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Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrange-
ment of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities 
and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, 
transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs 
found in  Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) 
and play a regulatory role, making these CaM-like proteins sensitive to  Ca2+ transients within the cell, and hence are able to 
transduce the  Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins 
direct regulation independent of other  Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also 
covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with 
other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting 
either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes 
and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs 
substantially adds to the enormous versatility and complexity of  Ca2+/CaM signaling.
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Abbreviations
ADF  Actin-depolymerizing factor
Bak  Bcl2-antagonist/killer
CAIN  Calcium and internalization
CaM  Calmodulin
CaM-BD  CaM-binding domain
CaMK-II  CaM-dependent protein kinase-II
CaM-LD  CaM-like domain
CaN-A  Calcineurin A

CaN-B  Calcineurin B
CBS  Calmodulin binding site
CDK  Cyclin-dependent kinase
CDPK/CPK  CaM-like domain protein kinase/Ca2+-

dependent protein kinase
c-erbB  Cellular erythroblastic leukemia viral onco-

gene homologue
CLBS  Calmodulin-like binding site
COMP  Cartilage oligomeric matrix protein
DAPK1  Death-associated protein kinase 1
ER  Endoplasmic reticulum
ErbB1/2/3/4  Erythroblastic leukemia viral oncogene 

homologues 1/2/3/4
EGF  Epidermal growth factor
EGFR  EGF receptor
EGFRcyt  EGFR cytosolic region
FRET  Fluorescence resonance energy transfer
FSH  Follicle-stimulating hormone
GPDH  Glycerol-3-phosphate dehydrogenase
IgA/IgG  Immunoglobulins A/G
IP3  Inositol-1,4,5-trisphosphate
MAPK1  Mitogen-activated protein kinase 1
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MLCK  Myosin light-chain kinase
NHE1  Na+/H+ exchanger 1
NLS  Nuclear localization sequence
NMR  Nuclear magnetic resonance
NOX5  NADPH oxidase 5
ROS  Reactive oxygen species
LIMP-2  Lotus intrinsic membrane protein 2
PIP2  Phosphatidylinositol 4,5-bisphosphate
PKG  cGMP-dependent protein kinase
PLCγ  Phospholipase Cγ
PMCA  Plasma membrane  Ca2+-ATPase
SERA5  Serine-repeat antigen 5
TRP  Transient receptor potential

Introduction

The calcium ion plays a fundamental signaling role in all 
eukaryotic organisms. The transduction of the  Ca2+ sig-
nal is mostly achieved by a great variety of  Ca2+-binding 
proteins containing helix–loop–helix EF-hand motifs. The 
name of this motif is derived from the  Ca2+-binding sites of 
parvalbumin, where it was first identified [1]. It is formed 
by a loop of 12 amino acids rich in acidic residues, which 
coordinates  Ca2+, and links the two α-helical segments E and 
F in a perpendicular way. The phylogeny of these proteins 
shows an evolutionary history, in which gene duplication 
played a fundamental role. By this mechanism, a predicted 
ancient gene encoding a single EF-hand-containing protein 
can be seen as a precursor yielding a plethora of different 
proteins working as  Ca2+-binding sensors and buffers [2–4]. 
Nevertheless, this did not occur in all cases, because events 
of convergent evolution took place as well [3, 4]. The best-
studied EF-hand containing protein is calmodulin (CaM). 
The structure of CaM consists in two globular lobes located 
at the N- and C-termini of the protein each containing two 
EF-hand  Ca2+-binding sites and a flexible linker connecting 
both globular lobes. This structure permits the interaction of 
CaM with its targets adopting different conformations, and 
to work as a linker between different proteins and/or seg-
ments of the same polypeptide chain. This contributes to the 
dimerization of identical or different proteins, and to attain 
structural conformers of the target protein modulating their 
functionality (reviewed in [5]). CaM is universally expressed 
in all eukaryotic cells and interacts with several hundred 
enzymes, channels, and other proteins without catalytic or 
transport activity including transcription factors, adaptors, 
signaling and structural proteins, regulating a myriad of cel-
lular functions (reviewed in [5–10]). Although CaM mainly 
works in a  Ca2+-dependent manner, it also regulates the 
function of many proteins in a  Ca2+-free form (apo-CaM) 
[11, 12]. CaM has an identical sequence in all vertebrates but 
is coded from two or three independent genes, depending on 

the species [13, 14]. Plants, however, express several CaM 
isoforms coded from different genes (for example seven in 
Arabidopsis) (reviewed in [15, 16]). In some cases, CaM 
may work as an integral component of the target proteins, 
rather than just interacting with them when the concentra-
tion of  Ca2+ rises. This consists in the integration of CaM 
as a constitutive subunit of the functional target protein even 
when the  Ca2+ concentration is low. Well-known examples 
of such proteins are phosphorylase b kinase (reviewed in 
[17]), the inducible nitric oxide synthase isoform (reviewed 
in [18]), and it has been proposed to be the case as well for 
some ion channels (reviewed in [19]).

Another level of complexity of  Ca2+ sensors/target signal-
ing consists of the presence of EF-hand modules in proteins 
that have an enzymatic, transport, adaptor or another func-
tional domain. This enabled the proteins to be directly regu-
lated by  Ca2+ and thereby transmit the signal downstream 
without the need of a distinct  Ca2+ sensor protein, such as 
CaM or other proteins containing EF-hand motifs. Neverthe-
less, there are examples, in which in addition to the direct 
binding of  Ca2+ to the EF-hands of the CaM-like domain 
(CaM-LD) containing proteins,  Ca2+/CaM binds to these 
proteins and plays a regulatory role (see “Protein kinases 
(CDPKs)”). This adds complexity to the functionality of this 
group of proteins.

In the first section of this review, we will discuss a series 
of these CaM-LD containing proteins on a structural and 
functional level. This will include some enzymes (kinases, 
proteases, dehydrogenases and oxidases), and proteins with 
transport, hormonal, adaptor or structural functions. In the 
second section, we will discuss CaM-binding proteins that in 
addition to the CBS also contain a CLBS as defined by Jar-
rett and Madhavan [20]. There is no sequence homology of 
the CBSs or CLBSs in different proteins, except that they are 
rich in basic and acidic residues, respectively. These CLBSs 
lack EF-hand motifs, and are proposed to interact electro-
statically with the CBSs when the latter are free of CaM. 
Therefore, they could provide a regulatory decoy system by 
binding to the CBS and preventing the action of  Ca2+/CaM 
leading to autoinhibition. We will discuss the presence and 
function of CBS/CLBS motifs in some enzymes, transport 
proteins, and growth factor receptors. To highlight the com-
munality of these regulatory domains in this diverse group 
of proteins, Fig. 1 depicts the organization of the major 
domains of some enzymes classified as containing either 
CaM-LD or CLBS/CBS domains discussed in this review. 
This arrangement allows either the direct and/or indirect 
(CaM-mediated) regulation of these enzymes by  Ca2+ with 
great precision. Interestingly, the presence of an autoinhibi-
tory domain that may have an independent identity, or to 
coincide with theirs CLBS or CBS appears to be common 
features of these enzymes to avoid unwanted activation in 
the absence of  Ca2+ and/or the  Ca2+ sensor CaM.
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Proteins with EF‑hand calmodulin‑like 
domains (CaM‑LDs)

The occurrence of proteins containing a segment with an 
enzymatic (e.g., kinase or protease), or non-enzymatic 
domain (e.g., with transport or adaptor cytoskeletal function) 
and a segment resembling the helix-loop-helix EF-hand 
motifs found in  Ca2+-binding proteins, such as CaM, could 
be the result of the fusion of two genes with completely dif-
ferent functions and evolutionary origin. This has been pro-
posed to be the case for calpains, a group of  Ca2+-dependent 
cysteine endo-peptidases [21], as well as plant and protist 
calmodulin-like domain protein kinases [22, 23]. It is likely 

that this is also the origin of other proteins containing 
canonical EF-hand CaM-LDs, which are the focus of this 
section. Table 1 presents the amino acid sequence of the 
 Ca2+-binding sites of selected proteins containing EF-hands.

CaM‑LD proteins with enzymatic activity

Among the proteins with calmodulin-like domains and enzy-
matic activity most thoroughly studied are enzymes impli-
cated in phosphorylation processes such as certain protein 
kinases in plants and protists denoted CDPKs, and proteases 
of the calpain family in vertebrates. In addition, enzymes 
involved in redox processes such as some dehydrogenases 
and oxidases also have calmodulin-like domains.

Protein kinases (CDPKs)

In many higher plants, algae and protists, a multi-gene 
family of  Ca2+-dependent serine/threonine protein kinases 
denoted CDPKs presenting many isoforms was identified. 
These proteins contain as major structural features a vari-
able N-terminal region, a catalytic domain similar to the 
one in calmodulin-dependent kinases (CaMKs), a regula-
tory junction domain connected to an adjoined C-terminal 
regulatory domain similar to CaM named the CaM-like 
domain (CaM-LD) containing four EF-hand  Ca2+ binding 
sites, although some isoforms with fewer sites have been 
identified (Figs. 1, 2a) [24]. The phylogeny of this extensive 
protein kinase family resulting from the fusion of an ances-
tral kinase gene and a CaM gene has been reviewed [23]. 
CDPKs have a high affinity for  Ca2+ and do not require an 
exogenous  Ca2+-binding protein for their activity, as they are 
directly activated by this cation due to their in-built CaM-
like domain (reviewed in [25, 26]). Through their enzymatic 
activity, these kinases transmit the  Ca2+ signal generated by 
hormones, light and other effectors to diverse substrates, 
thereby regulating distinct physiological processes.

The junction between the kinase domain and the CaM-LD 
appears to exert an auto-inhibitory role acting as a pseudo-
substrate-like structure blocking the catalytic site [27–29]. 
It was demonstrated that when the CaM-LD interacts with 
the junction this auto-inhibition is partially released. Never-
theless, for the total release of autoinhibition, not only  Ca2+ 
binding to the high-affinity sites in the C-lobe but also  Ca2+ 
occupancy of the lower affinity sites in the N-lobe is required 
[30]. Binding of  Ca2+ to the C-lobe appears to increase the 
affinity of this cation for the N-lobe, facilitating activation of 
the kinase in a cooperative manner (reviewed in [31]). Fig-
ure 2b shows a putative model depicting the  Ca2+-mediated 
activation of a CDPK. Nevertheless, structural analysis of 
the CDPK of Arabidopsis thaliana, AtCPK1, showed that 
this junction almost exclusively interacts with the high  Ca2+ 
affinity C-lobe of the CaM-LD to release autoinhibition. This 

Fig. 1  Domain organization of some calmodulin-like domain (CaM-
LD)- and calmodulin-like binding site (CLBS)-containing proteins 
with enzymatic activity. The figure depicts the linear organization 
of the relevant domains of some enzymes with either a CaM-LD 
or CLBS. The domains shown are: catalytic site (red); CaM-LD or 
CLBS (green and EF-hands, boxes with bars, where applicable); 
autoinhibitory (AI)/junction (JD) domains (magenta); and calmo-
dulin-binding site (CBS) (pink). CDPK CaM-like domain protein 
kinase, CaMK-II CaM-dependent protein kinase-II, MLCK myosin 
light-chain kinase, EGFR epidermal growth factor receptor, CaN A 
calcineurin A, CaN B calcineurin B, Calp 80 calpain 80 kDa subu-
nit, Calp 30 calpain 30  kDa subunit, GAPDH glycerol-3-phosphate 
dehydrogenase, NOX5 NADPH oxidase 5, PMCA plasma membrane 
 Ca2+-ATPase. The length of the proteins and different domains is not 
drawn to scale. The CBS and AI domains of the EGFR overlap [183]
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Table 1  Sequences of  Ca2+-binding sites from selected EF-hand-containing proteins
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suggests activation of the kinase even at low basal  Ca2+ con-
centrations [32]. Although this mechanism does not appear 
to be sufficient to attain full activation of the enzyme, muta-
tions at the CaM-LD and the linker connecting this domain 
with the kinase domain block its enzymatic activity, and the 
activity of a mutant lacking the CaM-LD can be reconsti-
tuted upon addition of either this isolated domain or CaM 
[33–35]. CDPKs and CDPK-related kinases from plants and 
protists are able to undergo autophosphorylation, and a com-
mon locus of the autophosphorylation sites in the N-terminal 
variable domain has been identified [36].

The first  Ca2+-dependent kinase (CDPK) was discovered 
in 1991 in soybean (Glycine max), later denoted CDPKα 
[37], followed by the identification of isoforms CDPKβ and 
CDPKγ with different kinetic properties and  Ca2+ affinities 
indicating distinct functional roles [38]. Further, CDPKs 
were later on found in many other higher plants, green algae 
and protists. Table 1 shows that the EF-hands in these pro-
teins are highly conserved, especially the  Ca2+ coordinating 
acidic residues D and E at position 1 and 12 (highlighted in 
red), and Table 2 shows similarities in the sequence of the 
autoinhibitory/junction domain. Interestingly, a phenylala-
nine (underlined in bold) in higher plant CDPKs appears to 
have an important functional role [32], similarly to a highly 
conserved segment in protozoan CDPKs (underlined in 
bold). Figure 2a depicts the crystallographic structure of A. 
thaliana CDPK1 highlighting the four EF-hands  Ca2+ bind-
ing sites in the C-terminal CaM-LD.

Some CDPKs bind and are regulated by CaM. It was 
shown that A. thaliana CPK28 binds  Ca2+/CaM at its 
junctional domain with high affinity inhibiting its activity. 
However, when CPK28 is autophosphorylated it primes 
the enzyme for  Ca2+ binding at low concentration, and this 
reduces the inhibitory effect of  Ca2+/CaM [39]. Of interest, 
the activation loop of some CDPKs contains acidic amino 
acid residues, which prevent Ser/Thr phosphorylation [40]. 
Therefore, it could be speculated that this acidic site may 
work as well as a CLBS (see “Calmodulin-binding proteins 
with non-EF-hand CaM-like binding sites (CLBSs)”) possi-
bly interacting with the CBS of these enzymes. The junction 
domain of soybean CDPKα induces a significant structural 
change in the C-terminal domain of the isolated CaM-LD 
in the presence of  Ca2+ without forming a stable complex 
as determined by NMR spectroscopy [41]. Moreover, the N- 
and C-lobes of the CaM-LD adopt a side-by-side position, 

unlike CaM, and similar to calcineurin B [42]. Using FRET, 
it was demonstrated that the CaM-LD is partially unfolded 
in the absence of  Ca2+ and folds upon  Ca2+ binding [43] 
(see Fig. 2b).

Autophosphorylation is a  Ca2+-dependent process and 
considered to be a requirement for plant CDPK activation, as 
demonstrated in groundnut (Arachis hypogaea) CDPK [44]. 
This CDPK, an example of a group of atypical structurally 
similar CDPKs, containing a bipartite NLS at their auto-
inhibitory junction domain and non-canonical EF-hands, 
binds  Ca2+ with very low affinity. The presence of a bipar-
tite NLS is shared by many other CDPKs including ginger 
(Zingiber oficinale) ZoCDPK1 and Arabidopsis AtCPK30 
among others [45]. As expected, this kinase is localized in 
the nucleus and its junction domain in its activated form 
has been shown to interact with importins, which are local-
ized at the nuclear pores participating in the translocation 
process [46]. As autophosphorylation at a tyrosine residue 
has been reported recently, it was suggested that CDPKs 
could work as dual-specific protein kinases [47]. In some 
instances, however, autophosphorylation has been shown to 
be  Ca2+-independent and to induce inhibition of the enzyme 
[48]. The functionality of these kinases appears to be diverse 
as they act on many different targets. Table 3 collects some 
functional roles of selected examples of these kinases in dif-
ferent plants and other organisms. Relevant in this context 
is the fundamental role of CDPKs in defense response to 
pathogens and herbivores attack (reviewed in [49]).

CaM-like domain protein kinases similar to the above-
described plant enzymes have been identified in green algae 
[50, 51] and protists (see Table 3). Protist CDPKs exhibit a 
more elaborated mechanism of activation. Binding of  Ca2+ 
to the CaM-LD releases the auto-inhibition, as in the case 
of plant CDPKs, but the junction/CaM-LD complex further 
interacts with a segment of the kinase domain and a ‘latch’ 
with the variable N-terminal domain (not shown in Fig. 2b). 
This contributes to the allosteric activation of the enzyme. 
Nevertheless, it is likely that plant CDPKs may have a simi-
lar activation mechanism (reviewed in [52]).

In the protozoan Plasmodium falciparum, the causing 
agent of malaria, up to seven CDPKs are expressed, what 
aroused interest as potential therapeutic targets due to their 
important role in transducing essential  Ca2+-mediated sign-
aling as well as the fact that mammals do not express similar 
proteins (reviewed in [53]). The structural and functional 

Acidic amino acid residues are marked (red)
CDPK CaM-like domain protein kinase, CPK  Ca2+-dependent protein kinase
a Undefined isoenzyme
b Potential  Ca2+-binding sites are underlined
c Binds 11–14 calcium ions per subunit, the indicated sequences correspond to  Ca2+-binding sites in EGF-like domains 2 and 3

Table 1  (continued)
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features of the  Ca2+-binding sites at the N- and C-lobes of 
the CaM-like domain of CDPK3 in this parasite has been 
studied in detail using recombinant proteins of each lobe 

[54]. It was found that the C-lobe was constitutively occu-
pied by  Ca2+, as it could not be prepared in its  Ca2+-free 
form, and was found in a dimeric form. This is in contrast 

A

B

Fig. 2  Structure and  Ca2+-mediated activation of a calmodulin-like 
domain protein kinase. a The figure depicts the X-ray crystallo-
graphic structure of  Ca2+-dependent protein kinase 1 (AtCDPK1) 
from Arabidopsis thaliana at 2  Å resolution (Q06850 CDPK1_
ARATH based on template 4m97A, residue range 142–588) taken 
from UniProt SWISS-MODEL database. The crystallographic struc-
ture in the left panel is shown using a rainbow color code going from 
the N-terminal (blue) to the C-terminal (red). The  Ca2+-binding 
sites in the four EF-hands are highlighted in the right panel in dif-
ferent colors indicating the amino acid residues involved. b The fig-
ure depicts a model for the  Ca2+-dependent activation of a CaM-like 
domain protein kinase (CDPK). In the absence of  Ca2+, a non-physi-
ological condition, when the four EF-hands of the CDPK are free of 
 Ca2+ (apo-CDPK), a sector of the junction domain (JD) blocks the 
catalytic site of the protein kinase (PK) rendering the enzyme inactive 

(top panel). In basal conditions, when the cytosolic  Ca2+ concentra-
tion is very low (< 50–100  nM) the high-affinity  Ca2+-binding sites 
located in the distal EF-hands 3 and 4 are occupied and both of them 
interact with the JD (marked in green), the catalytic site is partially 
released and the enzyme becomes partially active (central panel). 
The interrogation mark indicates a discrepancy in the literature as to 
whether binding of  Ca2+ to EF-hands 3 and 4 is sufficient to at least 
partially release the auto-inhibition (see references [27–31]). When 
the cytosolic  Ca2+ concentration increases at saturating concentra-
tions (> 0.5–1  µM), the two low-affinity  Ca2+-binding sites located 
in EF-hands 1 and 2 are also occupied by  Ca2+, and all EF-hands 
interact with the JD (marked in green) which is totally released from 
the catalytic site rendering the enzyme fully active (bottom panel). 
 Ca2+ ions are represented by gray spheres. CaM-LD calmodulin-like 
domain. Partially based on references [31, 36]
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to the N-lobe, which did not form dimers and changed its 
structure upon binding of a single  Ca2+ ion. This may indi-
cate if confirmed with the full-length protein, that the C-lobe 
is  Ca2+ saturated even at basal intracellular concentration 
and that activation occurs due to structural changes induced 
by  Ca2+ binding to the N-lobe as suggested by the authors 
of this report. Using the CDPK4 isoform of this parasite, a 
model of  Ca2+-mediated activation of this kinase was pro-
posed, in which the junctional domain occupies its catalytic 
domain, acting as a pseudo-substrate when the CaM-LD is 
in its  Ca2+-free form, as in other CDPKs [55] (see Fig. 2b). 
Upon  Ca2+ binding, the junctional domain is detached 
exposing this site and allowing its auto-phosphorylation at 
Thr234, which activates the enzyme.

The causative agent of toxoplasmosis, the pathogenic 
intracellular protozoan Toxoplasma gondii, expresses 
 Ca2+-dependent/phospholipid-independent CDPKs. These 
kinases could be valid targets to prevent invasion of the 
parasite transmitted by cats gravely affecting the fetus in 
pregnant women. In this context, imidazopyridine, an inhibi-
tor of PKG used against this and other coccidial parasites, 
has been shown to specifically inhibit as well CDPK1 in T. 
gondii with very high (sub-nanomolar) affinity [56]. The so-
called “bumped” kinase inhibitors are those that compete for 
ATP. Thereby they inhibit protozoan kinases but not mam-
malian kinases because the latter usually contain a bulky 
gatekeeper residue in the catalytic site that prevents entry of 
the inhibitor (reviewed in [57]). These CDPK inhibitors have 
been found useful for the treatment of protozoal diseases. 
However, resistance to this class of inhibitors has been found 
when MAPK1, but not CDPK1, in T. gondii is mutated [58]. 

Based on these and other results it has been suggested to 
develop CDPK-based vaccines against T. gondii (reviewed 
in [59]). Parasitic protozoans of the genus Eimeria, also 
expressing CDPKs, are the agents causing coccidiosis [60].

The calpain protein family

Calpains form a family of  Ca2+-dependent cysteine neu-
tral proteases with at least fourteen isoforms in human 
coded from different genes. These proteases play a variety 
of important roles, as they perform restricted controlled 
proteolysis on target substrates modulating in this fashion 
their functionality (reviewed in [61–63]). They also partici-
pate in the onset of different pathologies including cancer 
(reviewed in [64]). The major functional classification sys-
tem of calpains is based on the affinity of these enzymes for 
 Ca2+. This includes μ-calpain (calpain-1) with high affinity 
for  Ca2+ (3–50 μM), and m-calpain (calpain-2) with a very 
low affinity for this cation (0.2–1 mM). A third type is cal-
pain-3, which is also dependent on  Na+ and has some pecu-
liar properties, such as the propensity to become reactivated 
by intermolecular complementation of the fragments after 
auto-proteolysis.  Ca2+ binding induces the autoproteolytic 
activation of calpains. Interestingly, calpain-5 was shown to 
be able to undergo  Ca2+-dependent processing in a human 
neuroblastoma cell line even though it does not contain a 
CaM-LD [65].

Calpains are heterodimers constituted of 80 kDa and 
30 kDa subunits. Five EF-hands domains are found in both 
subunits at their C-terminal region, of which only three or 
four in the large subunit and some in the smaller subunit 

Table 2  Sequence of selected CDPK autoinhibitory/junction domains

In higher plant CDPKs the residues in bold indicate changes with respect to soybean CDPK, and a conserved functionally important phenylala-
nine residue is underlined in bold [32]. In P. falciparum and T. gondii the underlined segment is highly conserved and may represent a function-
ally important segment
a Small segment of the autoinhibitory/junction domain [32]
b Two helical segments of the autoinhibitory/junction domain [232]

CDPK Species Autoinhibitory/junction domain Identity (%)
UniProt ID

SK5 Soybean (Glycine max) 298APDKPLDSAVLSRLKQFSAMNKLKKMALRVI328 –
P28583

OsCPK11 Rice (Oryza sativa)_ 377APDKPLDSAVLSRLKQFSAMNKLKKMALRVI407 100
Q852N6

NtCDPK3 Tobacco (Nicotiana tabacum) 378APDKPLDSAVLSRMKQFSAMNKLKKMALRVI408 96.8
Q93YF3

AtCPK11 Mouse-ear cress (Arabidopsis thaliana) 290APDKPLDPAVLSRLKQFSQMNKIKKMALRVI320 90.3
Q39016

PfCPK1a Protozoan (Plasmodium falciparum) 344LSNMRKFEGSQKLAQAAILFI364 –
P62343

TgCDPK1b Protozoan (Toxoplasma gondii) 320VPSLDNAILNIRQFQGTQKLAQAALLYMGSKLTSQ-
DETKELTAIFHKMDK369

420GYIEYSEFVTVAMDRKTLLSRERLERAFRMFD451

81.8
Q9BJF5
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Table 3  Biological functions and some properties of selected CDPKs

CDPK isoform Species Biological functions and properties References

MsCPK3 Alfalfa (Medicago sativa) Sensitive to CaM antagonists. Responsive to 
auxin, role in embryogenesis and thermal stress 
response. Phosphorylates a CDK inhibitor 
enhancing its inhibitory activity and blocking the 
cell cycle

[233–235]

VfCDPKa Bean (Vicia faba) Phosphorylates and inhibits the  K+ rectifying 
channel KAT1 in guard cells; leads to closure of 
stomas

This CDPK works upstream of a 48 kDa 
 Ca2+-independent kinase responsive to abscisic 
acid involved in stomatal closure

[236]
[237]

DcCPK1
CRK

Carrot (Daucus carota) Sensitive to CaM antagonists. Activated by acidic 
phospholipids

CDPK-related kinase. Degenerated EF-hands. 
N-terminal extension with myristoylation consen-
sus sequence

[238, 239]
[240]

CaCPK1, CaCPK2 Chickpea (Cicer arietinum) Sensitive to CaM antagonists [241]
ZmCDPKa

ZmCPK11 (ZmCPKp54)
CRPK1, CRPK2

Corn (Zea mays) Phosphorylates the C-terminal region of plasma 
membrane  H+-ATPase in vitro, no effect on 
ATPase activity. Phosphorylates ADF/cofilin; 
leads to actin cytoskeleton disassembly

Involved in drought response
Involved in wound response. Activated by acidic 

phospholipids; present in seeds, plant seedling 
and other organs

Root-specific isoforms

[242, 243]
[40]
[244, 245]
[246]

CsCDPK5 Cucumber (Cucumis sativus) Upregulated by phytohormones (benzyladenine, 
abscisic acid, gibberellic acid and indole acetic 
acid) in a light-dependent and independent man-
ner

N-Myristoylation motif absent

[247]

ZoCDPK1 Ginger (Zingiber officinale) Involved in response to multiple stresses including 
high salt and drought. Contains a bipartite NLS at 
its junction domain

[45]

AhCPK2 Groundnut (Arachis hypogaea) Translocates to the nucleus in response to hyper-
tonic stress. Non-functional second EF-hand. 
Very low  Ca2+ affinity (Kd = 392 µM). Bipartite 
NLS at the junction domain

[46]

IiCPK2 Indigowood (Isatis indigotica) Involved in stress response to cold and high salinity [248]
LjCDPKa Birds’ foot trefoil (Lotus japonicas) Phosphorylates aquaporin LIMP-2 (nodulin-26 

orthologue) in  N2-fixing root nodules
[249]

AtCDPK
AK1-6Ha

CPK9

Mouse-ear cress (Arabidopsis thaliana) Express many isoforms. The ~ 72-kDa isoform 
has a N-terminal extension and is synergistically 
activated by  Ca2+ and phospholipids

Involved in drought response
Phosphorylates and activates NADPH oxidase 

when ectopically expressed in tomato protoplasts 
enhancing ROS production. Phospho-NADPH 
oxidase dephosphorylated by protein phosphatase 
2A. Involved in parasite defense mechanisms

Transferred DNA (T-DNA) of the mutagenic 
tumor-inducing bacteria Agrobacterium tume-
faciens is inserted in the gene inactivating this 
isoform

[218, 250, 251]
[40]
[252]
[253]

PiCDPK1
PiCDPK2

Petunia (Petunia inflata) Controls the growth and polarity of the pollen tube [254]

PrCDPKa Poppy (Papaver rhoeas) Phosphorylates a pollen 26-kDa protein to prevent 
self-pollination

[255]

StCPK1 Potato (Solanum tuberosum) CDPK-related kinase with canonical EF-hands [256]
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Table 3  (continued)

CDPK isoform Species Biological functions and properties References

CmCPK1 Pumpkin (Cucurbita maxima) N-terminal proteolytically cleavaged form enters 
the phloem and phosphorylates sap proteins

[257]

OsCDPKa

SPKa
Rice (Oryza sativa) Involved in drought response

Phosphorylates sucrose synthase; regulates starch 
storage in grain

[40]
[258, 259]

SbCDPKa Sorghum (Sorghum bicolor) Involved in drought response [40]
CDPKα
CDPKβ
CDPKγ
GmCDPKa

Soybean (Glycine max) CDPKα higher  Ca2+ affinity (K0.5 = 0.06 µM) than 
CDPKβ (K0.5 = 0.4 µM) and CDPKγ (K0.5 = 1 µM)

Phosphorylates the symbiosome membrane protein 
nodulin-26 in  N2-fixing root nodules regulating 
its voltage-dependent channel activity

[37, 38]
[260]

SoCDPKa Spinach (Spinacia oleracea) Phosphorylates leaf nitrate reductase; decreases 
nitrate assimilation via 14-3-3 protein binding

Phosphorylates and inhibits leaf sucrose-phosphate 
synthase arresting sucrose biosynthesis

[261]
[262]

FaCDPK1 Strawberry (Fragaria ananassa) Fruit development, transcript increases at low 
temperature. Three EF-hands only

[263]

BvCDPKa Sugar beet (Beta vulgaris) Phosphorylates and inhibits plasma membrane 
 H+-ATPase in root cells

[264]

NtCDPK1 Tobacco (Nicotiana tabacum) Responsive to phytohormones and tissue wounding [265]
LeCPK1
LeCPK2
LeCRK1

Tomato (Solanum lycopersicum) LeCPK1 phosphorylates the C-terminus of plasma 
membrane  H+-ATPase. LeCPK2 responsive 
to phytohormones and mechanical injuries. 
Myristoylation of LeCPK1 N-terminus required 
for plasma membrane localization;  Ca2+-binding 
sites of low (Kd = 55 µM) and high (Kd = 0.6 µM) 
affinity

LeCPK2 very high affinity for  Ca2+ 
(K0.5 = 45–49 nM)

Degenerated CaM-LD unable to bind  Ca2+. Con-
tains a CaM-binding site as assayed in vitro

Involved in ripening

[266–268]
[269]

TaCDPK1 Wheat (Triticum aestivum) Expression upregulated by sucrose [270]
PtCDPK/WbCDPK Winged bean (Psophocarpus tetragonolobus) Sensitive to CaM antagonists

The 70-kDa isoform is unable to undergo autophos-
phorylation

Dephosphorylated by serine-phosphatase WbPP

[48, 271]
[272]

EtCDPKa Protozoan (Eimeria tenella) Involved in the invasion of host cells by the sporo-
zoite

Located in the apical filament-like structure of the 
sporozoite

[60]

PfCDPK1
PfCDPK3
PfCDPK4

Protozoan (Plasmodium falciparum) Phosphorylates the protease PfSERA5. Implicated 
in invasion and the egress of merozoites from the 
erythrocyte

Implicated in gametogenesis of the parasite
Sensitive to CaM antagonists

[273, 274]
[219]
[275]

PbCDPK4 Protozoan (Plasmodium berghei) Translates the  Ca2+ signal generated by xanthurenic 
acid in gametocytes inducing its differentiation to 
mature gametes

[276]

TgCDPK1
TgCDPK4

Protozoan (Toxoplasma gondii) Involved in motility, host cell attachment and the 
invasive capacity of the parasite. Expressed in 
tachyzoites

Phosphorylates aldolase-1 forming part of the 
glideosome apparatus which is required for para-
site invasiveness

[107]
[277]

ADF actin-depolymerizing factor, CaM calmodulin, CDK cyclin-dependent kinase, CDPK CaM-like domain protein kinase, CPK 
 Ca2+-dependent protein kinase, NLS nuclear localization sequence, ROS reactive oxygen species
a Isoform not described
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are able to bind  Ca2+ (Fig. 1). The catalytic domain of cal-
pain is divided in two sub-domains, IIa and IIb, separated by 
cleft allowing access of the substrate to the catalytic center 
(Fig. 3a) [66, 67]. The activity of a recombinant μ-calpain 
lacking the CaM-LD (domain IV) was shown to be inde-
pendent of  Ca2+, and a chimeric μ/m-calpain in which the 
native CaM-LD (domain IV) [68] of μ-calpain was replaced 
by the one of m-calpain presents the highest affinity for  Ca2+ 
[69]. The physiological concentration of cytosolic  Ca2+ 
appears to be too low for full activation of either μ-calpain 
or m-calpain in living cells. Several mechanisms have been 

suggested to solve this dilemma, from increasing  Ca2+ 
availability by co-localization with  Ca2+-channels, and/or 
to increase the effective  Ca2+ affinity in vivo by binding to 
membranes and subsequent activation by acidic phospho-
lipids or regulation by a phosphorylation/dephosphorylation 
mechanism, and the existence of a hypothetical  Ca2+ acti-
vator similar to CaM (reviewed in [70]). However, some of 
these concepts have been challenged, and alternative views 
have been suggested, and it has been proposed that the rel-
atively low  Ca2+ affinity to fulfill in vivo working condi-
tions may represent an evolutionary safety device to prevent 

A

C D

B
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unwanted proteolysis (reviewed in [71]). The differential 
 Ca2+ affinity of μ-calpain and m-calpain is not due to dif-
ferences in the sequence of the EF-hand  Ca2+-binding sites 
which are almost 100% conserved, but it has been ascribed 
to differences in the N-terminal and the C-terminal EF-hand-
containing domain IV of the 80 kDa catalytic subunit, con-
tributing 20–25% and 65%, respectively, to the difference in 
Kd for  Ca2+ between the two calpain types as determined by 
mutagenesis studies [72].

Due to its high affinity for  Ca2+, µ-calpain can be iso-
lated by  Ca2+-dependent affinity chromatography using 
an immobilized peptide containing the CBS of the plasma 
membrane  Ca2+-ATPase, indicative of the interaction 
between the CaM-LD of calpain with the CBS in analogy 
to CaM. However, the CaM-LD of the irreversibly inacti-
vated protease only mildly activated the hydrolytic activity 
of the ATPase, in contrast to the strong effect exerted by 
CaM [73]. As deduced from the crystallographic structure 

of m-calpain in its  Ca2+-free form, the CaM-LD is sepa-
rated by a β-sandwich domain III also denoted C2-like 
domain, which binds phospholipids, participating together 
with potential non-EF-hand  Ca2+-binding sites in a coopera-
tive way during  Ca2+-induced enzyme activation [68]. This 
structure also shows that in the absence of  Ca2+ key amino 
acids in the catalytic site are separated by more than 10 Å, 
rendering the enzyme inactive, as more proximity is required 
to become active upon  Ca2+ binding [67, 74]. Interestingly, 
a tissue-specific calpain homologue identified in Drosophila 
has an insert in the CaM-LD containing a hydrophobic seg-
ment, that likely participates in membrane attachment [75].

In addition to the CaM-LD found in the large subunit, 
the 30 kDa subunit has two domains denoted V and VI, 
and the CaM-LD is located in domain VI [68] (Fig. 1), pos-
sibly contributing to  Ca2+-induced activation of the com-
plex. The CaM-LDs in both m-calpain subunits interact with 
CaM antagonists, in addition to  Ca2+ [76]. Interestingly, the 
isolated CaM-LDs of the large subunits of μ-calpain and 
m-calpain and their small subunits all appear to dimerize 
in the absence of  Ca2+, recovering their monomeric status 
upon addition of this cation [77]. This reversible associa-
tion suggests the involvement of this region in the formation 
of active heterodimers and/or the formation of enzymatic 
oligomers. The crystallographic structure of the full-length 
 Ca2+-free m-calpain heterodimer reveals how  Ca2+ binding 
to a highly negatively charged loop in domain III, denoted 
electrostatic switch, may induce the necessary molecular 
reorganization to create a functional catalytic center located 
between domains IIa and IIb [68] (Fig. 3a). In addition,  Ca2+ 
could as well facilitate the binding of the enzyme to mem-
branes, where the concentration of this cation is high, which 
may explain the low requirement for  Ca2+ of this calpain 
isoform [66].

Calpains have various modulatory activities. An example 
of modulatory calpain action is the removing of the CaM-
binding region of the plasma membrane  Ca2+-ATPase induc-
ing in this manner its CaM-independent activity [78, 79]. 
Very strikingly, both μ-calpain and m-calpain appear to have 
some preference to proteolyze CaM-binding proteins within 
regions enriched in proline, aspartic/glutamic acids, and ser-
ine/threonine residues, which are denoted PEST sequences 
(reviewed in [80]). The voracity of calpain for CaM-binding 
proteins is intriguing, and it could be speculated that the 
CBS of the target protein is the region recognized by the 
CaM-LD of the protease to recruit its targets acting as a 
surrogate of CaM. In this context, it has been shown that 
the PEST domain of IκBα, an inhibitor of the transcription 
factor NFκB, binds to the CaM-LD of µ-calpain previous 
to its degradation by the protease. As a consequence, this 
allows the transfer of sequestered cytosolic NFκB to the 
nucleus and subsequent activation of gene transcription [81]. 
Nevertheless, the proteolytic capacity of calpain toward the 

Fig. 3  Structure and function of the  Ca2+ binding sites of m-calpain, 
α-actinin, ATP/phosphate exchanger and calcineurin. a X-ray crystal-
lographic structure of the rat m-calpain/calpain-2 dimer with  Ca2+ 
bound in complex with the physiological inhibitor calpastatin at 
2.4 Å resolution. The structure was obtained from PDB: ID 3BOW. 
The EF-hand with  Ca2+-bound (gray spheres), the loop forming the 
acidic electrostatic switch (AES) and domains IIa, IIb, III and IV in 
the large catalytic subunit (pink), and domain VI in the small regula-
tory subunit (blue) are indicated [66]. The red arrow shows the cleft 
between the two catalytic sub-domains IIa and IIb [66, 67]. A seg-
ment (B-peptide, residues 595–629) of calpastatin (brown) blocking 
the catalytic site in domains IIa and IIb is also shown [68, 212]. b 
X-ray crystallographic structure of a human muscle α-actinin-2 
(α-Act-2) dimer (residues 16–874) at 3.5  Å resolution is shown in 
pink and blue colors. The location of EF-hands 1 and 2 and the actin-
binding domain (ABD) are indicated (left). Cryo-electron microscope 
derived structure of tandem calponin-homology domains (residues 
1–109) of human skeletal muscle α-actinin-3 (α-Act-3) bound to a 
F-actin filament formed by G-actin subunits (residues 1–374) at 15 Å 
resolution. Each calponin-1 homology domain (CH) and actin subunit 
is represented in different colors (right). The structures were obtained 
from PDB ID: 4D1E and 3LUE, respectively [104, 213, 214]. c The 
CaM-like binding domain (CaM-BD), also denoted  Ca2+ sensor, 
of human mitochondrial ATP/phosphate exchanger-1 (SCaMC-1) 
located at its N-terminus is shown in a rainbow color code (residues 
22–176). The four EF-hands bound to  Ca2+ (gray sphere) and dieth-
ylene glycol molecule are indicated. The structure was obtained from 
PDB ID 4N5X [121]. d The figure depicts the calcineurin A (CaN-A, 
pink)/calcineurin B (CaN-B, blue) heterodimer in which the four EF-
hands of the regulatory CaN-B subunit are saturated with  Ca2+ (cyan 
spheres), and the calmodulin-binding site (CBS) of CaN-A (residues 
391–414, dashed box) is already separated from the CaN-B binding 
region (residues 348–370) considered to be a calmodulin-like binding 
site (CLBS). Binding of the  Ca2+/calmodulin complex  (Ca2+/CaM, 
rainbow color coded) to the CBS allows the C-terminal auto-inhib-
itory site (AIS) (residues 457–482) to be separated from the Zn/Fe-
containing (brown spheres) catalytic site (residues 71–342) releasing 
the auto-inhibition and inducing full activation of the enzyme. The 
structures were obtained from PDB ID: 1AUI (human CaN-A/CaN-B 
heterodimer at 2.1  Å resolution) [215] and 1CLL (human CaM at 
1.7 Å resolution) [216]. See text and Ref. [135] for more details on 
the activation mechanism

◂
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CaM-binding proteins caldesmon and calponin does not 
depend on the CBS of those proteins, as deletion of these 
domains does not affect their cleavage by the protease [82].

Calpains are regulated by a physiological inhibitory pro-
tein denoted calpastatin, which requires  Ca2+ for its function 
and is found in several isoforms, ranging in size from ~ 19 
to 85 kDa (reviewed in [61, 62]). Both, the CaM-LD of 
the 80 kDa subunit of μ-calpain and the one of the 30 kDa 
subunit, participate in  Ca2+-dependent calpastatin binding 
with very high affinity via one of their N-terminal inhibitory 
repetitive acidic regions [83–85] (Fig. 3a). However, it is not 
yet clear how binding of the different inhibitory domains 
of calpastatin to the CaM-LD of calpain participate in the 
inhibition of its enzymatic activity [86]. The penta-peptide 
LSEAL, with high homology to conserved regions of cal-
pastatin, binds to the CaM-LD of m-calpain and μ-calpain 
mimicking the inhibition of calpastatin on the catalytic activ-
ity [87].

Redox enzymes

GPDH is a tetrameric enzyme that catalyzes the formation 
of glycerol-3-phosphate from dihydroxyacetone-phosphate, 
which is important for shuttling glycerol-3-phosphate 
across the inner mitochondrial membrane. This enzyme 
also has nitrosylase activity, and is strongly activated by 
 Ca2+ enhancing the affinity of the enzyme for its substrate. 
It contains two EF-hand motifs (Fig. 1). However, one of 
them does not participate in  Ca2+ binding. The presence of 
a lysine in this modified EF-hand prevents the binding of 
this cation. Moreover, this enzyme is not inhibited by CaM 
antagonists [88].

NADPH oxidases are membrane-bound enzymes involved 
in the generation of anion superoxide  (O2

−) both in animal 
and plant cells. They are mainly involved in host defense, as 
for example inducing the so-called oxygen burst by leuko-
cytes and macrophages. In addition, they participate in sign-
aling processes, as exerted by their product and other ROS 
species (reviewed in [89, 90]). Human NOX5 contains a 
CaM-LD located at its N-terminus with three canonical EF-
hands  Ca2+-binding sites and an additional non-canonical 
EF-hand. The EF-hands 1 and 2 pair binds  Ca2+ with low 
affinity, while the EF-hands 3 and 4 pair binds this cation 
with high affinity. The binding of  Ca2+ to the CaM-LD acti-
vates the enzyme by interaction of this domain with the cata-
lytic site [91]. In addition, the C-terminus of NOX5 contains 
a CaM-binding site.  Ca2+-dependent CaM binding to this 
site increases the  Ca2+ sensitivity of the N-terminus CaM-
LD [92] (Fig. 1). Furthermore, in bovine aorta endothelial 
cells CaMK-II phosphorylates NOX5 at different Ser/Thr 
residues activating the enzyme, where phosphorylation of 
Ser475 appears to play a particular important role in the 
activation process, as determined by mutagenesis studies 

[93]. In plants, NADPH oxidases are also known as respira-
tory burst oxidase homologues (RBOHs). In Arabidopsis 
six RBOHs were initially identified containing two EF-
hand  Ca2+-binding sites located at the N-terminal region 
[94, 95].  Ca2+ binding to the EF-hands of these oxidases 
induces activation of the enzyme synergistically with a con-
comitant phosphorylation process [95, 96]. In rice RBOH 
two additional EF-hand-like motifs were identified. This 
enzyme is able to form dimers, where the two canonical 
EF-hands are swapped adopting the dimer a head-to-tail 
conformation, that together with the EF-hand-like motifs 
has a three-dimensional structure similar to calcineurin B 
and recoverin [97].

The cytoskeleton protein α‑actinin

The group of CaM-LD-containing proteins is not restricted 
to the group of enzymes, but is extended to proteins with 
other functional roles, such as proteins with mechanical/
structural functions of the cytoskeleton. This underscores the 
functional versatility of CaM-LD proteins. In this section we 
will discuss the case of the cytoskeleton protein α-actinin. 
α-Actinin is a stick shape protein that crosslinks F-actin fila-
ments forming bundles of stress fibers connected to focal 
adhesions. This multi-domain protein belongs to the spec-
trin family and is structurally organized with an N-terminal 
actin-binding domain (ABD), formed by two sequential cal-
ponin-homology domains, followed by a linker that connects 
four sequential spectrin repeat segments and a CaM-LD at its 
C-terminus (reviewed in [98, 99]). In the case of α-spectrin, 
of the two EF-hand motifs located in the C-terminus only the 
EF-hand closer to the spectrin repeat segments binds  Ca2+ 
[100]. α-Actinin makes anti-parallel homo-dimers through 
the formation of a ternary complex between the N-terminal 
actin-binding domain plus the adjacent linker region of 
one monomer, and the C-terminal CaM-LD of the apposed 
monomer [101] (Fig. 3b). The CaM-LD has four EF-hand 
motifs that bind  Ca2+ only in the non-muscle isoforms (1 
and 4) while the muscle isoforms (2 and 3) lack the capacity 
to bind  Ca2+ due to mutations in key amino acids involved 
in the coordination of this cation [102]. Structural data of 
the CaM-LD of α-actinin-2 from Entamoeba histolytica in 
its native conformation obtained by NMR in the absence 
of  Ca2+ shows that the linker region between the two lobes 
harboring the EF-hand motifs is flexible, as in the case of 
CaM [103]. In human α-actinin-2 similar NMR structural 
studies show that in the absence of  Ca2+ the linker region 
is indeed flexible, but upon  Ca2+ binding a stiffness of the 
linker region occurs limiting the rotation of the N- and C-ter-
minal lobes leading to the loss of the capacity to crosslink 
actin through the juxtaposed actin-binding domain [104]. 
Modeling studies suggest that binding of the CaM-LD to 
the linker region regulates the distance between F-actin and 
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the actin-binding site of α-actinin [105]. The gene coding 
for the α-actinin-binding protein UDP-N-acetylglucosamine 
2-epimerase/N-acetylmannosamine kinase (GNE) is mutated 
in some congenital myopathies (reviewed in [106]). This 
enzyme binds with high affinity (Kd ≈ 9 nM) to α-actinin-2 
and with tenfold lower affinity to α-actinin-1. The CaM-LD 
of α-actinin-2 participates in the interaction with GNE. Most 
relevant in connection with myopathies is the finding that 
the myopathic M743T mutation in GNE leads to a tenfold 
decrease of its affinity for α-actinin-2 [107]. The α-actinin-
binding protein palladin is part of the dense region of stress 
fibers and microfilaments where it plays an important role in 
the regulation of the actin cytoskeleton (reviewed in [108]). 
The interaction site of palladin has been mapped to the 
CaM-LD of α-actinin [109]. In addition, it was shown that 
the interaction between palladin and α-actinin is of func-
tional importance as it plays a role in directing α-actinin to 
specific subcellular foci.

In non-muscle cells α-actinin bridges the actin filaments 
in the cytoskeleton but loses the capacity to bind actin when 
the concentration of  Ca2+ exceed values above 0.1 μM [99]. 
Based on structural data it has been proposed that  PIP2 
binds to the linker between the actin-binding domain and 
the first spectrin-like repeat of α-actinin, and therefore it may 
regulate the interaction of its CaM-LD to this linker region 
[110]. Cryo-electron microscopy reveals that in smooth 
muscle α-actinin the CaM-LD of one monomer is oriented 
at approximately an angle of 90° to the axis between the 
two calponin-homology domains of the appose monomer 
laying just between both of them [111]. By inference, the 
authors of this report proposed that binding of  Ca2+ to the 
CaM-LD of non-muscle α-actinin facilitates its interac-
tion with the linker between the two calponin-homology 
domains separating both of them, and therefore explaining 
the loss of capacity to interact with actin in the presence of 
high calcium. Vinculin forms part of focal adhesions, and 
it has been shown that a segment of this adaptor protein, 
comprised between amino acids 1–258, interacts with the 
CaM-LD of smooth muscle α-actinin [112]. NMR structural 
analysis of the CaM-LD of the major non-muscle α-actinin-1 
indicates that a single  Ca2+ ion binds to the N-lobe of this 
domain [104]. Based on this structure, these authors pro-
posed a model for the regulation of the interaction between 
α-actinin and actin confirming the above-proposed view that 
 Ca2+ works negatively on this interaction by stabilizing the 
actin binding sites. α-Actinin also participates in linking 
transmembrane receptors, channels and other signaling pro-
teins to the cytoskeleton, regulating in this manner a variety 
of signaling pathways (reviewed in [99, 113]). α-Actinin-4 
contains a domain that interacts with nuclear receptors, such 
as estrogen receptor-α (ERα). This potentiates its transcrip-
tional activity. However, when the CaM-LD of α-actinin, 
which is required to interact with histone deacetylase-4, is 

lacking its co-activator activity is lost [114]. The CaM-LD 
of α-actinin also interacts with the long C-terminal tail of 
adenosine  A2A receptor  (A2AR) in the absence of  Ca2+. This 
fixes the receptor to the actin cytoskeleton, as α-actinin acts 
as a bridging molecule, and participates in receptor inter-
nalization upon ligand binding. When the cytosolic  Ca2+ 
concentration rises,  Ca2+/CaM binds to the site where the 
CaM-LD of α-actinin binds to the receptor because of its 
higher affinity. This reduces ligand-dependent  A2AR inter-
nalization and its detachment from the cytoskeleton [115].

The α-actinin isoforms expressed in striated muscle are 
localized at the Z-disk and analogous dense bodies. They 
crosslink the actin filaments of adjacent sarcomeres to hold 
them together forming a stabilizing lattice in the contractile 
apparatus (reviewed in [98, 99]). The C-lobe of the CaM-
LD of muscle α-actinin interacts with a region close to the 
N-terminus of titin, a gargantuan filamentous ~ 3 MDa pro-
tein expanding the sarcomere from the Z-disk to the M-line. 
This interaction induces a structural change of the titin/α-
actinin-binding region into a helical conformation, partici-
pating in this manner in the assembly of the Z-disk as shown 
by NMR analysis using the CaM-LD sequence of α-actinin 
and a Z-repeat of titin [116]. The interaction of the CaM-LD 
with the Z-repeat of titin is very weak and changes depend-
ing on the angle in which the force is applied using opti-
cal tweezers at a single molecular level. Therefore, a model 
was proposed in which multiple cooperative interactions 
are required to attain stable titin anchoring to the Z-disk 
while individual components are dynamically exchanged 
[117]. The three-dimensional structure of muscle α-actinin 
has shown that upon  Ca2+ binding the C-terminal CaM-LD 
gets close to the linker region between the two calponin-
homology domains forming the actin-binding region. This 
suggests a  Ca2+-dependent interaction of α-actinin with the 
actin filaments [118] as later also shown for non-muscle 
α-actinin [111], described above.

Other CaM‑LD proteins

The mitochondrial inner membrane has an ATP transport 
system unrelated to the ATP/ADP exchanger, and is hence 
insensitive to the ATP/ADP translocase inhibitor atractylo-
side [119]. This transporter was identified as an ATP-Mg/
phosphate exchanger, with at least eleven isoforms in mam-
mals that are denominated SCaMCs. It has highly conserved 
orthologues in lower eukaryotes as for example in yeast 
(denoted Sal1p). It is positively regulated by micromolar 
levels of  Ca2+ and contain six transmembrane segments and 
an N-terminal extension corresponding to a CaM-LD with 
four EF-hands (Fig. 3c), although some isoforms lack one 
or several of these EF-hand motifs. The CaM-LD of SCaMC 
faces the space between the inner and outer mitochondrial 
membrane and therefore senses the  Ca2+ concentration that 
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is at equilibrium with the cytosol (reviewed in [119]). The 
N-terminal extension of SCaMC1 (NTD) comprising the 
first 193 amino acids has been crystallized in its  Ca2+-bound 
form showing that the EF-hands are sequestered by an 
endogenous helical segment in a compact structure [120]. 
NMR studies indicate that the apo-NTD could interact with 
the transmembrane domain [121]. The carrier works as an 
electroneutral exchanger between ATP-Mg and divalent 
phosphate. Although it is able to work in both directions, the 
net influx and efflux of ATP into the mitochondria depends 
on the pH in the medium, as the uptake of phosphate into the 
mitochondria is driven by the pH gradient (alkaline inside), 
and the chemical potential of phosphate secondarily drives 
ATP-Mg uptake in exchange for phosphate exit (reviewed 
in [119]). At least three ATP/phosphate exchangers exist in 
Arabidopsis. Interestingly, in vitro analysis shows that the 
three isoforms prefer ATP-Ca, over of ATP-Mg, exchanged 
by phosphate [122]. From mutagenesis experiments, it was 
concluded that the  Ca2+ effect on ATP transport is not pri-
marily dependent on the CaM-LD of these transporters.

COMP, also named thrombospondin-5, is a pentameric 
 Ca2+-binding glycoprotein of the cartilage extracellular 
matrix that interacts with multiple other proteins of the 
extracellular matrix, including growth factors, integrins 
and extracellular proteases among others (reviewed in [123, 
124]). COMP forms a lattice to present the growth factors 
to the cells, participating in this manner in chondrogenesis 
(reviewed in [125]). Its structure comprises an N-terminal 
domain followed by four EGF-like repeats, eight CaM-like 
repeats and a globular C-terminal region. The five throm-
bospondin family members contain similar  Ca2+-binding 
repeats, although the general structure of these proteins and 
their oligomerization status differ (reviewed in [123, 124]). 
COMP/thrombospondin-5 is particularly abundant sur-
rounding the chondrocytes. Interestingly, mutations or sin-
gle amino acid deletions affecting their CaM-like domains 
most likely in their  Ca2+-binding capacity are responsible 
for the occurrence of pseudoachondroplasia and multiple 
epiphyseal dysplasias in humans. These are autosomal domi-
nant congenital conditions characterized by short limbs and 
hands, ligament laxity and scoliosis among other skeletal 
anomalies leading to the onset of osteoarthrosis [126–128].

Genes coding for atypical short class XIV myosins (type 
A and B) were found in three species of Plasmodium. These 
proteins contain a conserved catalytic head that binds actin 
and hydrolyzes ATP, and a neck region, however lacking the 
characteristic tail region of other myosins. These class XIV 
myosins are expressed during the motile stages of the para-
site implying a functional role during the invasion process. 
The light-chain of myosin-B contains a CaM-LD at its C-ter-
minus that has similarity to other EF-hand proteins such as 
CaM. However, this protein does not bind  Ca2+, as inferred 
from the lack of change in the circular dichroism spectrum 

upon addition of this cation. The CaM-LD of myosin-light 
chain-B interacts with the neck region of myosin-B. Blast 
analysis of the genome of T. gondii shows that the sequence 
of this CaM-LD is conserved in a related myosin-B light-
chain [129].

Clonorchiasis is a liver infestation by the planaria worm 
Clonorchis sinensis that is transmitted by contaminated 
food. Tegumental proteins in the outer surface membrane 
of this parasite are vital for its physiology and therefore 
interesting targets for vaccine development. A tegumental-
allergen-like protein (CsTAL3) has been identified in this 
worm containing a CaM-LD at its N-terminus and a dynein 
light chain-like domain at its C-terminus. The CaM-LD has 
two  Ca2+-binding motifs, however, only the closest to the 
N-terminus binds  Ca2+. Proteins with similar CaM-LDs 
were identified in Schistosoma mansoni, another patho-
genic worm. CsTAL3 is antigenic and implicated in the host 
immune response mediated by IgA but not IgG. The crystal 
structure of this protein has been described [130].

FSH is a heterodimeric hormone synthesized in the ante-
rior pituitary gland that regulates growth, development, 
maturation and reproductive processes in both males and 
females in concert with other hormones. Using a battery 
of synthetic peptides corresponding to the sequence of the 
β-subunit of human FSH to study receptor interaction, it 
was uncovered that a peptide, corresponding to amino acids 
1–15 of the hormone was able to bind  Ca2+ and presents 
similarities in affinity to the third EF-hand of CaM [131]. 
The authors of this report suggested that this  Ca2+-binding 
site may participate in the interaction of the hormone with 
its receptor. Whether the binding site of this peptide in 
the receptor is a non-canonical CaM-LD, although likely, 
remains an open issue. Another intriguing issue not yet clari-
fied, is whether there is any physiological relevance to the 
fact that this peptide was able to form transmembrane  Ca2+ 
channels in liposomes.

Calmodulin‑binding proteins 
with non‑EF‑hand calmodulin‑like binding 
sites (CLBSs)

In this section, we will discuss different types of proteins, 
unrelated to the phylogenetic origin of those discussed in 
the previous section, in which gene fusion events appear 
to be the origin. It refers to the existence of regions in 
CaM-binding proteins that are proposed to interact with 
their CBS in the absence of CaM. These regions, lacking 
EF-hand motifs but having binding properties similar to 
CaM, are generally anionic and are denoted CaM-like bind-
ing sites (CLBSs), in contrast to the CBSs that are rich in 
basic residues. The CLBSs are predicted to bind the potent 
CaM antagonist melittin, which is present in bee venom. 



2313Proteins with calmodulin-like domains: structures and functional roles  

1 3

Several CaM-binding enzymes, including MLCK, phospho-
fructokinase, phosphorylase b kinase, plasma membrane 
 Ca2+-ATPase and CaMK-II have been proposed to comply 
with these criteria as their putative CLBSs were identified 
[20]. Nevertheless, experimental evidence for this assertion 
is lacking for some of these proteins, including CaMK-II 
and MLCK. In this section we also include calcineurin, 
where the CBS and CLBS are located in distinct subunits. 
As discussed by Jarrett and Madhavan [20], the functional 
role of the CLBS is to exert an auto-inhibitory function by 
blocking the CBS. In addition, a flip–flop model for CaM-
binding enzyme activation was proposed, where shuttling 
between the inactive form of the enzyme (CBS occupied 
by the CLBS) and the active conformation (CBS occupied 
by  Ca2+/CaM), was envisioned. This also explains why the 
proteolytic removal of the CBS of some enzymes induces 

their activation in the absence of CaM, as for example in 
the PMCA when proteolyzed by trypsin [132], or in a more 
physiological setting by calpain [78, 79, 133]. In what fol-
low we will discuss some of those “old” CLBS containing 
proteins as well as some newly discovered and analyzed 
examples. Table 4 shows collected data on the amino acid 
sequences of the CBS and CLBS of selected proteins con-
taining non-EF-hand CLBSs.

The protein phosphatase calcineurin

The CaM-dependent serine/threonine phosphatase calcineu-
rin (also denoted protein phosphatase 2B) is representative 
of heterodimeric proteins with a CBS and CLBS located 
in distinct subunits (Fig. 3d). Melittin interacts with cal-
cineurin, indicative that this CaM-binding peptide binds to 

Table 4  The CBS and CLBS 
from selected non-EF-hand 
proteins

Basic amino acids (blue) and acidic amino acids (red) are indicated. CBS calmodulin-binding site, 
CaMK-II calmodulin-dependent protein kinase, CLBS calmodulin-like binding site, EGFR epidermal 
growth factor receptor, ErbB1/2/3/4 erythroblastic leukemia viral oncogene homologues 1, 2, 3 and 4, 
MLCK myosin light chain kinase
a Sequence position of the mature receptor lacking the signal peptide
b The CaM-BD sequence in UniProt P00518 starts at position 302; and the CaM-LD sequence lacks of the 
amino acid residues LDKV (underlined)
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CLBS that interacts with the CBS as described above and 
in Fig. 3d [20]. This phosphatase regulates multiple cellular 
functions, best studied is the dephosphorylation of the tran-
scription factor NFAT inducing its nuclear translocation to 
initiate its transcriptional program (reviewed in [134]). This 
enzyme is also target of immunosuppressive drugs used in 
the clinic, such as cyclosporin A and FK506 (tacrolimus) 
(reviewed in [135, 136]). Calcineurin is formed by a 60 kDa 
catalytic subunit (CaN-A) that binds calmodulin, and a 
19 kDa regulatory subunit denoted CaN-B with four EF-
hands  Ca2+-binding sites (see Figs. 1, 3d). CaN-B is myris-
toylated at its N-terminus (reviewed in [137]) and has struc-
tural similarity to CaM [138]. At low  Ca2+ concentration 
the binding of  Ca2+ to the two high-affinity sites of CaN-B 
maintains the CBS of CaN-A bound to a CLBS located in 
the same subunit, allowing auto-inhibition. At high  Ca2+ 
concentration the low-affinity  Ca2+ binding sites at CaN-B 
are also occupied and the CBS dissociates from this site. 
Thereafter,  Ca2+/CaM binds to the CBS in CaN-A displac-
ing an auto-inhibitory domain located at the C-terminus of 
its catalytic site yielding the fully active enzyme (reviewed 
in [135, 136, 139]). Apparently, a disordered fragment of 
the auto-inhibitory domain blocks access to the catalytic 
site playing a central role in the auto-inhibition mechanism 
[140]. Recent structural studies on the interaction of CaM 
with a peptide corresponding to CaN-A further refined this 
model for the activation of calcineurin by  Ca2+/CaM and 
its regulatory subunit [141]. However, the CaN-Aβ1 iso-
form shows a distinct non-canonical regulation by  Ca2+ and 
CaM, as it lacks an auto-inhibitory domain but a four amino 
acid motif (462LAVP465) competitively inhibits the enzyme 
conferring basal and  Ca2+-dependent activity decreasing its 
need of CaM [142]. Using luminescent lanthanides, as sur-
rogate cations for  Ca2+, it was demonstrated that the high-
est affinity for  Tb3+ is located in the C-terminal region of 
CaN-B [143]. Using 113Cd NMR and  Ca2+ flow-dialysis the 
existence of a single EF-hand with high affinity for  Ca2+ 
(close to 10 nM) and three others of lower affinity (close 
to 10 µM) were identified [144]. Mutational inactivation of 
CaN-B impairing  Ca2+-binding to EF-hands 1, 2 and 3, but 
not EF-hand 4, has shown that these sites are required for 
the catalytic activity of CaN-A in the absence of CaM, with 
an essential role of EF-hand 2. Moreover, eliminating the 
 Ca2+-binding capacity of EF-hand 2 on CaN-B decreases the 
affinity of CaM for CaN-A at low  Ca2+ concentration [145].

Kinases

CaMK-II is a ubiquitous and multifunctional CaM-depend-
ent kinase, activated by autophosphorylation in a  Ca2+/
CaM-dependent way that also contains an acidic CLBS 
(Fig. 1). CaMK-II mediates  Ca2+ signals by phosphoryl-
ating numerous targets important for signaling processes 

leading to synaptic plasticity, ion homeostasis, transcrip-
tion and immunoregulation among many other processes 
(reviewed in [146, 147]). Due to its multimeric structure 
and autoregulation, it is able to switch into a form, which 
is no more dependent of initial  Ca2+/CaM as autophospho-
rylation increases the affinity to CaM by a factor of 1000, 
slowing the release of  Ca2+/CaM, and therefore, it is able to 
participate in learning and memory function [148]. CaMK-
II exists in four isoenzymes and 30 splice forms, which 
determine its specific localization, activation mechanism 
and target interaction/phosphorylation. This kinase forms a 
dodecameric complex, and each monomer has a N-terminal 
kinase domain followed by a regulatory segment, a short 
linker region and a hub domain. Jarrett and Madhavan [20] 
compared a number of CaM-binding proteins and found that 
CaMK-II and skeletal and smooth muscle MLCK (described 
below) among others bind to melittin, and as melittin is a 
well-known target of CaM they proposed the existence of 
a putative CLBS. In the two kinases, the CLBS with the 
main characteristic of having minimally two regions con-
taining acidic residues adjacent to hydrophobics and aro-
matics among the hydrophobics one could be identified. 
The authors [20], predicted CLBS sequences based on their 
proposed potential to interact with the CBS. They found a 
striking alignment of the CBS (with positive charges) and 
CLBS (with negative charges) for both CaMK-II and MLCK 
(Table 4), suggesting that these sites could interact electro-
statically inhibiting the enzymatic activity in the absence 
of  Ca2+/CaM. Nevertheless, the dodecameric structure of 
the auto-inhibited human CaMK-II holoenzyme contradicts 
this model, as the autoinhibitory domains of the complex 
are docked to the central hub, in which the CaM-binding 
sites are located.  Ca2+/CaM-binding displaces the regulatory 
segment allowing auto-phosphorylation and activation of the 
enzyme [149]. As the CaM-binding site in the inactive form 
is inaccessible according to this structure and as mentioned 
previously is contiguous to a distinct autoinhibitory domain 
(Fig. 4a, b), it is therefore questionable whether the CLBS 
interacts with the CBS in CaMK-II to induce autoinhibition.

MLCK is another  Ca2+/CaM-dependent kinase contain-
ing a potential CLBS only predicted because of its interac-
tion with melittin, and as for CaMK-II it was proposed to 
play an inhibitory role [20]. Figure 1 shows the domains in 
MLCK and Fig. 4c the location of the major CBS and CLBS 
of MLCK-2. This kinase is most known as an essential part 
of the regulation of smooth muscle contraction through 
phosphorylation of regulatory myosin II light chains. How-
ever, the smooth muscle MLCK is also found in many other 
cells involved in cell motility processes driven by myosin 
II. There exists also a skeletal and a heart muscle-specific 
MLCK form, expressed from different genes. Next to the 
catalytic domain on both sides,  Ca2+/CaM-binding domains 
are found and a myosin binding domain is placed at the 
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C-terminus. In smooth muscle MLCK, one CBS is located 
in the N-terminus and another major CBS in the C-terminus 
distal of the catalytic site [150]. An actin-binding domain 
exists in the N-terminal region but only in the smooth mus-
cle form, which keeps the enzyme in place. For becoming 
active MLCK has to be phosphorylated by the c-Src kinase 

following  Ca2+/CaM binding. This leads to autophospho-
rylation on 19 serine and threonine residues resulting in 
actin–myosin cross-bridging needed for smooth muscle 
contraction (reviewed in [151, 152]). In addition to c-Src, 
the tyrosine kinase c-Abl phosphorylates non-muscle MLCK 
inducing its activation [153]. As in the case CaMK-II the 
autoinhibitory site has been localized close to the CBS, and 
experimental evidence for CBS/CLBS interaction is lack-
ing. However, it could be speculated that the CLBS in these 
kinases may bind to a CBS during structural transition states 
in activation/inactivation of the same polypeptide or other 
subunits.

Phosphorylase b kinase is a multimeric  Ca2+/CaM-
regulated enzyme that changes the poorly active glycogen 
phosphorylase b into a more active conformation (form-
a) that catalyzes the release of glucose-1-phosphate from 
glycogen to fuel sugar metabolism. The three subunits (α, 
β, γ) of phosphorylase b kinase constitutively bind CaM 
(denoted integral δ subunit) [154–157]. These subunits also 
have acidic regions that could represent CLBSs [20]. The 
CBS located in the catalytic γ subunit was found to interact 
with the regulatory α subunit that has an inhibitory func-
tion [158]. This suggests that this interaction may play an 
auto-inhibitory role when CaM (δ subunit) is free of  Ca2+. 
Nevertheless, a demonstration of direct CBS/CLBS interac-
tion in the whole enzyme is lacking.

Phosphofructokinase is a key rate-limiting allosteric 
enzyme in glycolysis that catalyzes the phosphorylation of 
fructose-6-phosphate resulting in fructose-1,6-bisphosphate. 
In mammals, it forms homo-tetramers, and the formation of 
active tetramers is negatively regulated by  Ca2+/CaM [159, 
160]. Phosphofructokinase, together with hexokinase, pyru-
vate kinase and lactic dehydrogenase, is overexpressed in 
tumor cells and responsible for the high rate of aerobic gly-
colysis also called the Warburg effect [161]. The identified 
CBS was found to be located in the region where two dimers 
interact to form tetramers. The binding of  Ca2+/CaM stabi-
lizes the inactive dimer, allowing in this manner an inactive-
active equilibrium following the dimer-tetramer status of the 
enzyme [162, 163]. Phosphofructokinase also has a CLBS, 
and the CBS in one subunit of the enzyme was proposed to 
interact with the CLBS in another subunit contributing to 
maintaining the stability of the tetramer [20].

We have demonstrated that the EGFR is a  Ca2+-dependent 
CaM-binding protein containing a CBS located at the cyto-
solic juxtamembrane region [164–166]. We also demon-
strated that  Ca2+/CaM appears to participate in the ligand-
dependent activation of the receptor in living cells [167], 
and that phospho-Tyr-CaM is a positive regulator of the 
EGFR when activated by its ligand [168]. We also noticed 
the existence of a potential CLBS in the receptor due to 
its acidic nature (979DEEDMDDVVDADEY992) and rela-
tive sequence similarity to a segment of CaM located at its 

A

B

C

Fig. 4  Structure and CBS/CLBS location in CaMK-II and MLCK. 
The figure depicts two chains of the autoinhibited dodecameric 
human CaMK-II δ isoform showing the contiguous autoinhibitory 
domain (AID) and CBS in both chains (a); the X-ray crystallographic 
structure and the location of the calmodulin-binding domain (CBS) 
and calmodulin-like binding site (CLBS) of the β-subunit of calmod-
ulin-dependent protein kinase-II (CaMK-II) from rat (b); and myosin 
light-chain kinase-2 (MLCK-2) from rabbit skeletal/cardiac muscle 
showing the CBS and CLBS (c). In panels b and c left the structures 
are shown using a rainbow color code going from the N-terminal 
(blue) to the C-terminal (red), and in panels b and c right highlight-
ing in color the CBS and CLBS. In panel a two chains of CaMK-II 
are shown in different colors. Crystallographic 3D models for rat and 
human CaMK-II at 2.3  Å resolution (P08413 KCC2B_RAT based 
on template 2vn9A, residue range 10–309, and Q13557 KCC2D_
HUMAN based on template 2vn9, residue range 11–309), and rab-
bit MLCK-2 at 2.2 Å resolution (P07313 MYLK2_RABIT based on 
template 2x0gA, residue range 290–596) were taken and modified 
from UniProt SWISS-MODEL database
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C-terminus (118DEEVDEMIREADI130), suggesting that it 
may interact with the CBS of the receptor [169] (Table 4). 
Figure 5a shows the location of the CLBS in the cytosolic 
region of the receptor  (EGFRcyt). Modeling studies further 
suggested that indeed the electrostatic interaction between 
CBS and CLBS in the EGFR is sterically possible and that 
it could facilitate the stabilization of its dimers upon ligand 
binding [170–172] (reviewed in [173]). Figure 5b depicts a 
model where hetero-CBS/CLBS interaction stabilizes the 
ligand-bound EGFR dimer. The CLBS is located distal to the 
tyrosine kinase domain and within the  Ca2+ internalization 
(CAIN) domain which is implicated in  Ca2+ mobilization 
and receptor internalization (reviewed in [174]). However, 
direct experimental evidence of interaction between the CBS 
and the CLBS of the EGFR is lacking.

A series of 89 human glial tumors, including grade IV 
glioblastomas, grade III anaplastic astrocytomas and grade 
II astrocytomas, were analyzed for mutations affecting the 
coding regions of the CBS and CLBS of the EGFR and other 
ErbB family members [175, 176]. No point mutations were 
detected affecting the analyzed domains in any of the ErbB 
family members in these studies, but an in-frame tandem 
duplication of exons 18–25/18–26 of the EGFR was found, 
that comprise the tyrosine kinase domain and the whole or 
part of the CAIN domain, where the CLBS is located, result-
ing in 190/185 kDa mutant receptors with two CLBSs [175, 
176], as was previously reported in different glioma cell 
lines [177, 178]. The CLBS of the EGFR includes Tyr992 
at its C-terminal end, which upon phosphorylation recruits 
and activates PLCγ [179], leading to  Ca2+ release from the 
ER. Deletion of the CAIN domain, and hence the lack of the 
CLBS, or mutation of its acidic residues or Tyr992, increases 
the transforming activity of the EGFR and of the N-terminal 
truncated c-erbB homologue encoded by the avian erythro-
leukemia virus, suggesting that this region plays a role in 
decreasing their transformation potential [180].

ErbB2 was also demonstrated to be a  Ca2+/CaM-binding 
protein, with a CBS located in the cytosolic juxtamembrane 
region [181], as in the case of the EGFR (Table 4). More 
recently, White et al. identified two CBS in ErbB2 [182]. 
Similar juxtamembrane CBSs where identified in ErbB4 
and ErbB3, although the latter receptor has lower homol-
ogy to the one identified in EGFR [169]. Consistent with 
this, the CBS of ErbB3 has a lower affinity (Ka = 3 μM) for 
 Ca2+/CaM, as compared to the other three receptors, with 
Ka values of 10 nM in EGFR, 0.2 μM in ErbB4, and 0.6 μM 
in ErbB2 [183]. Of notice, the lower affinity of ErbB3 for 
 Ca2+/CaM correlates with the absence of intrinsic tyrosine 
kinase activity of this receptor, which only forms active het-
erodimers with other family members such as ErbB2, which 
lacks of ligand-binding capacity [184]. This underscores the 
importance of CaM in ErbB receptors activation. Likewise, 

CLBSs were also identified in ErbB2, ErbB3 and ErbB4, 
similar to the one in EGFR (Table 4), and once again the one 
in ErbB3 has the lowest similarity to EGFR, as compare to 
the other two receptors [169].

Transport systems

The CaM-dependent plasma membrane  Ca2+-ATPase 
(PMCA) is one of the major  Ca2+-transport systems main-
taining cytosolic  Ca2+ at low concentration by extruding this 
cation to the extracellular fluid. It has ten transmembrane 
segments and a bulky cytosolic region where the catalytic 
site resides formed by two major and two minor loops and 
a C-terminal tail (Figs. 1, 6a, b). Two acidic regions in 
the first and second intracellular loops denoted the CLBS 
have an important function in regulating the enzyme, as it 
induces auto-inhibition in the absence of  Ca2+/CaM likely 
by blocking CaM binding to the CBS of the pump [185, 186] 
(Fig. 6b). Removal of the CaM-BD by proteolytic digestion 
with trypsin [187–189], or the endogenous  Ca2+-dependent 
protease calpain [78, 79, 133], prevents its interaction with 
the auto-inhibitory CLBS and results in a CaM-independent 
constitutively active  Ca2+-ATPase (reviewed in [80, 190]). 
This underscores the interaction of the CBS with the auto-
inhibitory region of the enzyme.

The formation of a complex between CaM and a regula-
tory region in NHE1, an important pH, salt concentration 
and volume regulator, has been shown to occur by struc-
tural analysis, facilitating our understanding of the role of 
 Ca2+/CaM in its activation [191] (Fig. 7a, b). This report 
shows that the C-terminal tail of this transporter contains 
two nearby CBSs located at amino acid residues 629–652 
(proximal) and 658–671 (distal), respectively. It has been 
proposed that in resting cells, when the cytosolic concen-
tration of  Ca2+ is very low, the distal CBS interacts with 
the so-called proton modifier site (PMS), located in the 
C-terminal end of an intramembrane loop, inducing auto-
inhibition [191, 192]. Moreover, it has been hypothesized 
that the proximal CBS also interacts electrostatically with a 
highly acidic cluster (amino acid residues 753–759) distal 
of the CBSs [191, 193]. This region may have the functional 
characteristics of a non-EF-hand CLBS described above and 
has been proposed to be involved in maintaining an adequate 
conformation of the cytosolic domain, promoting CaM bind-
ing and activation of the exchanger [191–193]. When the 
cytosolic  Ca2+ concentration increases,  Ca2+/CaM binds 
with the N-lobe to distal CBS and with the C-lobe to proxi-
mal CBS [191] and this releases the autoinhibitory/distal 
CBS from the PMS leading to activation of the exchanger, 
at the same time that the CLBS is detached from the CBSs. 
Figure 7b depicts a model illustrating this concept.
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Fig. 5  Structure and functional role of CBS/CLBS interaction in the 
EGFR. a The figure depicts the X-ray crystallographic structure of 
the cytosolic region of the human epidermal growth factor receptor 
 (EGFRcyt) at 3.2  Å resolution (P00533 EGFR_HUMAN based on 
template 3rcdA, residue range 702–1015 corresponding to residues 
678–991 in the mature receptor lacking the 24 amino acids of the 
signal peptide) taken and modified from UniProt MODBASE data-
base using a rainbow color code (left panel) going from the N-termi-
nal (blue) to the C-terminal (red), and the location of the CaM-like 
domain (CLBS) highlights in color starting at Asp979 (right panel). 
b At resting basal conditions (left panel), the monomeric ligand-free 
epidermal growth factor receptor (EGFR) has the positively charged 
juxtamembrane calmodulin-binding domain (CBS) (blue segment) 
electrostatically bound to the negatively charged inner leaflet of the 
plasma membrane (minus symbols), which is rich in acidic phospho-
inositides, maintaining the receptor in an auto-inhibited state [183]. 
Upon binding of the ligand epidermal growth factor (EGF) (cen-

tral panel), the receptor initiates its dimerization and the  Ca2+/CaM 
complex binds to the CBS helping to its detachment from the inner 
leaflet of the plasma membrane [183], and therefore contributing to 
the ligand-induced EGFR activation by trans-phosphorylation of 
C-terminal tyrosine residues (-Y-P). In this model, we propose that 
the EGFR dimer is active but in a quasi-stable conformation. Subse-
quently, the active EGFR dimer releases the  Ca2+/CaM complex and 
adopts a more stable conformation (right panel) by the electrostatic 
interaction between of positively charged CBS (blue segment) of 
one EGFR monomer (labeled 1) with the negatively charged CaM-
like domain (CLBS) (red segment) of the apposed EGFR monomer 
(labeled 2). For clarity, the N- and C-termini, transmembrane region 
(yellow segment), CBS, CLBS, and tyrosine kinase domain (TK) of 
each EGFR monomer are labeled with numbers 1 and 2 to document 
CBS/CLBS hetero-interaction of apposed monomers.  Ca2+ ions are 
represented by gray spheres. ext extracellular medium, cyt cytosol. 
Adapted from Ref. [173]
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The potential role of decoy proteins 
on calmodulin‑binding proteins

In addition to the occurrence of CLBS in CaM-binding 
proteins, in which CBS/CLBS interaction is expected [20], 
as we have discussed in “Calmodulin-binding proteins 
with non-EF-hand CaM-like binding sites (CLBSs)”, an 

intriguing emerging possibility is the binding of the CLBS 
of CaM-binding proteins to decoy proteins behaving as CaM 
but exerting a different functional role. This appears to be 
the case for the apoptosis-inducing protein Bak, as this endo-
plasmic reticulum (ER)-associated protein is able to interact 
with both the kinase domain and the CBS of DAPK1, facili-
tating the entry of ER-Ca2+ into the mitochondria [194]. 

A

B

Fig. 6  Structure and functional role of CBS/CLBS interaction in 
the plasma membrane  Ca2+-ATPase. a The figure depicts the X-ray 
crystallographic structure of human plasma membrane  Ca2+-ATPase 
isoform 1 (PMCA1) at 3  Å resolution (P20020 AT2B1_HUMAN 
based on template 2c9mA, residue range 52–1063) taken from Uni-
Prot SWISS-MODEL database. The crystallographic structure in 
the left panel is shown using a rainbow color code going from the 
N-terminal (blue) to the C-terminal (red), and in the right panel high-
lights in different colors the ten transmembrane segments. b At low 
cytosolic  Ca2+ concentration the positively charged CaM-binding site 
(CBS) (blue segment), located at the C-terminal tail of the enzyme, is 
free of calmodulin (CaM) and interacts with two acidic regions rep-
resenting a bi-partite calmodulin-like binding site (CLBS) (red seg-
ments), respectively located in the first and second intracellular bulky 

loops of the enzyme. The first loop goes between the second and third 
transmembrane region, and the second loop goes between the fourth 
and fifth transmembrane region (yellow segments). The CBS has two 
interaction sites separated by a 38 amino acids segment (not shown). 
The ten transmembrane regions are numbered, and the N- and C-ter-
mini of the enzyme indicated. The interaction of the CBS with the 
CLBS maintains the enzyme in an auto-inhibited state (left panel). 
When the cytosolic  Ca2+ concentration increases the  Ca2+/CaM com-
plex is formed, binding with high affinity to the CBS and detaching 
itself from the CLBS, which renders the enzyme active (right panel). 
 Ca2+ ions are represented by gray spheres. ext extracellular medium, 
cyt cytosol, PMCA plasma membrane  Ca2+-ATPase. Adapted from 
Ref. [217]
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This suggests the existence of at least one non-canonical 
CLBS in Bak. The search for interaction of CaM-binding 
proteins with proteins having CLBS, and the study of their 

functional roles, would be of interest to investigate. We sug-
gest that a potential role of this type of CBS/CLBS interac-
tion could be to regulate the action of CaM on the target 

A

B

Fig. 7  Structure and functional role of CBS/CLBS interaction in 
the  Na+/H+-exchanger. a The figure depicts the X-ray crystallo-
graphic structure of rat  Na+/H+-exchanger 1 (NHE1) at 3.5 Å reso-
lution (P26431 SL9A1_RAT based on template 1zcda, residue range 
109–510) taken from UniProt MODBASE database using a rain-
bow color code (left panel) going from the N-terminal (blue) to the 
C-terminal (red), and the location of eleven transmembrane and one 
intramembrane segment highlighted in different colors (right panel). 
b In resting conditions, the  Na+/H+-exchanger 1 (NHE1) remains 
auto-inhibited (top panel) as the distal autoinhibitory/calmodulin-
binding site (AI/CBS2) has autoinhibitory function interacting with 
the proton modifier site (PMS) (dashed arrow), located in an intram-

embrane loop region. It has been hypothesized that  CBS1 (proximal 
CBS) interacts electrostatically with the distal-located negatively 
charged CaM-like site (CLBS) (marked with a question mark). When 
the cytosolic  Ca2+ concentration increases the  Ca2+/CaM complex 
is formed, binding to both the proximal and distal CBSs  (CBS1 and 
 CBS2, respectively) the autoinhibition is released by detachment of 
AI/CBS2 from the regulatory PMS, rendering the NHE1 active (bot-
tom panel).  Ca2+ ions are represented by gray spheres. ext extracel-
lular medium, cyt cytosol. The twelve transmembrane segments (yel-
low) are numbered, and the N- and C-termini of the exchanger are 
indicated. Adapted from references [191–193]
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proteins. In addition, myristoylated  Ca2+-binding proteins 
that participate in diverse physiological functions exhibit 
great sequence similarity to CaN-B [195–197]. Like the 
CaM-like proteins, many CaN-B-like proteins are expressed 
in a great variety of plants (reviewed in [198]). However, the 
function of these proteins appears to be unrelated to CaN-A 
regulation, participating instead in membrane trafficking, 
microtubule transport activity or interacting with the platelet 
fibrinogen receptor. Nevertheless, the possibility that myris-
toylated  Ca2+-binding proteins could act as decoys to block 
the action of CaN-B on CaN-A is a possibility that warrant 
further investigation.

Perspectives

A large number of ion channels bind and are regulated 
by CaM, either in its  Ca2+-bound and/or  Ca2+-free form. 
This includes the  IP3 and ryanodine receptors (reviewed 
in [199, 200]), ORAI channels (reviewed in [201]), TRP 
channels (reviewed in [202, 203]), ligand-gated  Ca2+ chan-
nels (reviewed in [204]), voltage-dependent  Ca2+ chan-
nels (reviewed in [205]), voltage-dependent  Na+ channels 
(reviewed in [206, 207]), voltage-dependent  K+ chan-
nels [208, 209],  Ca2+-activated  K+ channels (reviewed in 
[210]), and  Ca2+-activated  Cl− channels (reviewed in [211]). 
Although in certain cases CaM is constitutively bound to 
some ion channels and can be considered an intrinsic subunit 
of the channel [19], it is important to consider whether the 
CBS of these channels, when free of CaM, could interact 
with other regions of the same or different subunit of the 
channel. If so, these regions could be considered CLBSs. 
However, to our knowledge no information about the exist-
ence of these potential CLBSs within ion channels is avail-
able. This could be an interesting topic of future research, as 
its study may underscore the functionality of these potential 
regulatory regions. As mentioned in the different sections, 
the interaction between the CBS and its CLBS has only been 
established with certainty in a few non-EF-hand proteins 
discussed in this review. Therefore, effort for further inves-
tigations in this area of research should be of interest, as this 
could give additional information on the functional roles of 
these domains.
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