, i.p.) [117]. 
This suggests that PTZ-induced seizures do not involve 
 CB1 receptor signaling. Other reports have shown conflict-
ing effects of  CB1 receptor modulation on PTZ-induced 
seizures. For instance, administration of a  CB1 agonist, 
WIN55212-2 (1 mg/kg, i.p.) or a  CB1 antagonist, ACEA 
(4 mg/kg i.p.) [123] exacerbated PTZ-induced seizures, 
whereas WIN55212-2 (10 μg, i.c.v.) was also shown to ame-
liorate PTZ-induced seizures [136]. At present, it is difficult 
to conclude whether  CB1 receptor signaling has anti- or pro-
convulsive effects on PTZ-induced seizures. Future studies 
should aim to clarify these issues.

As discussed in the previous section, 2-AG signaling sup-
presses the occurrence of spontaneous seizures in the epilep-
tic brain. In rats with pilocarpine-induced SE, the number 
of spontaneous seizures was significantly decreased by the 
endocannabinoid agonist WIN55212-2 (5 mg/kg, i.p.) and 
was significantly increased by the  CB1 receptor antagonist 
SR141716A (10 mg/kg, i.p.) [85]. In SE induced by intra-
hippocampal injection of kainate (0.2 μg), we showed that 
 CB1 receptor signaling played an important role in the sup-
pression of ictogenesis [90]. We administered a  CB1 receptor 
antagonist, AM251 (20 mg/kg, i.p.), and counted the num-
ber of spontaneous seizures that occurred 2–3 weeks after 
SE. We observed a significant increase in the number of 
spontaneous seizures in AM251-treated mice compared to 
vehicle-treated mice. These results suggest that  CB1 receptor 
signaling in the epileptic brain suppresses the occurrence of 
spontaneous seizures.

Involvement of  CB2 receptors (Table 1)

In situ hybridization studies have reported  CB2 mRNA 
expression in granule cells and inhibitory interneurons of 
the dentate gyrus, pyramidal cells in CA3, and pyramidal 
cells and inhibitory interneurons in the CA1 region [61]. 
Acute administration of AM630 (2 mg/kg, i.p.), a  CB2 
receptor antagonist, had no impact on seizures in the hip-
pocampal dentate gyrus after electrical stimulation of the 
perforant path in anesthetized rats [137]. We also observed 
that AM630 (2 mg/kg, i.p.) alone had no effect on kainate-
induced acute seizures (30 mg/kg, i.p.) in wild-type mice 
[90]. However, when AM630 was administered to wild-
type mice pretreated with the  CB1 receptor antagonist 
AM251 (20 mg/kg, i.p.), or to  CB1 receptor knockout mice, 

kainate-induced acute seizures became more severe. These 
results suggest that the suppressive effect of  CB2 receptor 
signaling on ictogenesis may become obvious in neural cir-
cuits with increased excitability caused by the disruption of 
 CB1 receptor signaling. This notion is consistent with the 
results of a study that investigated the effects of AM630 on 
evoked seizures in kindled rats. Repeated PTZ administra-
tion increases susceptibility to seizures, a process termed 
PTZ kindling. Intraventricular administration of the  CB2 
receptor antagonist AM630 (5 μg/kg) to fully kindled rats 
resulted in longer PTZ-induced (37.5 mg/kg, i.p.) seizures 
[138]. Taken together, these results suggest that  CB2 recep-
tor signaling may be more potent at alleviating seizures 
when the excitability of neural circuits is higher.

In contrast, the  CB2 receptor agonist AM1241 (1 and 
10 μg) increased the duration of PTZ-induced acute seizures 
(70 mg/kg, i.p.). This effect was blocked by pretreatment 
with the  CB2 receptor antagonist AM630 (1 mg/kg, i.p.), 
suggesting a pro-convulsant effect of  CB2 receptor signaling 
[139]. In this report, the incidence of generalized seizures 
was lower and the latency to generalized tonic–clonic sei-
zures was longer than those of PTZ-induced seizures in other 
reports [117, 138]. It is, therefore, possible that  CB2 recep-
tor signaling may be pro-epileptic in the mildly epileptic 
brain. However, in the latter PTZ-induced seizure models, 
the number of generalized tonic–clonic seizures evoked by 
PTZ (70 mg/kg, i.p.) was significantly higher in  CB2 knock-
out mice than in their wild-type littermates [117]. It is, there-
fore, conceivable that  CB2 receptor signaling has suppres-
sive effects on ictogenesis in the severely epileptic brain.

Medical marijuana

There has been interest in the medical use of cannabinoids as 
potential antiepileptic treatments. However, evidence for the 
use of marijuana in the treatment of epilepsy is still insuffi-
cient. There are several excellent reviews on the medical use 
of marijuana and cannabinoids for epilepsy, and we direct 
readers to them [140, 141]. Here, we briefly summarize the 
possible interaction of two major cannabinoids, Δ9-THC 
and cannabidiol (CBD), with endocannabinoid signaling 
during epileptogenesis and ictogenesis. Acute treatment 
with Δ9-THC (0.25 mg/kg in cats, 20–100 mg/kg in rats, 
i.p.) suppresses ictogenesis [127, 142, 143]. However, sub-
chronic treatment with Δ9-THC for several days is sufficient 
to induce tolerance and a loss of suppressive effects on sei-
zures [142, 143]. Tolerance may be caused by decreased 
number [144] and/or desensitization of  CB1 receptors [145] 
in a dose-dependent manner [146], and may reduce the sup-
pressive effect of endocannabinoids on epileptogenesis and 
ictogenesis.

On the other hand, CBD has been reported to have antiep-
ileptic effects without generating tolerance [143]. Recently, a 
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series of randomized, double-blind, placebo-controlled trials 
of CBD have been published [147, 148]. These trials demon-
strated that CBD was significantly more effective than pla-
cebo in the treatment of seizures in Dravet syndrome [147] 
and Lennox-Gastaut syndrome [148]. However, the mecha-
nism by which CBD suppressed seizures in these patients 
remains unknown. CBD has very low affinity for  CB1 and 
 CB2 receptors [149] and acts as an inverse agonist of these 
receptors when it binds to them [150]. However, CBD blocks 
the activity of FAAH [151] and increases serum levels of 
AEA in humans (200–800 mg of CBD per day) [152]. Fur-
thermore, injection of CBD (3 nmol) into the periaqueductal 
gray in rats increases the concentration of 2-AG at the injec-
tion site up to 2.6-fold higher than that of vehicle-injected 
rats [153]. Therefore, CBD may exert its suppressive effect 
on seizures by increasing endocannabinoids.

Concluding remarks

Endocannabinoid signaling exerts multifaceted effects on 
epileptogenesis and ictogenesis. Endocannabinoid signaling 
promotes epileptogenesis in the initial stage and suppresses 
ictogenesis in already established epileptic foci as well as 
non-epileptic brains. The roles of endocannabinoid signal-
ing change from pro-epileptic to anti-epileptic during the 
course of epileptogenesis. Homeostatic downregulation of 
endocannabinoid signaling molecules such as DGLα and 
 CB1 receptors appears to be induced by increased production 
of AEA acutely, and 2-AG subacutely, after initial insults. 
Suppression of epileptogenesis by antagonists of DGLα or 
 CB1 receptors during the initial period of epileptogenesis 
may provide novel therapeutic targets. In kindling models, 
presumably due to the mild seizure phenotypes compared to 
SE models, augmentation of 2-AG or  CB1 receptor signaling 
can suppress epileptogenesis. However, it should be noted 
that the deletion of DGLα worsens kindling epileptogenesis, 
while deletion of  CB1 receptors does not, suggesting pos-
sible involvement of other signaling molecules such as  CB2 
and/or  GABAA receptors. AEA seems to have less contribu-
tion to epileptogenesis compared to 2-AG.

As for the regulation of ictogenesis, endocannabinoid 
signaling at excitatory synapses has important roles in sup-
pressing seizures. In particular, 2-AG suppresses seizures 
through multiple downstream signaling pathways including 
 CB1, and possibly  CB2 receptors. In contrast, activation of 
 CB1 receptors at inhibitory synapses promotes ictogenesis. 
On the other hand, because of its partial agonist activity 
at  CB1 receptors and full agonist activity at TRPV1 recep-
tors, AEA may have a smaller suppressive effect, or may 
potentially even promote ictogenesis. After animals become 
epileptic and exhibit spontaneous seizures, augmentation of 
2-AG or  CB1 receptor signaling may prove to be an effective 

treatment, although excessive activation of these signaling 
pathways may cause downregulation of  CB1 receptors and 
worsen seizures.

Future perspectives

Three important issues remain unresolved. First, are  CB2 
receptors involved in ictogenesis and epileptogenesis; and if 
so, how?  CB2 receptor knockout mice showed more severe 
PTZ-induced seizures than wild-type mice. However, it is 
necessary to investigate global or conditional  CB2 receptor 
knockout mice in several different models of ictogenesis and 
epileptogenesis to determine their precise roles. Moreover, 
there is a paucity of specific  CB2 antibodies that reliably 
reflect their cellular and subcellular localizations in immu-
nohistochemical analyses.

Second, how does the expression of  CB1 receptors 
increase during the course of epileptogenesis? It is unlikely 
that the increased expression of  CB1 receptors is a com-
pensatory response for increased excitability, as it seems to 
occur predominantly at inhibitory synapses, which leads to 
the reduction of tonic and phasic suppression of inhibitory 
synaptic transmission. Although involvement of  CB1 recep-
tor signaling and interleukin β signaling in this process has 
been reported [108], possible interactions between these two 
molecular pathways are unclear.

Third, what molecules are involved in epileptogenesis and 
ictogenesis? Since  CB1 receptor-mediated STD and LTD 
use different molecular machinery, the molecules involved 
in epileptogenesis may differ from those in ictogenesis. 
Understanding the molecular processes of epileptogenesis 
and ictogenesis related to endocannabinoid signaling will 
contribute to developing novel anti-epileptic and anti-epi-
leptogenic drugs.
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