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Abstract
NAFLD is currently the main cause of chronic liver disease in developed countries, and the number of NAFLD patients is 
growing worldwide. NAFLD often has similar symptoms to other metabolic disorders, including type 2 diabetes and obesity. 
Recently, the role of the gut microbiota in the pathophysiology of many diseases has been revealed. Regarding NAFLD, 
experiments using gut microbiota transplants to germ-free animal models showed that fatty liver disease development is 
determined by gut bacteria. Moreover, the perturbation of the composition of the gut microbiota has been observed in patients 
suffering from NAFLD. Numerous mechanisms relating the gut microbiome to NAFLD have been proposed, including the 
dysbiosis-induced dysregulation of gut endothelial barrier function that allows for the translocation of bacterial components 
and leads to hepatic inflammation. In addition, the various metabolites produced by the gut microbiota may impact the liver 
and thus modulate NAFLD susceptibility. Therefore, the manipulation of the gut microbiome by probiotics, prebiotics or 
synbiotics was shown to improve liver phenotype in NAFLD patients as well as in rodent models. Hence, further knowledge 
about the interactions among dysbiosis, environmental factors, and diet and their impacts on the gut–liver axis can improve 
the treatment of this life-threatening liver disease and its related disorders.
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Abbreviations
AMPK  AMP-activated protein kinase
ANGPTL4  Angiopoietin-like 4
CV  Conventional
FMT  Faecal microbiota transplantation
FOS  Fructooligosaccharides
FXR  Farnesoid X receptor
GF  Germ free
GI  Gastrointestinal
GLP  Glucagon-like peptide
HBV  Hepatitis B virus
HFD  High-fat diet
LPS  Lipopolysaccharides
NAFLD  Non-alcoholic fatty liver disease

NASH  Non-alcoholic steatohepatitis
PAMPs  Pathogen-associated molecular patterns
PEMT  Phosphatidylethanolamine methyltransferase
SCFA  Short-chain fatty acid
TJ  Tight junction
TMA  Trimethylamine

The gut microbiome

Trillions of the microbes that colonize the human body, 
including bacteria, archaea, viruses, and eukaryotic 
microbes, are spread along the length of the gastrointestinal 
(GI) tract. At different sites of the GI tract, there are varied 
compositions and amounts of bacteria per gram content, 
including the stomach and duodenum (10–103), the small 
intestine  (104–107) and the large intestine  (1011 and  1012), 
where the highest levels are found [1]. The dominant phyla 
in the large intestine are Firmicutes and Bacteroidetes. The 
Firmicutes:Bacteroidetes ratio was found to be correlated 
with individual susceptibility to disease states, including 
obesity [2]. However, the relevance of this ratio is disputable 
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as the composition of gut microbiome is not homogeneous 
and displays a considerable heterogeneity between individu-
als [3]. In addition, the human colon is home to important 
pathogens such as Escherichia coli (E. coli), Campylobac-
ter jejuni, Salmonella enterica, Vibrio cholerae, and Bac-
teroides fragilis, normally at very low levels (< 0.1% gut 
microbiome) [3, 4]. The combination of a low abundance 
of pathogens and a high abundance of key genera includ-
ing Bacteroides, Prevotella and Ruminococcus represents a 
healthy state for gut microbiota [5]. There are also axial dif-
ferences in the gut microbiome composition from the lumen 
to the mucosal surface of the intestine. The frequent luminal 
microbial genera include Bacteroides, Streptococcus, Bifido-
bacterium, Enterobacteriaceae, Enterococcus, Clostridium, 
Ruminococcus and Lactobacillus; however, Clostridium, 
Lactobacillus, Enterococcus and Akkermansia are more 
frequent in the mucus layer as well as epithelial crypts of 
the small intestine [6]. Numerous factors can affect the com-
position and function of the gut microbiome. These factors 
include genetics, diet, mode of delivery at birth, geographic 
location, and exposure to medical treatments [7, 8]. As a 
consequence, the gut microbiome composition is unique to 
each individual and together with these influencing factors 
changes with age over the course of a lifetime. Conversely, 
the gut microbiota influences the metabolic phenotype of the 
host, takes part in food and drug metabolism, and improves 
the immune system [9].

One of the early studies on the interaction between host 
genetics and the gut microbiome reported the composition of 
the gut microbiota in different mice strains during a course 
of antibiotics. They observed differences in the bacterial 
communities, suggesting that the establishment of the gut 
microbiome does not occur by chance but is driven by vari-
ous host-derived factors [10]. Kovacs et al. [11] studied sev-
eral specific inbred mouse strains to understand the role of 
the host genotype in the composition of the gut microbiota. 
They found that genetic background is a strong determinant 
in shaping the mouse intestinal microbiota. Additionally, 
remarkable correlations were revealed between eighteen 
host quantitative trait loci and the abundance of particular 
microbial taxa [12]. Moreover, several studies reported that 
changes such as mutations in single host genes, i.e. APOA1, 
NOD2, Mediterranean Fever, and FUT2, influence the gut 
microbiota either by changing its composition or decreasing 
bacterial diversity [13–17]. However, there are discrepan-
cies among human studies, as a general approach (e.g. using 
twins) did not show significant genotype effects on microbi-
ome diversity [18, 19]. Therefore, unbiased approaches are 
required to study the heritability of the human gut microbi-
ome. In overall, the gut microbiota and host genetics pro-
foundly interact with each other, and it is speculated that 
changes in the gut microbiota content could supplement the 
specific genetic makeup of an individual.

In healthy conditions, the host and gut microbiome ben-
efit from each other in a state referred to as eubiosis. Con-
versely, a disturbance in the microbiome structure or func-
tion that results from an abnormal ratio of commensal and 
pathogenic bacterial species is referred to as dysbiosis.

Comparisons between the gut microbiota compositions 
of healthy subjects and of patients suffering from diverse 
pathologies showed a possible direct association between 
dysbiosis and inflammatory and metabolic disorders includ-
ing cardiovascular disease [20], obesity [18, 21], diabetes 
[22, 23], metabolic syndrome [24, 25] and liver diseases 
such as NAFLD [26–28].

In this review, we will describe the contribution of the 
gut microbiota to NAFLD development that has been dem-
onstrated using animal studies, the association between gut 
microbiota dysbiosis and liver diseases in humans, the mech-
anisms by which the gut microbiota influences NAFLD, and 
the therapeutic potential of targeting the gut microbiota.

NAFLD

NAFLD comprises a spectrum of liver diseases from stea-
tosis to non-alcoholic steatohepatitis (NASH), fibrosis, cir-
rhosis and eventually hepatocellular carcinoma. NAFLD 
is becoming a major health problem. The prevalence of 
NAFLD worldwide is reported to be 24% [29]. NAFLD is 
highly prevalent in South America and the Middle East, 
followed by Asia, the USA and Europe (31%, 32%, 27%, 
24% and 23%, respectively), while there are fewer NAFLD 
patients in Africa (14%) [29]. The lower prevalence of 
NAFLD in African-Americans compared to Hispanic-
Americans is interesting because obesity and hyperten-
sion are more prevalent in African-American people [30, 
31]. These variations can be explained by differences 
in lifestyle, prevalence of metabolic syndrome, altered 
microbiota and genetic background, such as changes 
within the patatin-like phospholipase domain-contain-
ing 3 (PNPLA3) gene, which was shown to predispose 
to fat accumulation in the liver, leading to NAFLD [32, 
33]. Moreover, some of the histological characteristics 
of NAFLD and NASH are similar to those of alcoholic 
liver disease (ALD), including steatosis, inflammation, 
hepatocyte ballooning (a type of hepatocyte injury), Mal-
lory–Denk bodies, and ultimately fibrosis within the lob-
ules [34, 35]. A “two-hit” hypothesis has been proposed 
for NAFLD development, with the “first hit” involving 
lipid accumulation in the hepatocytes [36]. In fact, the 
molecular mechanisms leading to lipid accumulation could 
be increased lipid uptake, increased de novo lipogenesis, 
deregulated lipoprotein synthesis, or diminished fatty 
acid oxidation. After the “first hit”, the susceptibility of 
the liver to many factors, including oxidative stress and 
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subsequent lipid peroxidation, pro-inflammatory cytokine 
and adipokine signalling, and mitochondrial dysfunction, 
increases, which constitutes the “second hit” that promotes 
hepatic cell damage, inflammation and fibrosis.

The interactions between the gut and liver, called the 
gut–liver axis, play an essential role in NAFLD develop-
ment and evolution. Portal blood flow connects the intes-
tine to the liver. A large portion of the liver blood that 
comes from the intestine exposes the liver to the meta-
bolic products produced by the gut microbiome, including 
phenols, acetaldehyde and ammonia [37], as well as pro-
inflammatory bacterial components such as peptidoglycan 
and lipopolysaccharides (LPS). The liver has a wide vari-
ety of immune cells (such as lymphocytes, macrophages, 
dendritic cells and natural killer cells) [38]. The innate 
immune system responds to the cell damage or patho-
gens via the pattern recognition receptors (PRRs) that are 
expressed intracellularly or on the surface of hepatocytes 
[39]. The damage-associated molecular patterns (DAMPs) 
released by damaged cells or pathogen-associated molecu-
lar patterns (PAMPs) produced by bacteria are recognized 
by the PRRs [40, 41]. The function of Toll-like receptors 
(TLRs) is to induce gene transcription that streamlines the 
responses of the innate immune system [41]. Thus, their 
activation is important in NAFLD development. TLRs are 
expressed in stellate cells, Kupffer cells, and hepatocytes 
and are able to identify a broad range of PAMPs, which 
can induce the pro-inflammatory response.

It is known that different strains of mice have different 
susceptibility to NAFLD, indicating a genetic predispo-
sition to NAFLD. For example, mice lacking the PEMT 
(phosphatidylethanolamine methyltransferase) gene and 
fed a methionine–choline-deficient diet developed severe 
steatosis in their liver due to a lack of phosphatidylcho-
line biosynthesis [42]; however; choline supplementation 
promoted partial recovery [43]. There is evidence showing 
the presence of loss-of-function mutations in the PEMT 
gene in some NAFLD patients [44]. However, different 
susceptibility to NAFLD is also found within a single 
mouse strain, suggesting that other factors, including the 
gut microbiome, contribute to the propensity to developing 
NAFLD. The mechanism of how the crosstalk between the 
microbiome and host genetics determines NAFLD devel-
opment is not yet understood. The link between the micro-
biome and NAFLD was suggested for the first time in the 
early 1980s in patients who underwent intestinal bypass 
surgery. Hepatic steatosis was observed to occur in parallel 
with bacterial overgrowth, while the use of an antibiotic 
(metronidazole) improved the disease status [45], imply-
ing the involvement of gut bacteria in NAFLD phenotype.

Here, we aimed to review the parameters that support 
the association between NAFLD and the gut microbiota.

The link between the gut microbiome 
and NAFLD

Germ-free (GF) animal models have been used for decades 
to define the consequences of the absence of gut microbi-
ota and, therefore, to establish the host physiological func-
tions that are influenced by these bacteria. Among these 
functions, it has been shown using these animal models 
that the gut microbiota has a role in obesity and related 
metabolic diseases [46]. Indeed, it was found that GF ani-
mals are resistant to the obesity caused by different diets, 
including high-fat, Western-style, or even sugar-rich diets, 
and this effect is correlated with increased ANGPTL4 gene 
expression as well as the activity of AMP-activated pro-
tein kinase (AMPK) and its downstream target proteins, 
such as acetyl-CoA carboxylase (ACC) [47]. AMPK is an 
energy sensor that plays a substantial role in the switch 
between the metabolism of glucose and lipids in various 
organs. The study of Rabot et al. also confirmed the high-
fat obesity-resistant phenotype in GF mice and showed 
decreased calorie usage and increased lipid excretion in 
these animals [48]. However, the obesity resistance phe-
notype in GF mice was later found to be strongly reliant on 
the sugar composition of the diet [47]. Fleissner et al. stud-
ied the effect of three different diets, namely low-fat, high-
fat and Western (WD), on GF and conventional (CV) mice 
and disagreed about the role of Angptl4 in the protection 
of GF mice against obesity. More importantly, the GF and 
CV mice showed no difference in body weight gain on the 
low-fat diet. Strikingly, GF mice gained more body weight 
and body fat than CV mice with lower energy expenditure 
on the HFD. Finally, GF mice fed the WD showed signifi-
cantly less body fat than GF mice on the HFD, suggesting 
that the absence of the gut microbiota does not generally 
protect the mice against diet-induced obesity [49]. Samuel 
et al. indicated that the short-chain fatty acid (SCFA)-
binding G protein-coupled receptor Gpr41 may modulate 
the effects of the gut microbiota on host adiposity by com-
paring Gpr41-deficient and GF wild-type mice with and 
without a model fermentative microbial community [50]. 
The causative relationship between gut bacteria and obe-
sity was further studied using microbiota transfer. For the 
first time, Bäckhed et al. demonstrated that transferring 
the normal caecum microbiota of conventional mice to 
GF C57BL/6 mice led to more fat deposition and insulin 
resistance in the body despite reduced food intake [51]. 
Turnbaugh et al. in line with previous findings indicated 
that the obese microbiome helps to harvest more energy 
from the diet and that this trait is transferable by faecal 
microbiota transplantation (FMT) [18].

Regarding liver diseases, the comparison of GF and 
CV mice has also been used to assess the role played by 
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the microbiota. The altered expression of several impor-
tant hepatic genes including CAR (constitutive andros-
tane receptor) has been found between GF and CV mice. 
Additionally, the absence of gut microbiota in GF mice 
results in elevated amounts and the accumulation of CAR 
ligands, including bilirubin, bile acids and steroid hor-
mones, leading to altered liver xenobiotic metabolism, 
which could favour NAFLD development [52]. Compari-
sons of GF and CV mice also revealed that the intestinal 
microbiota protects against fibrosis upon chronic liver 
injury in mice [53] and could determine the predisposi-
tion to the liver injury [54].

In a nutshell, the absence or presence of bacteria under 
different treatment conditions results in variable pheno-
types related to metabolic features and obesity as well 
as NAFLD. Altered hepatic gene expression, reduced 
cytokine production, dyslipidaemia, decreased calorie 
usage, increased lipid excretion, decreased insulin resist-
ance and altered susceptibility to induced liver injuries 
have been observed in GF mice. Taken together, these 
studies showed that GF conditions impact the severity 
and/or incidence of disease, which highlights the role of 
the microbiome in liver disease development.

Gut microbiota transplantation in GF mice has also 
been used to assess the causality between microbiota 
composition and susceptibility to NAFLD. Le Roy et al. 
were the first to show that the gut microbiota composi-
tion determines NAFLD development in C57BL/6 strain 
mice. Indeed, by transplanting gut microbiota from mice 
with or without NAFLD to GF mice, we showed that the 
propensity to develop NAFLD features, including hyper-
glycaemia and steatosis, is transmissible by the gut micro-
biota. We further found that the gut microbiota evidently 
affects the lipid metabolism in the liver, independent of 
obesity [28]. Henao‐Mejia et al. studied inflammasome-
deficient mouse models (lacking pro‐inflammatory multi‐
protein complexes) to investigate the possible role of the 
microbiome in NAFLD [27]. They reported that the gut 
microbiota changes due to NLRP6 and NLRP3 inflamma-
some deficiency were associated with aggravated hepatic 
steatosis and elevated TNF-α expression. In addition, this 
phenotype was transferable by co-housing the wild-type 
mice with the inflammasome-deficient mice, suggesting 
that inflammasome-mediated dysbiosis is involved in 
NASH progression [27]. This evidence provides insight 
and increased understanding of the role of the gut micro-
biome in the development and progression of NAFLD as 
well as the mechanisms involved. These results also bring 
into question whether the gut microbiota plays a part in 
NAFLD in humans and which bacteria are involved.

Dysbiosis

The healthy intestine is normally colonized by a broad array 
of bacteria, including over 1000 species. These bacteria are 
in a homeostatic balance with their host and contribute to 
the maintenance of a healthy state. Dysbiosis occurs if the 
intestinal bacterial homeostasis is disturbed. Any imbalances 
or changes in bacterial content or their metabolic functions, 
or any alterations in bacterial distribution within the gut, that 
are associated with a disease state is described as dysbiosis. 
There are growing numbers of studies revealing the associa-
tion of gut microbiota dysbiosis with both intestinal (irrita-
ble bowel syndrome, inflammatory bowel disease, etc.) and 
non-intestinal disorders (metabolic syndrome, cancers, brain 
diseases, etc.). In several human and animal studies, dysbio-
sis was shown to be associated with NAFLD [55–57] and its 
severity [58–62]. Spencer et al. revealed that, during cho-
line depletion, different levels of Erysipelotrichia and Gam-
maproteobacteria in different individuals were correlated 
with changes in the liver fat accumulation in each subject. 
They demonstrated that augmented numbers of Erysipelotri-
chia at baseline were correlated with a higher risk of NAFLD 
development; whereas higher levels of Gammaproteobacte-
ria at baseline were correlated with a lower risk of develop-
ing fatty liver [63]. In a study comparing the gut microbiome 
in NAFLD patients and lean subjects, Gram-negative bacte-
ria were observed to be higher in NAFLD patients with up to 
20% elevated Bacteroidetes and 24% reduced Firmicutes in 
patients relative to healthy non-obese adult individual lev-
els. This diminution of Firmicutes included bacteria such 
as the SCFA-producing Lachnospiraceae, Lactobacillaceae, 
and 7α-dehydroxylating Ruminococcaceae, and the rise in 
opportunistic pathogenic bacteria that produce LPS was 
also observed in patients with NAFLD [64]. Increases in 
Gram-negative bacteria were also found to be associated 
with NAFLD in children. Indeed, Michail et al.  [65], using 
16S rRNA gene analysis, identified microbial changes in 
obese NAFLD children compared to obese children without 
NAFLD and lean healthy children. Higher levels of Epsilon-
proteobacteria and Gammaproteobacteria were, therefore, 
observed in children with NAFLD compared to in healthy 
lean and obese children. Moreover, children with NAFLD 
also showed higher levels of Prevotella than did healthy con-
trols. However, the results can be discordant, as Raman et al. 
found increased bacteria belonging to the phylum Firmicutes 
(such as Dorea, Lactobacillus, Roseburia and Robinsoniella) 
in NAFLD subjects compared with controls [66]. They also 
observed a non-significant underrepresentation of Rumino-
coccus in NAFLD cases compared to healthy controls, which 
was in line with the observation of Wang et al. [64]. In con-
trast, Jiang et al. and Del Chierco et al. [67, 68] observed 
increased levels of Dorea and Ruminococcus in patients suf-
fering from NAFLD.
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Recently, gut microbiome compositions were charac-
terized via whole-genome shotgun sequencing of DNA 
extracted from stool samples to differentiate between mild 
or moderate NAFLD and aggravated fibrosis [69]. Firmi-
cutes and Proteobacteria were observed to have different 
frequencies in the mentioned groups. Firmicutes was more 
prevalent in mild or moderate NAFLD, whereas Proteobac-
teria was more highly represented in fibrosis. At the species 
level, Bacteroides vulgatus was highly represented in mild 
or moderate NAFLD as well as in advanced fibrosis. Eubac-
terium rectale was frequently observed in mild or moder-
ate NAFLD, while E. coli was more abundant in advanced 
fibrosis. Ruminococcus obeum and E. rectale were signifi-
cantly less abundant in advanced fibrosis than in mild/mod-
erate NAFLD. Finally, these authors established a random 
forest classifier model based on microbiome analysis that 
had a strong diagnostic precision (AUC 0.936) for identify-
ing advanced fibrosis [69]. Similarly, Boursier et al.  [70] 
showed the association of gut microbiota to the level of 
disease aggravation from NAFLD to NASH. They found 
correlations between increased levels of Bacteroides and 
NASH and between increased Ruminococcus abundance 
and fibrosis development [70].

Zhu et al. reported a link between the amount of the 
endogenous ethanol produced in the gut and the pathogen-
esis of NASH in obese paediatric patients [57]. Accord-
ingly, bacterial ethanol producers belonging to Proteobac
teria/Enterobacteriaceae/Escherichia did not show a dif-
ference between healthy and obese microbiomes but were 
remarkably higher in the gut microbiome of NASH patients. 
This higher abundance of alcohol-producing bacteria in the 
microbiome of NASH patients was associated with elevated 
ethanol concentration in the blood. Based on the existing 
knowledge about the role of alcohol metabolism in oxidative 
stress and thus in hepatic inflammation, alcohol-producing 
microbiota may be involved in NASH development [57]. 
Differences among other members of the gut microbiota 
have been found in patients suffering from liver diseases and 
healthy controls. As an example, NASH patients harboured 
reduced amounts of Anaerosporobacter and Faecalibacte-
rium but higher amounts of Allisonella and Parabacteroides 
[71]. Likewise, Mouzaki et al. has reported lower levels 
of Bacteroidetes in obese individuals with NASH versus 
healthy controls, but they did not observe any differences 
between simple steatosis versus healthy control microbiome 
[55].

Altogether, these human studies reveal measurable dif-
ferences in the microbiome between healthy individuals and 
NAFLD or NASH patients. However, owing to factors such 
as the variability of study design, methods, and clinical end-
points, the interpretation of these differences in association 
with the liver diseases is challenging and requires further 
studies to define the liver disease-associated dysbiosis.

Table 1 summarizes the human studies that demonstrate 
a link between dysbiosis and NAFLD and provides details 
regarding the specific bacterial groups identified.

Mechanisms

Microbiota can improve or aggravate NAFLD through sev-
eral mechanisms, including changing the permeability of the 
intestine, changing the amount of energy absorbed from diet, 
altering the expression of genes in the de novo lipogenesis 
and choline and bile acid metabolic signalling pathways, pro-
ducing ethanol in the intestine and interacting with the innate 
immunity (Fig. 1). However, the associations between these 
factors and NAFLD development or progression are still con-
troversial. These parameters are briefly described here.

Increased permeability

One of the main factors in the development and progres-
sion of NAFLD is gut permeability, which may be mediated 
by the microbiome (Fig. 2). Several factors, including the 
mucus layer, antimicrobial peptides and the network of tight 
junction (TJ) proteins, work together to maintain the func-
tion of gut barrier. Intestinal permeability has been associ-
ated with NAFLD severity; as Giorgio et al. reported, there 
is higher intestinal permeability in children diagnosed with 
steatohepatitis than in those with steatosis [78]. Approxi-
mately 39.1% of the patients recruited in a meta-analysis 
with 128 NAFLD patients exhibited enhanced intestinal 
permeability based on the urinary excretion of a meas-
ured compound, compared with only 6.8% of healthy con-
trols. Almost 49.2% of NASH patients were found to have 
increased intestinal permeability [79]. This increased gut 
permeability could be due to a weaker TJ protein network, 
as decreased expression of one of major TJ proteins, ZO-1 
(zona occludens), has been found in the intestinal mucosa 
of NAFLD patients [80]. The altered function of the gut 
barrier could lead to the passage of pro-inflammatory mol-
ecules, and several human studies revealed that the later 
stages of NAFLD (with or without fibrosis initiation) are 
often associated with high bacterial endotoxin levels in the 
blood [81–83]. Verdam et al. [84] found higher levels of 
plasma antibodies against LPS in NASH patients than in 
healthy controls, and this effect was enhanced with increas-
ing severity of liver disease.

In animal studies, treatment with both a HFD and high-
sucrose diet in rats resulted in higher levels of LPS; reduced 
expression of occludin, which is an important intestinal TJ 
protein; and increased deposition of hepatic fat [85]. LPS, 
which is produced by Gram-negative bacteria, are known 
to be involved in the development of metabolic features 
and insulin resistance through TLR4-dependent activation 
of the NF-ƘB pathway. LPS can cross the gastrointestinal 
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Table 1  Comparison of microbiota in healthy subjects vs patients suffering from different liver diseases using ● qPCR or ◊16S rRNA sequenc-
ing

Disease Phylum Family Genus Population/technique

1 HBV cirrhotic patients vs. 
healthy subjects

Enterobacteriaceae ↗
Firmicutes↘

Bacteroides–Prevotella↘
Enterococcus faecalis ↘
Faecalibacterium praus-

nitzii ↘
Clostridium clusters XI↘
clusters XIV↘
Lactic acid bacteria↘ 

(including Lactobacillus, 
Pediococcus, Leuconostoc, 
and Weissella)

Bifidobacterium ↘

Healthy (n = 32), HBV cir-
rhosis (n = 31) [72] ●

2 Cirrhotic patients vs. healthy 
subjects

Bacteroidetes ↘
Proteobacte-

ria↗
Fusobacteria↗

Bacteroidaceae ↘
Streptococcaceae↗
Lachnospiraceae ↘
Veillonellaceae ↗
Enterobacteriaceae↗
Pasteurellaceae↗

Enterococcus faecalis ↗
Clostridium clusters XI↗
Fusobacteriaceae↗

Healthy (n = 24), HBV cir-
rhosis (n = 24), alcoholic 
cirrhosis (n = 12) [73] ◊

Alcoholic cirrhotic patients 
vs. healthy subjects

Prevotellaceae↗

Alcoholic cirrhotic patients 
vs. HBV cirrhosis patients

Prevotellaceae↗

3 HBV cirrhotic patients vs. 
healthy subjects

Bifidobacterium catenula-
tum group ↘

Healthy (n = 15), HBV cir-
rhosis (n = 16) [74] ●

4 HBV cirrhotic patients vs. 
healthy subjects

Lactobacillus acidophilus↘
Lactobacillus rhamnosus↘
Lactobacillus reuteri↘
Lactobacillus gasseri↗

Healthy (n = 38), HBV cir-
rhosis (n = 61) [75] ●

5 Cirrhotic patients vs. healthy 
subjects

Leuconostocaceae ↗
Lactobacillaceae ↗
Enterobacteriaceae↗ Alca-

ligenaceae↗
Fusobacteriaceae↗ Lachno-

spiraceae ↘
Ruminococcaceae ↘
Clostridium-Incertae sedis-

XIV ↘

Healthy (n = 10), cirrhosis 
(n = 25) [76] ◊●

6 Mucosal samples—cir-
rhotic patients vs. healthy 
subjects

Clostridium↗
Dorea↘
Subdoligranumum↘
Acidaminococcus↗
Enterococcus↗
Burkholderia↗
Ralstonia ↗
Proteus↗

Healthy (n = 17), cirrhosis 
(n = 36) [77] ◊

7 NASH patients vs. healthy 
subjects

Faecalibacterium↘
Anaerosporobacter ↘
Parabacteroides↗
Allisonella↗

NASH (n = 16), controls 
(n = 22) [71] ◊

NASH/obese vs. healthy 
children

Actinobacteria↘
Bacteroidetes↗
Firmicutes↘
Proteobacte-

ria↗

Bifidobacteriaceae↘
Prevotellaceae↗
Rikenellaceae↘
Lachnospiraceae↘
Ruminococcaceae↘

Bifidobacterium↘
Prevotella↗
Alistipes ↘
Blautia ↘
Escherichia coli↗

Healthy (n = 16), obese 
(n = 25), NASH (n = 22) 
[57] ◊

8 NAFLD patients vs. healthy 
subjects

Lactobacillaceae↗
Lachnospiraceae↗
Ruminococcaceae ↘

Lactobacillus↗
Robinsoniella↗
Roseburia ↗
Dorea ↗
Oscillibacter↘

Healthy (n = 30), NAFLD 
(n = 30) [66] ◊
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epithelium through leaky TJ or infiltrating chylomicrons 
[86]. Infusion of low doses of LPS was observed to result in 
steatohepatitis development in genetically obese mice [87] 
by enhancing the production of pro-inflammatory cytokines. 
LPS injections in mice also mimic HFD effects such as 
weight gain, IR, and NAFLD development. Moreover, mice 
lacking TLR-4 are not only resistant to LPS-induced obesity 
and NAFLD but are also resistant to HFD-induced obesity 
and NAFLD [88], as well as NAFLD and NASH in various 
rodent models [89–91], demonstrating the essential role of 
the TLR4–NF-ƘB pathway in NAFLD pathophysiology. 
Similarly, inflammasome-deficient mice display aggravated 
steatosis and inflammation in the liver due to TLR-4 and 
TLR-9 activation via their altered gut microbiota [27]. The 
activation of the TLR-9 signalling pathway induces the pro-
duction of IL-1β by Kupffer cells, resulting in hepatic stea-
tosis, inflammation, and fibrosis [92].

Increased dietary energy harvest

NAFLD is one of the well-known comorbidities of obesity, 
and the gut microbiota has been proposed to be involved 
in its development. Indeed, the gut microbiota is a crucial 
regulator of energy harvest from dietary food and can result 
in increased fat deposition via different mechanisms, such 
as developing the gut epithelium [93, 94] by enhancing the 

density of small intestinal villi and impacting gut physiol-
ogy and motility via producing SCFAs that interact with G 
protein-coupled receptors (GPCRs) [95]. Bacterial enzymes 
extract calories from otherwise indigestible polysaccharides 
in the diet [94]. Finally, it has been shown that enteric bac-
teria decrease the synthesis and secretion of small intestinal 
angiopoietin-like 4 protein, leading to enhanced activity of 
lipoprotein lipase and augmented liver fat storage [47, 51].

Regulation of choline metabolism

Dietary choline is essential for VLDL production and 
hepatic lipid transfer. Therefore, diets lacking choline 
are commonly used to induce NAFLD in animal models. 
These diets lead to lowered VLDL levels and beta oxida-
tion, causing deposition of fatty acids and cholesterol, oxi-
dative stress and alterations in cytokines and adipokines, 
as well as slight inflammation and fibrosis in the liver [67, 
96, 97]. The gut microbiota is involved in the conversion 
of choline to dimethylamine (DMA) and trimethylamine 
(TMA) [98], which can lead to choline deficiency with 
consequences for liver physiology. Indeed, Dumas and 
co-workers analysed urinary metabolites in different mice 
strains fed high-fat diets. They found that, in strain 129S6, 
the conversion of choline into methylamines by the gut 

Table 1  (continued)

Disease Phylum Family Genus Population/technique

9 NAFLD patients vs. healthy 
controls

Alistipes↘
Prevotella↘
Escherichia coli↗
Odoribacter↘
Lactobacillus↗
Oscillibacter↘
Anaerobacter↗
Clostridium XI↗
Streptococcus↗
Flavonifractor↘

Healthy (n = 32), NAFLD 
(n = 53) [68] ◊

10 NAFLD children vs. 
healthy/Obese children 
with no NAFLD

Gammaproteobacteria 
(class)↗

Prevotella↗ Healthy (n = 26), NAFLD 
(n = 13), Obese (n = 11) 
[65] ◊

11 Significant fibrosis vs. mild 
fibrosis

 Bacteroidaceae↗
Prevotellaceae↘

Ruminococcus↗
Bacteroides↗
Prevotella↘

NASH (n = 35), No NASH 
(n = 22) [70] ◊

NASH vs. no NASH 
(NAFLD)

Bacteroidaceae↗
Prevotellaceae↘

Bacteroides↗
Prevotella↘

12 Paediatric NAFLD, NASH, 
or obesity vs. healthy

Actinobacteria↗
Bacteroidetes↘

Rikenellaceae↘ Ruminococcus↗
Blautia↗
Dorea↗
Bradyrhizobium↗
Anaerococcus↗
Peptoniphilus↗
Propionibacterium acnes↗
Oscillospira↘

Paediatric NAFLD, NASH, 
or obese (n = 61); healthy 
(n = 54) [67] ◊
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microbiota decreases the bioavailability of choline and 
simulates the effect of choline-deficient diets, resulting in 
NAFLD and insulin resistance [99].

In humans, Spencer et al. [63] explored the effect of a 
choline-deficient diet on the composition of the gut micro-
biome and the consequences for NAFLD development. 
Patients received 10 days of a normal diet (baseline) and 
then 42 days of a choline-depleted diet, which led to changes 
in Gammaproteobacteria and Erysipelotrichia abundances. 
Interestingly, the baseline levels of these taxa combined with 
a polymorphism in N-methyltransferase (PEMT), a vital 
enzyme in the metabolism of choline, could determine the 

susceptibility of individuals to fatty liver disease induced by 
a choline-deficient diet. [63].

Bile acids

Bile acids are saturated, hydroxylated C24 cyclopen-
tanephenanthrene sterols that streamline the absorption 
of lipids in the gastrointestinal tract. Primary bile acids 
(cholic and chenodeoxycholic acids, in humans) are made 
from cholesterol in the liver. They are conjugated to either 
taurine or glycine via an amide bond at the C24 carboxyl 
[100, 101]. Later, the primary bile acids are converted 

Fig. 1  The mechanisms linking the microbiome to NAFLD devel-
opment. Perturbation in the intestinal microbiota composition or 
function can result in increased gut permeability and facilitation 
of the passage of LPS and other inflammatory factors to the blood, 

decreased choline availability, changes in bile acid composition 
and increased ethanol production in the intestine. These factors and 
metabolites together with dietary lipids can result in liver steatosis, 
inflammation and, eventually, NASH development
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to more than 20 different secondary bile acids by the gut 
microbiota [100]. In addition to facilitating fat absorption, 
bile acids also function as signalling molecules in their 
own metabolism, as well as energy, glucose, and lipopro-
tein metabolism via Farnesoid X receptor (FXR) and G 
protein-coupled bile acid receptor 1 (TGR5) [68]. Hence, 
the involvement of the gut microbiota in bile acid metabo-
lism can improve health or favour diseases depending on the 
form and amount of the secondary bile acids that are gener-
ated. Indeed, FXR and TGR5 have different affinities for 
individual bile acids: the stronger natural FXR agonists are 
CDCA > DCA > CA > LCA, while Tα, TβMCA and UDCA 
are antagonists. Similarly, bile acids activate TGR5 with dif-
ferent potencies (LCA > DCA > CDCA > CA). This implies 
that the alterations in the composition of bile acids due to 
gut microbiota dysbiosis may impact host metabolism by 
modifying these signals. In addition, it is well known that 
the secondary bile acids formed by the gut microbiota are 
usually found in peripheral tissues, including liver, heart and 
kidney, highlighting their possible impact on the homeosta-
sis of mammalians [102]. The gut–liver axis has a crucial 
role in bile acid metabolism. The gut microbiota affects bile 

acid production, pool size and structure as well as the entero-
hepatic circulation of bile acids, while bile acids control the 
gut microbiota size and content. Altogether, these mutual 
relationships between bile acids and the gut microbiota 
strongly influence host metabolism as well as metabolic 
diseases  [103–105].

Indeed, conventionally raised mice displayed a decline in 
tauro-conjugates (FXR antagonists) compared to GF mice, 
but the CV mice maintained levels of the more toxic cholic 
acid [106]. The activation of FXR via specific agonists 
prevents bile acid and fatty acid production and increases 
glucose and insulin sensitivity in obese and diabetic mice. 
Specific FXR activation was also shown to improve primary 
biliary cirrhosis and NASH through the reduction of the bile 
acid pool and the attenuation of fibrosis  [107, 108]. This has 
been demonstrated using natural ligands (CA or CDCA), 
a semi-synthetic derivative of CDCA [obeticholic acid 
(OCA)], and synthetic non-steroidal molecules (GW4064 
and WAY-362450). Specifically, OCA has demonstrated 
great potential in the treatment of a number of hepatic dis-
eases [109] and has now entered into phase II and III clinical 
studies. However, OCA treatment was also found to induce 

Fig. 2  Schematic view of the role of the microbiome in gut perme-
ability and NAFLD development. On the left side, the gut–liver axis 
components are operating normally; on the right side, NAFLD sta-
tus is shown. The dysbiotic microbiome, together with the changed 
intestinal barrier due to the malfunction of the tight junctions, facili-

tates the translocation of some bacterial products into the portal vein. 
These bacterial products interact with Toll-like receptors (TLRs) 
on the surface of the hepatic cells, which leads to inflammation and 
NAFLD development
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side effects including pruritus, ascites or jaundice, highlight-
ing the complexity of the host response to FXR activation. 
The importance of bile acid–microbiota interactions in 
NAFLD was further highlighted by a study by Janssen et al. 
that modulated microbiota by guar gum. The addition of this 
fermentable dietary fibre to the mouse diet increased hepatic 
inflammation and fibrosis and markedly elevated plasma and 
hepatic bile acid levels, while it reduced adipose tissue mass 
and inflammation. Depletion of the gut bacteria using oral 
antibiotics diminished portal secondary bile acid levels and 
protected against NAFLD [110]. Therefore, the researchers 
proposed that the causal link between changes in the gut 
microbiota and hepatic inflammation and fibrosis is through 
alterations of bile acids.

Taken together, these studies show that the interactions 
between bile acids and intestinal microbes play indispensa-
ble roles in host metabolism [111] and metabolism-related 
diseases, including NAFLD.

Ethanol production

The fermentation of carbohydrates by intestinal bacteria 
leads to endogenous ethanol production that could pro-
mote NAFLD [57]. In a study performed on obese mice, 
ethanol was detected in exhaled breath, though the mice 
had not ingested any alcohol [112]. Children with NASH 
were shown to have increased blood ethanol concentrations 
compared to healthy individuals or children with NAFLD, 
suggesting that endogenous ethanol production may contrib-
ute to worsened liver damage by stimulating inflammatory 
signals [57].

Therapeutic potential of the gut microbiota

There are different ways to modulate the gut microbiota, 
including antibiotics, prebiotics, probiotics, or a combina-
tion of both prebiotics and probiotics (synbiotics). These 
modulators can influence the microbiome through the fol-
lowing different mechanisms, all of which potentially impact 
NAFLD susceptibility [113–115]: exerting anti-inflamma-
tory effects by inhibition or elimination of invading bacteria 
or their products, reducing energy salvage, increasing Ang-
plt4 production, improving the epithelial barrier function, 
decreasing ethanol production by the gut microbiota, and 
modulating bile acid and choline metabolic signalling.

Antibiotics

Antibiotics must be used cautiously because they may elimi-
nate important species associated with healthy status and 
cause the appearance of antibiotic-resistant strains [116]. 
However, a few studies have evaluated the effect of antibiotic 
treatment of NAFLD in humans and in animal models. Six 

months of treatment with an alternating regimen of norfloxa-
cin and neomycin was observed to decrease small intestinal 
bacterial overgrowth and to improve the liver function of 
patients with liver cirrhosis  [117]. Additionally, chronic 
oral use of antibiotics was found to suppress the gut bacte-
ria, decrease the amount of portal secondary bile acid, and 
attenuate inflammation in the liver as well as fibrosis [110] 
in a NAFLD mouse model. Furthermore, the combined 
administration of neomycin, bacitracin and streptomycin for 
4 months was associated with reduced liver triglycerides, 
lipid accumulation and serum ceramide production in mice 
[68]. Similarly, the use of the antibiotics polymyxin B and 
neomycin in mice treated with a high-fructose diet led to 
reduced fat accumulation in hepatocytes [118, 119].

In short, the depletion or alteration of the gut microbiota 
caused by antibiotics appears to reduce liver disease devel-
opment. However, the risk of antibiotic resistance prevents 
its use as a therapeutic strategy; thus, exploring new tech-
niques to modulate the gut microbiota is needed to improve 
NAFLD.

Prebiotics

Prebiotics are poorly digested food ingredients that improve 
the growth of beneficial microorganisms in the intestines 
and, therefore, positively alter the gut microbiota [120]. 
They cause gut-mediated alterations in luminal and periph-
eral metabolism such as decreased bacterial hepatotoxins, 
enhanced intestinal epithelial barrier, decreased inflam-
mation, reduced de novo lipogenesis, modified appetite 
and satiety, and enhanced glycaemic control, and all these 
effects potentially lead to NAFLD improvement. Prebiot-
ics stimulate the bacterial production of SCFAs, favour the 
growth of indigenous Bifidobacteria and Lactobacilli as well 
as other beneficial bacterial species, and decrease luminal 
pH and thus prevent the growth of pathogens [121]. Prebiot-
ics also stimulate GLP-2 (gut trophic hormone), which can 
control endotoxin translocation via augmented expression 
of epithelial TJ proteins and improved gut barrier function 
[24]. Accordingly, prebiotic treatment has been linked with 
reduced levels of serum endotoxin [122]. In humans, a pilot 
study on seven patients with NASH (confirmed by biopsy) 
showed that treatment with 16 g/day of oligofructose (inulin-
type fructans) in the diet for 8 weeks significantly decreased 
hepatic inflammatory markers [123].

Numerous promising animal studies also consider 
prebiotics as an effective dietary treatment for NAFLD. In 
rodents, prebiotics reduced hepatic triglyceride concentra-
tion and plasma lipid levels [124–126]. These reductions 
might be due to the reduction of de novo fatty acid synthe-
sis through decreased gene expression of enzymes in the 
lipogenesis pathway [125, 127–129]. Prebiotics were also 
shown to improve the metabolic and liver disorders induced 
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by HFD treatment. For instance, a HFD diet together with 
fungal chitin–glucan (CG) reduced TG deposition in the 
liver compared to HFD alone. CG treatment also remarkably 
decreased HFD-induced fat mass growth, body weight gain, 
and blood glucose and cholesterol level increases, regard-
less of caloric intake. These improvements were associated 
with Clostridia cluster XIVa gut bacteria (Roseburia spp.) 
and were not influenced by incretin GLP-1 hormone [130]. 
Similarly, in a NAFLD mouse model, adding fructooligosac-
charides (FOS) to the diet decreased hepatic TG by altering 
microbiota structure. This effect was associated with stimu-
lated fatty acid oxidation via peroxisome proliferator-acti-
vated receptor alpha (PPAR-alpha) and increased cholesterol 
deposition by inhibited sterol regulatory-element-binding 
proteins (SREBPs) [122].

Probiotics

Probiotics are live bacteria or yeast that are beneficial to 
the host when used in sufficient amounts. Although the 
molecular mechanisms by which the probiotics exert their 
effects are not yet fully revealed, many animal studies as 
well human trials have shown NAFLD improvement fol-
lowing probiotic administration. As an example, Vajro et al. 
[131] used Lactobacillus rhamnosus strain GG (LGG) sup-
plementation or placebo in the diet of 20 obese children with 
NAFLD for 8 weeks. They observed a reduction in alanine 
aminotransferase and antipeptidoglycan–polysaccharide 
antibodies in the group treated with the probiotic compared 
with the group treated with the placebo only, regardless of 
BMI. This highlights the use of probiotics as a therapeutic 
tool in obese children with NAFLD. Similarly, Famouri et al. 
studied the effect of use of a probiotic capsule (consisting of 
4 probiotic strains) for 12 weeks in children with NAFLD 
and found decreased liver enzymes, TG and cholesterol level 
and improved sonography grade after probiotic intervention 
compared to the placebo group [132]. Alisi et al. studied the 
effect of the VSL#3 probiotic supplement (a mixture of 8 
different lactic acid-producing bacteria) on NAFLD children 
[133]. They showed that using VSL#3 supplementation for 
4 months improves fatty liver and BMI via increasing GLP-1 
levels. However, VSL#3 supplementation was recently found 
to increase adiposity in obese Latino adolescents with no 
improvement of liver fat [134], indicating that the efficacy 
of this probiotic cocktail may be highly variable. Aller et al. 
performed a 12-week double-blind experiment to assess the 
effects of daily administration of a probiotic tablet contain-
ing 500 million Lactobacillus bulgaricus and Streptococ-
cus thermophilus on adult NAFLD patients. There were no 
changes in the anthropometric parameters and cardiovas-
cular risk factors between the treated and control groups; 
however, probiotic administration resulted in a remarkable 
improvement in aminotransferase levels [135]. Finally, 

probiotics could be effective in the context of other liver 
diseases; an interesting meta-analysis revealed that patients 
who received probiotics prior to liver transplantation had 
substantially decreased rates of infections and hospital 
accommodations [136].

In mouse models of NAFLD, a larger panel of probiotic 
strains has been assessed. As an example, it was revealed 
that the use of Lactobacillus casei strain (LcS) as a supple-
ment suppressed the methionine–choline-deficient (MCD) 
diet-induced development of NASH by reducing serum 
LPS concentrations [137]. Thus, the modulation of the gut 
microbiome using LcS administration may be beneficial to 
normalizing TJ proteins, protecting gut barrier integrity, 
and thus improving hepatic inflammation. Similarly, sev-
eral studies have shown that VSL#3 diminished fat deposits 
and inflammatory and oxidative liver damage and decreased 
serum levels of alanine aminotransferase [102, 138, 139]. In 
another study performed by Cano et al. [140], mice treated 
with Bifidobacterium pseudocatenulatum CECT 7765 
showed improvements in the immunological and metabolic 
dysfunctions associated with HFD-induced obesity. Moreo-
ver, Bifidobacteria supplementation caused decreased IR, 
reduced fat accumulation, and reduced serum inflammatory 
markers compared with the levels of the mice fed a HFD 
lacking probiotics. However, mice fed a normal chow diet 
with or without probiotics did not show any differences in 
metabolic and liver parameters. Likewise, enhanced immune 
defence mechanisms in macrophages and dendritic cells and 
reduced gut inflammatory signals were observed after oral 
consumption of Bacteroides uniformis CECT 7771 in HFD-
fed mice, which showed less hepatic fat deposition than did 
control mice [141]. In addition, Akkermansia muciniphila, a 
bacterial species with anti-obesity properties, was shown to 
improve immune-mediated liver injury in C57BL/6 mice by 
alleviating inflammation and hepatocellular death [142]. In a 
fructose-enriched diet mouse model of NAFLD, LGG treat-
ment modulated the gut microbiota resulting in decreased 
hepatic expression of the genes that function in the lipogen-
esis pathway and ameliorated liver steatosis. LGG treatment 
also caused reduced expression of the pro-inflammatory 
cytokines including TNF-α, IL-1β and IL-8R in the liver 
[143].

Altogether, these studies confirm that probiotic adminis-
tration can exert beneficial effects on NAFLD development/
progression. However, only a few strains/bacterial cocktails 
have proved to be effective and to slightly ameliorate some 
of the parameters associated with the disease.

Synbiotics

Mixing probiotics and prebiotics, termed synbiotics, has 
been shown to improve the survival and establishment of 
diet derived-microbial communities in the intestine by 
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stimulating the growth or metabolism of specific health-pro-
moting bacteria. There are few human studies evaluating the 
effects of synbiotics on NAFLD patients. However, it was 
shown that synbiotic supplementation (FOS and probiotic 
strains) for 28 weeks together with lifestyle modifications 
is more beneficial to NAFLD treatment than lifestyle modi-
fications alone. In addition, it was observed that this synbi-
otic supplementation attenuates inflammatory signals and 
reduces BMI as well as waist-to-hip ratio. These effects were 
evident at week 14 and continued until the end of the treat-
ment [59]. Accordingly, Malaguarnera et al. [144] indicated 
that administration of Bifidobacterium longum with FOS 
along with lifestyle modification for 24 weeks significantly 
decreased hepatic fat accumulation and the NASH activity 
index when compared to lifestyle modification alone. Safavi 
et al. [145] observed that synbiotic supplementation in obese 
children resulted in a considerable improvement in all blood 
lipid parameters after 8 weeks of treatment. Conversely, the 
synbiotic supplementation used by Ipar et al. [146] showed 
remarkable improvement in total and LDL (low-density 
lipoprotein) cholesterol levels but not in triglyceride levels.

In summary, the mentioned studies show the beneficial 
effect of prebiotics, probiotics and synbiotics on fatty liver 
symptoms, one of the main mechanisms involved in the 
improvement of gut barrier function.

Diet

Diet composition is an important driver of the structure of 
the gut microbiota [122, 143, 147–150], and the role of diet 
in shaping the gut microbiota is even stronger than that of 
genetic factors [148]. Therefore, we hypothesize that the 
effects of diet on NAFLD development are due, at least par-
tially, to changes in the composition of the gut microbiota.

Zeng et al. [150] fed C57BL/6 mice with obesity-related 
inflammatory fatty liver a HFD for 10 weeks to evaluate 
whether the NAFLD phenotype is correlated with microbi-
ome alterations [150]. They found a higher amount of DNA 
from L. gasseri and/or L. taiwanensis (from the Lactobacil-
lus acidophilus species group) in the high-fat diet than in 
the low-fat diet groups. Most of these bacteria are bile acid 
resistant; thus, the authors suggested that the increase in 
Lactobacillus species due to the HFD could influence lipid 
metabolism through the modulation of bile acid metabolism, 
and thus contribute to NAFLD development. Conversely, 
diet can be used to re-establish a healthy microbiota to 
improve NAFLD. A study showed that supplementation of a 
Chinese herbal formula (CHF) in HFD-induced NAFLD rat 
models improved NAFLD and led to a decrease in the levels 
of Escherichia/Shigella and other LPS-containing bacteria 
that may damage the gut barrier and activate a low-grade 
chronic inflammatory state [151]. The CHF supplementa-
tion also increased Collinsella abundance [151], which 

may affect human epithelial cell proliferation, and improve 
intestinal barrier integrity through SCFA production [152]. 
Finally, the Mediterranean diet, rich in polyunsaturated fats, 
polyphenols, carotenoids and vitamins, all of which have 
anti-inflammatory and antioxidant effects, was shown to be 
effective in reducing the risk of metabolic syndrome through 
the reinforcement of the gut barrier and the reduction of 
endotoxaemia [153].

Therefore, the gut microbiota may be linked to the delete-
rious effect of HFD on NAFLD and the modulation of gut 
microbiota composition through diet could be an effective 
strategy to improve liver pathology.

Faecal microbiota transplantation (FMT)

FMT consists of the transfer of faecal material contain-
ing bacteria from a healthy donor to a diseased patient to 
re-establish a balanced gut microbiota composition. FMT 
has been proven to be effective to cure Clostridium difficile 
infection, and its application in a broad range of non-gastro-
intestinal disorders including metabolic disorders has been 
envisaged [154, 155]. It has been recently shown that after 
8 weeks of FMT, mice had significantly decreased intrahe-
patic lipid accumulation and levels of transaminases in the 
serum, together with a diminished degree of lobular inflam-
mation and hepatocyte ballooning. This suggests a positive 
effect of FMT in HFD-induced metabolic disorders [156]. 
To our knowledge, no FMT studies have been published so 
far in the context of NAFLD. Nevertheless, the enormous 
interest in FMT and its potential in liver diseases is reflected 
in several ongoing trials [157, 158].

Conclusion

Intestinal host–microbiome communications play various 
roles in the development and progression of NAFLD and 
NASH. With the rapidly growing incidence of NAFLD, the 
need for new preventative or therapeutic strategies is impor-
tant. Microbiota-based solutions, including protective bacte-
rial species or bacterial products, should be developed in the 
future to improve NAFLD management. Manipulation of the 
microbiome, mainly through the diet, towards a healthy state 
that is protective against NAFLD may also be considered. 
Finally, clinical trials are in progress to use faecal microbiota 
transplants in the context of NAFLD. The future will tell if 
FMT will become a new therapeutic option for NAFLD, as 
it has for Clostridium difficile infection.
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