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Abstract
The acetylation of the lysine 40 residue of α-tubulin was described more than 30 years ago and has been the subject of intense 
research ever since. Although the exact function of this covalent modification of tubulin in the cell remains unknown, it has 
been established that tubulin acetylation confers resilience to mechanical stress on the microtubules. Formins have a dual 
role in the fate of the actin and tubulin cytoskeletons. On the one hand, they catalyze the formation of actin filaments, and 
on the other, they bind microtubules, act on their stability, and regulate their acetylation and alignment with actin fibers. 
Recent evidence indicates that formins coordinate the actin cytoskeleton and tubulin acetylation by modulating the levels 
of free globular actin (G-actin). G-actin, in turn, controls the activity of the myocardin-related transcription factor-serum 
response factor transcriptional complex that regulates the expression of the α-tubulin acetyltransferase 1 (α-TAT1) gene, 
which encodes the main enzyme responsible for tubulin acetylation. The effect of formins on tubulin acetylation is the com-
bined result of their ability to activate α-TAT1 gene transcription and of their capacity to regulate microtubule stabilization. 
The contribution of these two mechanisms in different formins is discussed, particularly with respect to INF2, a formin that 
is mutated in hereditary human renal and neurodegenerative disorders.
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response factor · Myocardin-related transcription factor

Abbreviations
α-TAT1	� α-Tubulin acetyltransferase
CMT	� Charcot–Marie–Tooth
DAD	� Diaphanous autoregulatory domain
DID	� Diaphanous inhibitory domain
FH	� Formin homology
HDAC6	� Histone deacetylase 6
INF	� Inverted formin
FSGS	� Focal segmental glomerulosclerosis
MRTF	� Myocardin-related transcription factor
MT	� Microtubule
SRF	� Serum response factor
WH2	� Wiskott–Aldrich syndrome homology region 2

Introduction

Microtubules (MTs) are hollow biopolymers assembled by 
lateral interaction of protofilaments, which are polarized 
structures composed of α/β-tubulin heterodimers linearly 
aligned in a head-to-tail fashion. MTs are major constitu-
ents of the cytoskeleton and are organized as cytoplasmic 
centrosomal and non-centrosomal arrays and as an integral 
part of subcellular structures such as mitotic spindles and 
intercellular cytokinetic bridges, and of organelles, such as 
centrioles and cilia. In response to specific external signals, 
MTs rapidly remodel to adapt the cell for a large variety of 
functions, including adhesion, polarization and migration 
[1–4].

MTs are the subject of numerous posttranslational modi-
fications. In addition to the modifications frequently found 
in other proteins, such as phosphorylation, acetylation, 
palmitoylation and ubiquitylation, MTs undergo other less 
common modifications such as detyrosination, polygluta-
mylation and polyglycylation [5, 6]. It has been proposed 
that, analogous to the histone code on chromatin [7], tubulin 
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posttranslational modifications constitute a code that is 
important for cell functioning [8, 9].

Tubulin acetylation

Lysine acetylation, which consists of the covalent addition 
of an acetyl moiety to the ε-amino group of a lysine residue 
in a protein, was originally found to regulate the activity 
of histone and a variety of transcription factors, but now 
it is also known to be present in non-nuclear proteins [10]. 
Acetylation of tubulin on lysine was first reported in Chla-
mydomonas flagella [11]. Subsequently, the lysine 40 (K40) 
residue of α-tubulin was identified as the major acetylation 
site [12]. Mitotic spindles, intercellular cytokinetic bridges, 
centrioles, cilia and a subset of cytoplasmic MT arrays 
are heavily acetylated on the K40 residue of α-tubulin in 
mammalian cells (for an extensive review, see [13]). K40 
acetylation appears to modulate intracellular transport by 
regulating the traffic of kinesin motors [14, 15], although 
this effect might be indirect [16, 17]. K40 acetylation 
accompanies epithelial cell polarization [18] and is impor-
tant for cell adhesion and contact inhibition of proliferation 
in fibroblasts [19], mechanosensation [19–23], and neuron 
polarization [14, 24]. Polycystic kidney disease [25] on the 
one hand, and Alzheimer [26, 27], Huntington [15, 28], Par-
kinson [29, 30] and Charcot–Marie–Tooth (CMT) [15, 28] 
degenerative neuropathies on the other have been associ-
ated with increased and decreased levels of K40 acetylation, 
respectively. Cystic fibrosis [31], familial dysautonomia (a 
disease of the autonomic and sensory nervous systems) [32], 
and specific types of cancer [33–35] are some additional 
examples of diseases with altered tubulin acetylation (for an 
extensive review, see [36]).

It is notable that K40 acetylation occurs in the MT lumen 
[37], while all other posttranslational modifications occur 
on the external surface [6, 38]. It has been proposed that 
tubulin acetylation could affect the binding of proteins that 
are transported through the interior of the MT [39–41]. 

K40 acetylation does not significantly change either the 
ultrastructure of MTs or the conformation of tubulin [42], 
but it does weaken lateral inter-protofilament interactions, 
endowing MTs with greater flexibility and resistance to 
mechanical stress [43–45]. MTs are highly dynamic and 
undergo continuous cycles of growth and shrinkage. During 
this phenomenon, known as “dynamic instability”, tubulin 
subunits associate and dissociate rapidly from the growing 
end of the protofilaments [46]. Whereas most cytoskeletal 
MTs show this behavior and, therefore, have short half-lives 
(5–10 min), there is a subset that has a much longer half-life 
(> 1 h) [47, 48]. Notably, tubulin acetylation, rather than 
contributing to MT stability, accumulates in the stable MT 
subset because of their longevity [49, 50].

Tubulin acetylating and deacetylating 
enzymes

The level of acetylated tubulin is governed by the opposing 
reactions of acetylation and deacetylation [13] (Fig. 1). In 
mammals, α-tubulin acetyltransferase 1 (α-TAT1) functions 
as the major tubulin acetyltransferase in vivo, as demon-
strated by the observation that deletion of the mouse gene 
leads to the almost complete loss of α-tubulin acetylation 
[19, 21–23]. α-TAT1 accesses the lumen of the microtu-
bule via quick diffusion to acetylate the lumen-facing target 
residue K40 at a slow catalytic rate [51, 52]. The activity of 
α-TAT1 is regulated by autoacetylation [21]. The expres-
sion of α-TAT1 orthologues are found in all organisms with 
axonemal structures such as cilia and flagella, and is absent 
from organisms that subsequently lost cilia. This finding 
suggests that the primeval and ongoing cellular function 
of tubulin acetylation is linked to cilium biogenesis, func-
tion, and/or maintenance [23]. α-TAT1 is distantly related 
to the histone acetyltransferase GCN5 (general control non-
depressible 5) [53, 54], which is a member of the GCN5-
related N-acetyltransferase (GNAT) superfamily [55]. The 
crystal structure of the human α-TAT1/acetyl-CoA complex 

Acetyl-CoA CoA

Acetate

α-TAT1

HDAC6 H2O

Fig. 1   Enzymes involved in tubulin acetylation and deacetylation. 
Tubulin acetylation refers to the transfer of the acetyl group from 
acetyl-coenzyme A to the K40 residue of α-tubulin. This modification 

is catalyzed by α-TAT1 in mammals, whereas its reverse reaction is 
catalyzed by the deacetylase HDAC6. Note that the K40 residue of 
α-tubulin is located within the microtubule lumen
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reveals an overall fold similar to that of GCN5, but features a 
relatively wide substrate-binding groove and a unique struc-
ture involved in α-tubulin-specific acetylation [53]. Histone 
deacetylase 6 (HDAC6) is the main tubulin deacetylase in 
cultured cells [56] and in mice, since global α-tubulin hyper-
acetylation occurs in HDAC6 gene knockout mice [57]. In 
addition to the α-tubulin K40 residue, HDAC6 deacetylates 
other acetylated lysine residues of α- and β-tubulin [58] and 
of other proteins, including the molecular chaperone Hsp90 
(heat-shock protein 90 kDa) and the cytoskeletal protein 
cortactin [59]. SIRT2 was identified as a NAD+-dependent 
α-tubulin deacetylase in vitro and in cultured cells [60]. 
However, the deletion of the SIRT2 gene does not affect 
the level of tubulin acetylation in vivo [61, 62]. SIRT2 may 
function under special conditions, such as in murine mac-
rophages, where SIRT2, but not HDAC6, is the responsible 
α-tubulin deacetylase during inflammasome activation [63].

Formins as dual regulators of the actin 
and microtubule cytoskeletons

Formins are a widely expressed family of proteins whose 
primary function is to nucleate and polymerize monomeric 
globular actin (G-actin) into linear actin filaments [64–66]. 
Humans exhibit 15 formins, classified into 8 phylogenetic 
groups [67]. The defining feature of all of them is the 
350–400-amino acid formin homology (FH)2 [68], which 
catalyzes actin nucleation and forms a head-to-tail, dough-
nut-shaped dimer that encircles the growing end of the actin 
filament during elongation [69]. Immediately upstream, the 
FH2 domain has a proline-rich FH1 domain that binds pro-
filin, which binds G-actin for provision to the FH2 [70]. 
In addition, most formins have an autoregulatory domain 
in their carboxyl half, known as the diaphanous autoregu-
latory domain (DAD), which is separated by the FH1 and 
FH2 domains from the diaphanous inhibitory domain (DID), 
which is present in the amino-terminal half. In the formin 
mDia 1, and probably in most formins, the DAD collabo-
rates with the FH2 domain in actin nucleation [71]. The 
DAD has an important role in regulating formin activity by 
interacting with the DID to close the formin molecule in 
an inactive state [72]. In the case of the diaphanous-related 
formin group, which includes formins mDia1-3, the binding 
of a specific Rho GTPase to a zone encompassing part of 
the DID and a short amino-terminal extension, releases the 
DID–DAD interaction and opens up the molecule to trans-
form it into its active form [73] (Fig. 2).

Formins bind and stabilize microtubules

The formins mDia1-3, Fmn1, INF1 and INF2 colocalize 
with MT or bind directly to MTs [74–76]. In addition to 

their role in actin nucleation, mammalian formins control 
the alignment of MTs with actin filaments, MT stabiliza-
tion, and MT acetylation [74, 77–79]. The capping of the 
MT ends inhibits MT dynamics and causes MT stabiliza-
tion, as shown by the lack of tubulin subunit turnover from 
the ends of the stabilized MTs [75, 80–82]. In the cases 
of mDia2 and INF2, the binding region and the stabiliza-
tion activity include the FH2 domain [75, 82–84], both of 
which events are independent of the actin polymerization 
activity of the FH2 domain [75, 80, 85]. MT stabilization 
involves interactions among different formins and regu-
lators of the MT cytoskeleton, including MT plus-end-
tracking proteins EB1 and APC and the scaffolding protein 
IQGAP1, in a process that is regulated positively by active 
Rho GTPase and negatively by the kinase GSK3β [80, 82, 
86–89]. INF2 interacts with mDia1-3 [90] and acts down-
stream of mDia2 in the process of MT stabilization [80]. 
Actin-capping protein [91], which is the main high-affinity 
barbed-end actin terminator [92], establishes a crosstalk 
between the actin and MT cytoskeletons by antagonizing 
the actin activity of mDia1 and facilitating its effect on 
MTs [93]. Therefore, formin-mediated MT stabilization 
appears to result from the capping of the MT ends by a 
large protein machinery complex or “MT stabilisome”, 
which consists of formins and a large number of other pro-
teins, whose components are hierarchically organized [80]. 
Since acetylated tubulin accumulates in long-lived MTs 
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Fig. 2   Regulation of diaphanous-related formins and domain organi-
zation of distinct formins. The autoinhibitory effect of the DID–DAD 
interaction in the diaphanous-related formin group is released through 
binding of a specific Rho-family GTPase in its active GTP-loaded 
form. In the open conformation of formins, the FH1 domain recruits 
profilin (Prof), which, in turn, brings actin monomers close to the 
FH2 domain for actin polymerization
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[49, 94], the effect of formins on MT longevity clearly 
contributes to the extent of MT acetylation.

Formins control the actin–MRTF–SRF transcriptional 
circuit and induce tubulin acetylation

Serum response factor (SRF) is a widely expressed tran-
scription factor of mammals [95, 96]. The myocardin-related 
transcription factor (MRTF) forms a complex with SRF 
and regulates its activity. At high G-actin concentrations, 
MRTF forms a reversible complex with G-actin via its RPEL 
domain and is held in an inactive state in the cytoplasm. 
At low G-actin concentrations, G-actin-free MRTF exposes 
a nuclear import signal, enters the nucleus and associates 
with SRF to direct transcription of target genes [97, 98]. 
SRF recognizes 10-bp DNA elements called CArG and 
CArG-like boxes [99, 100]. Many of the nearly 1000 genes 
with CArG elements whose transcription is regulated by 
the MRTF–SRF complex encode proteins involved in actin 
dynamics, cell adhesion, and extracellular matrix synthesis 
and processing [101, 102].

Overexpression of deregulated FH1FH2-containing frag-
ments from different formins induces MRTF–SRF transcrip-
tional activity to different extents due to the G-actin content 
decrease caused by their relative actin polymerization activ-
ity [79, 103–106]. mDia3, Fmnl1 and INF2 are the strongest 
inducers, FHOD1, FHOD3 and Fmn1 induce poorly, and the 
other formins analyzed show intermediate inducer activity 
[79]. Actin polymerization activity is essential for this effect, 
as demonstrated by the formin mDia1 [104]. Analysis of the 
α-TAT1 gene has revealed the presence of functional CArG 
elements, as demonstrated by their response to activators 
of the actin–MRTF–SRF circuit or to transfection of active 
forms of MRTF [107]. Therefore, transcriptional activation 
of the α-TAT1 gene contributes to the extent of tubulin acety-
lation promoted by formins.

The effect of formins on tubulin acetylation 
is a combined result of their microtubule 
stabilization activity and their capacity 
to activate α‑TAT1 gene expression

Formins affect tubulin acetylation by stabilizing MTs (Fig. 3) 
and by activating the transcription of the α-TAT1 gene, but 
one of the mechanisms dominates the other, depending on 
the specific formin. For instance, in the case of endogenous 
INF2, the effects on α-TAT1 gene transcription and on MT 
stabilization are both important and, as in most formins, the 
two require the presence of the FH2 domain [75, 107]. In 
formin INF1, however, they are segregated into different 
domains. The amino-terminal half containing the FH1 and 
FH2 domains exhibits intermediate MRTF–SRF-dependent 

transcription activation and, hence, contributes to α-TAT1 
gene transcription. In addition, since it neither binds nor 
stabilizes MTs, the contribution of this part of the molecule 
to promoting microtubule stabilization is almost negligible. 
However, a bipartite MT binding domain at the carboxyl-
terminal of the FH2 of INF1 mediates binding to MTs and 
strong MT stabilization [79, 106]. Therefore, the carboxyl-
terminal part is the main contributor to tubulin acetylation 
by the INF1 molecule. A similar case could be that of formin 
Fmn1, which also has a bipartite MT-binding region but, 
unlike that of INF1, is at the amino-terminal of the FH2 
domain [108].

By controlling their actin polymerization activity, form-
ins modulate the levels of G-actin and, through the effect 
of G-actin on MRTF–SRF activity, coordinate the actin 
cytoskeleton with the levels of acetylated tubulin via α-TAT1 
gene transcription. Since the concentration and regulation of 
formins probably vary between cell types and under different 
physiological and pathological conditions, the global effect 
of formins on the level of tubulin acetylation depends on 
the sum of the individual contributions to MT stabilization 
and MRTF–SRF activation (Table 1) and, consequently, to 
α-TAT1 gene expression in each type of cell.

INF2 regulates actin homeostasis 
and tubulin acetylation in a cell 
type‑dependent manner

INF2 is an atypical formin that, in addition to polymerizing 
actin, as other formins do, causes severing and disassem-
bly of actin filaments. The latter two activities require the 
DAD, which in INF2 contains a Wiskott–Aldrich syndrome 
homology region 2 (WH2) domain that binds G-actin [109]. 
INF2 regulates vesicular transport [110, 111], mitochondrial 
fission [85, 112], podosome formation [113], and prostate 

Microtubule-interacting
domain

FH1 D/WDID FH2

FH1 D/WDID FH2

FH1 FH2 MBD

FH1 FH2

INF2

mDia1

INF1

Fmn1 Ex2

FH1 DADDID FH2mDia2 WH2

Fig. 3   Domain organization of the indicated formins. The domain 
involved in MT stabilization is indicated. The molecules are not 
drawn to scale
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cancer cell migration and invasion [114]. Mutations in the 
DID of INF2 cause autosomal-dominant focal segmental 
glomerulosclerosis (FSGS), a degenerative kidney disease, 
with or without associated CMT neuropathy [115].

The control of actin homeostasis by formins depends on 
the formin that has the most prominent role in actin polym-
erization in each type of cell. For instance, in RPE-1 cells 
silenced for INF2 expression, the G-/F-actin ratio increases, 
and subsequently MRTF–SRF activity, α-TAT1 gene tran-
scription and tubulin acetylation decrease. DIA1 silencing, 
however, does not have any significant effect [107]. This 
observation indicates that INF2 is more important than 
DIA1 for actin homeostasis and tubulin acetylation in RPE-1 
cells. However, this is not true in Jurkat T cells, in which 
INF2 silencing does not affect tubulin acetylation [107, 116]. 
Therefore, INF2 controls actin homeostasis and tubulin acet-
ylation in a cell type-specific manner.

An important feature of INF2 not found in other form-
ins is that the in vitro binding of G-actin to the WH2/
DAD releases INF2 from its autoinhibitory state, thereby 
activating actin polymerization [117]. If this property 
also applies in vivo, given the low affinity of the INF2 
DID–DAD interaction [118] and the high affinity of the 
INF2 WH2/DAD for G-actin [117] (Fig.  4), the actin 
polymerization activity of INF2 might be regulated by 
small fluctuations in the cytosolic pool of G-actin in such 
a way that an increase or decrease in the levels of G-actin 
increases or decreases the activity of INF2 [117]. Other 
human formins have WH2-like motifs within their DAD 
(e.g., mDia1) or outside it (e.g., FMNL2-3, DAAM1) 
[119]. The mDia1 DAD binds G-actin with micromolar 
affinity whereas the affinity of its DID–DAD interaction 
is in the submicromolar range (Fig. 4) [71]. Consequently, 
mDia1 remains autoinhibited in vitro in the presence of 

Table 1   Summary of the effect 
of some formins on the MT 
cytoskeleton and MRTF–SRF 
activity

Formin MT binding MT interact-
ing domain

MT stabi-
lization

MRTF–SRF acti-
vation (FH1FH2)

MT acetyla-
tion (FH1FH2)

References

INF2 Yes FH1FH2 Yes Yes Yes [79, 80, 84, 85]
mDia1 Yes FH1FH2 Yes Yes Yes [79, 84, 104]
mDia2 Yes FH1FH2 Yes Yes Yes [75, 79]
INF1 Yes MBD Yes Yes Yes [79, 106]
Fmn1 Yes Ex2 n.d. No No [79, 108]
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Fig. 4   Affinity constants of MRTF and different formins for G-actin. Compilation of the dissociation constants of MRTF and of the DAD/WH2 
of INF2, mDia1 and FMNL3 for G-actin, and dissociation constants for the DID–DAD interaction in these formins
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free G-actin under conditions in which INF2 is activated 
[117]. Despite its low affinity for actin, exogenous mDia1 
can be activated in response to high G-actin cytosolic con-
centrations in cultured cells [120]. The formins FMNL2, 
FMNL3 and DAAM1 also contain WH2-like sequences 
that, in the case of FMNL3, bind G-actin with an affinity 
intermediate between those of INF2 and mDia1 (Fig. 4). It 
is likely that the binding of G-actin to these three formins 
does not interfere with their DID–DAD interaction, since 
their WH2-like sequence is not embedded in their DAD 
[119, 121, 122]. In conclusion, the high-affinity binding of 
the INF2 WH2/DAD to actin and the activation of its actin 
polymerization activity by G-actin make INF2 a formin 
especially well suited to act as a sensor of subtle physi-
ological oscillations in the levels of cytosolic G-actin, and 

to respond to them by fine-tuning its actin polymerization 
activity, thereby controlling actin homeostasis.

The affinity of the WH2/DAD of INF2 for G-actin is in 
the same range as that of the actin-binding RPEL domain 
of MRTF (Fig. 4) [123]. Consequently, given the regula-
tion of INF2 actin polymerization activity by G-actin, the 
WH2/DAD can sense the levels of free G-actin and, depend-
ing on the levels of G-actin, promote the assembly of actin 
filaments to control the nuclear localization of MRTF. 
Consequently, changes in INF2 activity can control actin 
homeostasis and modulate the expression of α-TAT1 and 
a large number of other genes related to cytoarchitecture 
that are regulated by the actin–MRTF–SRF transcriptional 
circuit [97, 101] (Fig. 5). Therefore, INF2 could act as a 
G-actin sensor that controls not only tubulin acetylation but 

FH1 D/W
Prof

DID
MRTF MT 

stabilization

MRTF

SRF

FH2DID

FH2
FH

1

MRTF

MRTF
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α-TAT1

α-TAT1mRNA

Acetyl-K40 
α-tubulin

α-TAT1
gene
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α
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Fig. 5   Schematic of the proposed model of INF2 function on micro-
tubule acetylation. Given that the affinity of the WH2/DAD (W/D) of 
INF2 for G-actin is much higher than for the DID, INF2 may sense 
the increase of the levels of G-actin better than other formins. Since, 
in the case of INF2, the binding of G-actin to the DAD/WH2 releases 
INF2 from autoinhibition, increased levels of free G-actin result in 
INF2-mediated actin polymerization and, consequently, a decrease 

in free G-actin. This decrease allows MRTF to enter the nucleus and 
associate with SRF to direct the transcription of the α-TAT1 gene and 
other target genes. The increased levels of α-TAT1 mRNA produce 
more α-TAT1 and, subsequently, MT acetylation on the K40 residue 
of α-tubulin augments. In addition, INF2 contributes to tubulin acety-
lation via MT stabilization by forming part of a large protein complex 
that stabilizes MTs in an active Rho GTPAse-dependent manner
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also more extensive cytoskeleton remodeling [124, 125]. 
This role could be particularly relevant in cellular processes 
involving INF2 in which the cytoskeleton globally remodels 
as during podosome formation [113, 125], in cell migration 
and invasion of cancer cells [114], and in the response to 
acute stress conditions such as the application of mechanical 
force [124] and Ca2+ influx [126].

Studies performed in C. elegans with disease-associated 
INF2 mutations point to an effect of mutant INF2 on both 
MTs and actin [127]. The role of INF2 in controlling the 
transcription of MRTF–SRF target genes, including the α-
TAT1 gene, may help explain the molecular basis of INF2-
related disease [115] and the alterations in tubulin acetyla-
tion noted in other human disorders [36].

Concluding remarks and outstanding 
questions

Crosstalk between the actin cytoskeleton and the MT net-
work is essential for critical cellular processes, including for-
mation of the leading edge and focal adhesions during cell 
migration, and the assembly of the intercellular bridge dur-
ing cytokinesis [128]. Since the function of formins affects 
the actin and MT cytoskeletons [74, 78], formins make 
excellent candidates for coordinating the two structures. The 
function of the acetylation on the K40 residue of α-tubulin is 
intriguing. Although relationships between formins and MT 
stabilization, and between MT stabilization and accumula-
tion of acetylated tubulin were established some time ago, 
no other mechanism linking formins and tubulin acetylation 
was known until recently. The finding that tubulin acetyla-
tion is controlled by formins also through the regulation of 
α-TAT1 gene transcription represents a new mechanism of 
coordination in the actin and MT cytoskeletons [107].

It is puzzling that INF2 is critical to microtubule acet-
ylation in some types of cells (e.g., epithelial RPE-1 and 
ECV304 cells) but not in others (e.g., Jurkat T cells) [107, 
116]. It would be interesting to identify the tissues and cell 
types in which INF2 is crucial, and to investigate how the 
actin and MT cytoskeletons coordinate in the rest of tis-
sues. Unfortunately, the mutations in the WH2/DAD of 
INF2 known to interfere with G-actin binding also affect 
its binding to the DID [109] and activate actin polymeriza-
tion, just as the binding of G-actin to the INF2 WH2/DAD 
does [117]. Although it is not straightforward to examine, 
the possible function of INF2 as a sensor of free G-actin 
in certain cell types deserves more detailed study. It is of 
note that mechanosensation has been previously related 
to MT acetylation [19–23] and to INF2 [126]. It would be 
interesting to analyze INF2 knockout animals to investigate 
whether the effect of INF2 on mechanosensation is mediated 
by the lack of MT acetylation. INF2 controls MRTF–SRF 

transcriptional activity in RPE-1 cells and probably in other 
types of cell [107]. Therefore, in addition to α-TAT1 gene 
expression, INF2 can regulate the expression of other genes 
regulated by MRTF–SRF, including a large number of genes 
encoding regulators of the cytoskeleton, transcription, and 
cell growth and metabolism. Mutations in INF2 cause FSGS 
and other nephropathies as well as FSGS with associated 
CMT disease [115]. Some of the mutations occur even in 
contiguous amino acids but produce either FSGS alone or 
FSGS plus CMT, as is the case of the L76P and L77P muta-
tions, respectively [129]. Therefore, a greater knowledge of 
both INF2 structure and the role of INF2 in coordinating the 
actin cytoskeleton and MT acetylation may help us under-
stand the molecular basis of human INF2-related patholo-
gies [115] and of other disorders featuring altered levels of 
tubulin acetylation [36].
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