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Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues—adult bone marrow and adipose tissues and 
neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation abil-
ity and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been 
demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe 
degenerative and/or inflammatory diseases, including Crohn’s disease and graft-versus-host disease, alone or in combination 
with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, 
their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy 
in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which 
should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological 
features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative 
and/or inflammatory diseases.

Keywords Mesenchymal stem/stromal cells · Cell identity · Cell functions · Cell therapy

Introduction

Hundreds of clinical trials are now using mesenchymal stem 
cells (MSCs) to test therapeutic interventions for numerous 
severe diseases, alone or in combination with other drugs 
[1–4]. These trials are designed mostly (Fig. 1) for treatment 
in (1) orthopedics (e.g., non-union bone fracture, craniofa-
cial trauma); (2) degenerative diseases of the skeletal sys-
tem (e.g., osteonecrosis, osteogenesis imperfecta), eyes (e.g., 

glaucoma, macular degeneration, retinitis pigmentosa), heart 
(e.g., ischemic cardiomyopathy), kidney (e.g., acute kidney 
injury), liver (e.g., liver cirrhosis), lung (e.g., pulmonary 
fibrosis) or multiple organs (e.g., diabetes complications); 
(3) autoimmunity affecting the skeletal system (e.g., osteo-
arthritis, rheumatoid arthritis), brain and spinal cord (e.g., 
multiple sclerosis), gastrointestinal tract (e.g., Crohn’s dis-
ease, ulcerative colitis), pancreas (e.g., diabetes type 1) or 
multiple organs (e.g., systemic lupus erythematosus); (4) 
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inflammatory diseases of the lung (e.g., acute respiratory 
distress syndrome, chronic obstructive pulmonary disease) 
or multiple organs (e.g., sepsis); as well as (5) immune rejec-
tion in allogeneic transplantation [e.g., graft-versus-host dis-
ease (GvHD), solid organ rejection] [1–3, 5].

Most clinical studies are registered in the database of the 
US National Institutes of Health (NIH) (https ://clini caltr 
ials.gov/). Such clinical assays are undertaken worldwide 
in university hospitals and biomedical institutions, princi-
pally in China, the European Union and the United States 
(Fig. 2a). Of note, most studies are in the early phases, typi-
cally phase 1 or 1/2; fewer are in phase 2 and even fewer in 
more advanced phases (Fig. 2b).

The available data support the safety of MSC therapy with 
both autologous and allogeneic MSCs, but actual data on the 
efficacy of MSC therapy are often preliminary [2]. However, 
MSCs embody a biological material for cell therapy that is 
safe, barely immunogenic and of immediate applicability in 
diseases [1–3, 5, 6]. Regardless, clinical practice requires 

better coordination of the characterization, production, and 
delivery of MSCs [2, 7–11]. Advanced-phase clinical trials 
expect to develop MSC therapy (Fig. 2c), which implies an 
increasing number of pharmaceutical biotechnologies [2, 
12]. Yet, there are obstacles to the development of MSC 
therapy [1–4, 6, 8–11]; indeed, substantial clinical assays, 
with publicly disclosed results, have shown insufficient 
outcomes, with inconstant therapeutic benefits in diseases 
such as acute GvHD [1–3]. Recent research has progressed 
to further define MSC functions and modes of actions that 
should reflect therapeutic potentials of MSCs [13–17]. In 
this review, we attempt to outline the essential and advanced 
concepts in the biology of MSCs, especially MSC biological 
functions in their fundamental and translational aspects in 
degenerative and/or inflammatory diseases.
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Fig. 1  Medical conditions targeted by MSC therapy. Diagram of 
the conditions targeted by MSCs by proportion of trials. Data were 
obtained using a recurrent search of keywords for medical conditions 
(appearing in the diagram) associated with mesenchymal stem/stro-
mal cells at ClinicalTrials.gov. The search was completed on April 

2019. The group “medical conditions for degenerative disorders” 
represents about 18% of total trials, and inflammatory disorders com-
bined (autoimmune diseases, transplant immune rejection, severe 
inflammatory diseases) represent about 45% of all trials and most of 
the clinical trials of MSCs for treatment

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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MSC biological concept

The Friedenstein group, in the 1960s and 1970s, demon-
strated that only a marginal cell subset residing among 
rodent bone marrow cells had osteogenic abilities [18–23]. 
This bone marrow cell subset was defined as adherent col-
ony-forming unit fibroblasts (CFU-Fs) in vitro in contrast 
to non-adherent hematopoietic CFU cells (CFU-Cs) [18, 
21, 24–26]. CFU-Fs were initially considered to produce 
cells associated with skeletal tissue, that is, stem/progenitor 
cells [18, 22, 23, 27–29], but were also considered feeder 
cells for ex vivo culture of hematopoietic stem cells (HSCs), 
or stroma cells [19, 28–33]. The CFU-F designation then 
evolved into other terms that were supposed to best define 
the biology of the cells, based on cell functions, such as 
“osteogenic stem cells” or “bone-marrow stromal cells” [29, 
34]. Furthermore, these biological concepts were substanti-
ated in other species, including in humans [24, 27, 35–41]. 
Later, the general notion of adult “mesenchymal stem cells”, 
first proposed by Caplan et al., emerged by accommodating 

the concept of cells originating from the embryonic meso-
derm [42, 43]. Of note, the appellation adult “mesenchymal 
stem cells” is still imprecise from strict biological opinion 
[13, 44, 45] but has endured and is widely used by scientists 
and clinicians [44–46]. However, the designation MSCs are 
often debated and/or further described with the terms “stem” 
and “stromal” combined, whereas the term “multipotent” is 
sometimes preferred to “mesenchymal”, for “mesenchymal 
stem/stromal cells” or “multipotent stem/stromal cells”. The 
hesitancy on strict denomination attests to the uncertainties 
of MSC identity and functions [13, 45, 47–49].

The concept of MSCs suggests the existence in vivo of 
stem and/or progenitor subsets within adult or neonatal tis-
sues that sustain the homeostasis of other stem and/or pro-
genitor cells while being able to provide de novo-specialized 
cells of mesodermal lineage [13, 48, 50]. MSC functions 
in vivo were believed to regulate the homeostasis of HSCs 
by producing trophic factors and favoring wound healing by 
differentiating into tissue-specific cells [13, 50–52]. In 1995, 
Lazarus et al. envisioned the use of MSCs as cell therapy 

Fig. 2  Worldwide usage and progress of MSC therapy. Propor-
tion of clinical trials of MSCs by location. Data were obtained by 
a search of ClinicalTrials.gov completed on June 2018. a East Asia 
(mostly China) followed by Europe and North America (mostly 
United States) are the locations of 70% of all clinical trials investi-
gating MSCs as treatment. b Phase 1 and 2 clinical trials of MSCs 
as treatment represent about 85% of the total number, whereas more 
advanced clinical trials in phases 3 and 4 represent less than 10%. c 
Increased proportion of pharmaceutical industry-sponsored clinical 

trials investigating MSCs as treatment progressing to the advanced 
phase. Academia-sponsored clinical trials represent most of the 
clinical trials of MSCs as treatment, about 60% at least. d Sources 
of MSCs by proportion of clinical trials. Data were obtained using a 
recurrent search of keywords for sources of MSCs in trials (appearing 
in the diagram) at ClinicalTrials.gov. The search was completed on 
June 2018. Bone marrow-derived MSCs (BM-MSCs) are investigated 
in about 40% of total trials, followed by umbilical cord-derived MSCs 
(UC-MSCs) at 20% and adipose tissue-derived MSCs (ASCs) at 10%
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similar to bone marrow transplant [48]. Later, in the 2000s, 
other studies drew attention to further MSC functions, 
namely homing/migration [53–62] and immunosuppres-
sion [63–68]. Thereafter, MSC therapy has been investigated 
extensively in both preclinical and clinical settings to evalu-
ate its therapeutic effect in degenerative and/or inflammatory 
diseases lacking appropriate treatments [1–3, 5, 11, 69].

Here, we discuss the fundamental biology and transla-
tional advances regarding MSCs isolated from human adult 
or neonatal tissues, expanded in vitro and used as thera-
peutics directly after thawing MSCs from frozen batches 
or indirectly by harvesting “fresh” cells after continuous 
culture of MSCs that are delivered by topical or systemic 
adoptive transfer in autologous, allogeneic or xenogeneic 
contexts. First, we briefly consider elements of sources of 
human MSCs.

Adult and neonatal tissue source of MSCs

MSCs are typically obtained from adult bone marrow and 
adipose tissue (Fig. 2d); neonatal tissue such as umbilical 
cord is also commonly used to obtain MSCs [70]. MSCs 
in vivo may be confined to a marginal cell population that 
supposedly exists in all organs containing a perivascular 
niche because of the expression of stromal cell surface 
marker 1 (Stro-1) and/or α-smooth muscle actin (α-SMA) 
in all MSCs regardless of their source [71]. This population 
represents an estimated 0.00001% of bone marrow cells and 
up to 1% or more of adipose tissue cells [70, 72–82]. MSCs 
in umbilical cord likely represent a cell frequency compara-
ble to or below that found among adult bone marrow cells 
but with better expandability in vitro as compared with their 
adult counterparts because of their fetal nature [80]. Still, 
bone marrow as a source of MSCs remains the most valued 
because this source is better documented and largely used in 
both preclinical and clinical research [83]. Therefore, MSCs 
derived from bone marrow (BM-MSCs) are considered a 
paragon of MSCs [72, 84].

BM-MSCs are isolated from total marrow obtained from 
the iliac crest of the pelvic bone of healthy donors. This is an 
invasive method that requires anesthesia and implies nosoco-
mial infection hazards; it is now used mostly for BM-MSCs 
intended for clinical use [73, 81, 85, 86]. Total bone marrow 
from femoral heads obtained during orthopedic surgery with 
femur head and neck osteotomy is also a source of BM-
MSCs but solely for preclinical research use [81, 85, 86]. 
Isolation of MSCs from total bone marrow involves density 
gradient centrifugation, with collection of the mononuclear 
cell fraction. To isolate MSCs by adherence and expansion, 
the mononuclear cells are seeded in culture dishes at low 
density, about  103–104 cells/cm2, but more commonly at  105 
cells/cm2 and can reach up to  106 cells/cm2 [74, 81, 87].

MSCs from adipose tissue (ASCs) are isolated from tis-
sue samples obtained after medical interventions involving 
liposuction or lipectomy. Adipose tissues are obtained from 
patients by aspirating or excising visceral or subcutane-
ous fat tissue located in the abdomen, brachium, femoral, 
or gluteal areas [88]. Furthermore, ASC isolation involves 
enzymatic digestion of fat tissue samples with collagenases, 
then red blood cell (RBC) removal with specific RBC lysis 
followed by cell filtration. Of note, methods for expanding 
ASCs are similar to those used for BM-MSCs. Today, adi-
pose tissue is increasingly used as a source for MSCs, mostly 
because of its natural abundance of MSCs and also the less 
invasive surgical measures for obtaining adipose tissue as 
compared with bone marrow tissue and so is ideal for clini-
cal use [72, 81, 82, 86, 87, 89].

MSCs may be isolated from neonatal tissues, especially 
umbilical cord, which is easily accessible. Whole umbili-
cal cord or its individual biological compartments can be a 
source of MSCs [70, 90]. MSCs can be isolated from whole 
umbilical cord, containing conjunctive tissue, Wharton’s 
jelly tissue and vasculature. Conversely, they can be isolated 
from Wharton’s jelly after removal of blood vessels and 
residual conjunctive tissues from umbilical cord. Alterna-
tively, MSCs can be isolated specifically from umbilical cord 
blood (i.e., fetal blood within umbilical vasculature [90]). 
Cell biology methods used for isolating MSCs from umbili-
cal cord vary depending on the umbilical cord compartment 
chosen as a source. Typically, these methods may include 
enzymatic digestion of umbilical-cord tissue samples, RBC-
specific lysis, cell filtration, and/or density gradient separa-
tion [74, 86, 90]. The procedures for isolation/expansion 
are similar for adult and neonatal MSCs. The existence of 
various umbilical compartments for sourcing MSCs suggests 
differences in MSC yield, and in fact whole umbilical cord 
and Wharton’s jelly tissue are superior to umbilical cord 
blood in terms of quantity of obtainable MSCs [70, 91].

The tissues described above for sources of MSCs seem 
somewhat disparate, but they are not entirely unlike each 
other because bone marrow, adipose tissue, and umbilical 
cord share biological similarities [80]. To exemplify, bone 
marrow resembles adipose tissue because in adults, bone 
marrow consists of nearly 30–70% adipose tissue, known as 
yellow marrow or marrow adipose tissue (MAT), but adipose 
tissue in other anatomical areas typically consists of white 
adipose tissue (WAT) [92]. The function of MAT is not yet 
definitively established. However, although MAT and WAT 
have unique specificities [92], MAT exhibits certain WAT 
properties such as lipid-storage and endocrine functions 
[92]. Moreover, MSCs are derived from both bone marrow 
(containing MAT) and WAT, and both derived MSCs fit 
ISCT criteria. Thus, MAT and WAT could be considered 
tissues sharing certain biological features and likely cellular 
contents, including MSCs. Moreover, bone marrow, adipose 
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tissue, and umbilical cord consist of connective tissues with 
perivascular niches where MSCs are thought to reside [93].

Furthermore, MSCs have been isolated from multiple 
other adult tissue including bursa [94], dental pulp [77], 
dermis [95], gingival tissue [96], ligaments [97], peripheral 
blood [98], and synovium [99] as well as other neonatal tis-
sue such as placenta [100]. Of note, MSCs may be obtained 
via in vitro differentiation of human induced pluripotent 
stem cells [101]. However, these last MSC sources are not 
much used for MSC therapy.

MSC culture methods, cryopreservation 
and standardization needs

Unrelated to sourcing, MSCs are produced in vitro with 
rather similar culture methods. Mononuclear cells isolated 
from biological tissues are suspended in derivatives of 
Eagle’s medium (α-MEM or DMEM) supplemented with 
fetal bovine serum (FBS)- or human-derived supplement 
such as serum AB or platelet derivatives such as platelet 
lysates or platelet-rich plasma with or without additional 
factors. Of note, the composition of serum and their deriva-
tives are ill defined and, therefore, these products must often 
be screened for their efficacy in MSC culture, for sustaining 
and promoting cell proliferation of MSCs without affecting 
their undifferentiated state [102].

Importantly, to meet standards of good manufacturing 
production and to satisfy demands for the highest safety, 
quality and quantity of MSCs, MSC culture systems must 
be optimized and standardized [2, 5, 103]. Especially, 
attempts to improve MSC culture include (1) privileging 
advanced stringent aseptic methods, (2) using hypoxic con-
ditions mimicking the native microenvironment of MSCs, 
(3) avoiding non-human products (i.e., xenogeneic-free 
medium) and (4) restraining undefined medium composi-
tion (e.g., by promoting the use of serum-free medium) [2, 
87, 104–108]. Furthermore, MSCs are subcultured using 
standard cell culture systems or by large-scale bioprocess-
ing with high-capacity bioreactors intended for extensive 
cell production yield to meet therapeutic demands [86, 104, 
105, 109–112]. Especially, bioprocesses with large-scale 
bioreactors are culture methods used for producing MSCs 
with pharmaceutical biotechnologies conferring improved 
yield and reduced production costs [103, 106, 112]. Yet, this 
large-scale production of MSCs needs to be standardized for 
reliability and require even more stringent post-production 
quality controls of MSC products for consistency, efficacy, 
and safety [103, 106].

In addition, various cryopreservation procedures for 
MSCs used in academic and pharmaceutical laborato-
ries require further optimization and standardization 
[113]. Concerns exist about the therapeutic capabilities of 

extemporaneous freeze–thawed MSCs and MSCs harvested 
from continuous cultures [8]. Thus, immediately thawed 
MSC products might show attenuated therapeutic effects 
as compared with freshly cultured MSCs [8]. Currently, no 
clear consensus has emerged for the MSCs used in therapy 
[114], but the trend is to use immediately thawed MSC prod-
ucts in the clinic because of the ease of use and readiness of 
frozen off-the-shelf MSC products [2, 115].

Practices in culture, cryopreservation and clinical usage 
of MSC products require standards because current practices 
among laboratories remain inconsistent, in both preclini-
cal and clinical settings, and these fluctuating practices may 
affect the identity and functions of MSCs [2, 8].

MSC identity and functions

MSCs in culture are thought to contain diverse cell sub-
sets resulting from intrinsic and extrinsic influences in 
addition to inherent disparities related to different sources 
and donors [16, 116–119]. Cell heterogeneity is expected 
in MSC cultures for use in preclinical and clinical settings 
[116, 118–123]. MSCs in culture include multipotent cells 
and/or diverse but coherent committed progenitors [21]. 
MSCs from different sources may not be all alike, but MSC 
cultures might share common features in agreement with 
the International Society of Cell Therapy (ISCT) criteria 
established in 2006 [11, 119, 124]. Of note, ISCT proposed 
minimal criteria to define MSCs: (1) MSCs must be adher-
ent cells showing a spindle-shape morphology in standard 
culture conditions; (2) MSCs must show cell surface expres-
sion of cluster of differentiation (CD)105, CD73 and CD90 
but not CD45, CD34, CD14 or CD11b, CD79α or CD19 
and HLA-DR antigens; and (3) MSCs must differentiate to 
osteoblasts, adipocytes and chondroblasts in vitro following 
a definite stimulation [124]. Originally, these nominal prin-
ciples were intended to homogenize the depiction of MSCs 
among research laboratories. Today, these criteria require 
modification with new knowledge of MSCs [1, 10, 49, 125]. 
Particularly, surface antigens that identify MSCs in vivo and/
or in vitro remain to be elucidated. Indeed, surface antigens 
that conceivably relate to stemness, including Stro-1, stage-
specific embryonic antigen (SSEA)-1, SSEA-4, CD271, and 
CD146, have been examined but are not satisfactory because 
of the wide variation in expression of these antigens depend-
ing on the source of MSCs [75, 126]. Meanwhile, thorough 
transcriptomic and functional analysis of MSCs from dif-
ferent biological sources have revealed transcriptional sig-
natures that differ among cultures of MSCs from different 
sources, with close but nonetheless different differentiation 
abilities [11, 16, 119–123, 127]. The identity of MSCs is not 
yet clear; thus, defining the biological functions of MSCs 
that would support identification of MSCs with therapeutic 
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interests is vital. Hereafter, we discuss MSC functions 
(Fig. 3) including proliferation, multipotency, trophic ability, 
homing/migration and immunosuppression in fundamental 
aspects and their clinical implications.

Mesenchymal stem cell proliferation 
function

A cell must be able to proliferate for self-renewal and 
cell expansion, which is related to “stemness” [108, 128]. 
MSCs are proliferative in vitro but retain a fibroblast-like 
morphology. Early in culture, the proliferation function of 
MSCs (Table 1) seems tightly controlled under low activity 
of wingless type (Wnt)/β-catenin signaling [129]. Moreo-
ver, the availability of  O2 regulates MSC proliferation by 
modulating the transcription factor (TF) hypoxia-inducible 
factor 1, which permits the expression of genes controlling 
cell cycle progression [130, 131]. Hence, hypoxic culture 
conditions in vitro  (O2 < 10%) improve MSC proliferation 
by mirroring the usual  O2 strain conditions in vivo. Fur-
thermore, in vivo hypoxic conditions protect mitochondria 
physiology by decreasing the oxidative metabolism needs 

of MSCs in contrast to atmospheric normoxia  (O2 > 20%), 
with in vitro-expanded MSCs subjected to elevated oxidative 
stress, thereby impeding MSC proliferation [131].

MSCs are proliferative in vitro, but their proliferation 
ability decreases with time of culture along with a lack of 
telomerase activities and modifications in cell morphology 
[132, 133]. Decreased cell proliferation abilities of MSCs 
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Fig. 3  Biological functions of MSCs. The five biological functions 
of MSCs with interest in therapeutics: (1) proliferation function, (2) 
multipotency function, (3) homing/migration function, (4) trophic 
function, and (5) immunosuppression function. The diagram gives 
three representative molecules involved in each of these functions. 
HIF-1 hypoxia-inducible factor 1, Wnt wingless type, PPAR-γ2 per-
oxisome proliferator-activated receptor 2, SOX9 sex-determining 

region of the Y chromosome-box  9, RUNX-2 runt-related transcrip-
tion factor 2, Adipo adipocyte, Chondro chondroblast, Osteo osteo-
blast, BDNF brain-derived neurotrophic factor, HGF hepatocytes 
growth factor, VEGF vascular endothelial growth factor, IL interleu-
kin, IDO indoleamine 2,3 dioxygenase, PGE2 prostaglandin E2, CD 
cluster of differentiation, CXCR CXC chemokine receptor, VCAM-1 
vascular cell adhesion molecular 1

Table 1  Pathways of MSC proliferation function

The activity status of molecular pathways critical in the proliferation 
function of MSCs. Data are summarized from references [129–133]
HIF-1 hypoxia-inducible factor 1, Wnt-3a wingless type 3a

Molecular pathways Mesenchymal stem cell 
(MSC) proliferation 
function

References

Wnt-3a/β-catenin − De Boer et al. [129]
HIF-1 + Fehrer et al. [130], 

Estrada et al. 
[131]

Telomerase + Zimmerman et al. 
[132], Bernardo 
et al. [133]
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appear as an archetypical cell senescence, with progres-
sive loss of proliferation and cell cycle arrest [134]. Even 
with senescence, the phenotype of MSCs remains rather 
unchanged and with virtually no genetic disturbance or chro-
mosomal instability [133]. Yet, senescence-associated DNA 
methylations are identified on specific CpG sites and seem 
to be the typical epigenetic signature of senescent MSCs 
[135]. MSCs exposed to overwhelming stimuli, including 
metabolic stress and/or attempts to repair genomic DNA 
damage during in vitro expansion, might promote senes-
cence, which is likely a defense against cell death or genetic 
subversion [133, 135]. Of note, the frequency of senescence 
occurring in MSCs can be intrinsically influenced by the 
origin of MSCs from different tissues and different donors 
[133, 135]. Other than the expansion concerns of MSCs, the 
significance of senescence in terms of further upheaval of 
other MSC functions and therapeutic potency of MSCs are 
unclear but are drawing increasing interest [136].

Mesenchymal stem cell multipotency 
function

MSCs differentiate into adipocytes, chondroblasts and osteo-
blasts under a definite stimulation in vitro (Table 2); the 
differentiation is perceived morphologically and/or with 
specific expression of biomarkers [73, 124, 137]. MSCs 
undergo an overhaul of intracellular signaling and tran-
scriptional modifications, possibly in vivo depending on 
the biological conditions or during in vitro manipulations 
[15]. Manipulation of MSCs in vitro includes use of diverse 
molecules such as chemicals, cytokines, hormones, vitamins 
and/or mechanical/physical supports by means of scaffold 
biomaterials [40, 73, 124, 137, 138].

Adipogenesis is typically achieved by stimulating 
MSCs with dexamethasone, insulin, isobutylmethylxan-
thine, and indomethacin in vitro [73, 139]. MSCs differ-
entiating into adipocytes is revealed by lipid vacuoles that 
gradually form a single large vacuole in terminally differ-
entiated adipocytes [73, 139]. Furthermore, adipogenesis 
can be assessed by enzyme expression and/or activity of 
lipoprotein lipase and the accumulation of fatty acid-bind-
ing protein adipocyte P2 in mature adipocytes [73, 139]. 

Table 2  Pathways of MSC multipotency function

The activity status of most critical upstream molecular pathways, intracellular signaling and downstream transcription factors essential for the 
multipotency function of MSCs differentiating into adipocytes, chondroblasts and osteoblasts. Data are summarized from references [129, 140, 
142, 143, 147–149, 151, 152, 156, 157, 303–317]
EGF epidermal growth factor, FGF-2 fibroblast growth factor 2, IGF-1 insulin-like growth factor 1, TGF-β1 or -β3 transforming growth fac-
tor β1 or β3, HH hedgehog, MAPK mitogen-activated protein kinase, Wnt-3a or -7a wingless type 3a or 7a, PPAR-γ2 peroxisome proliferator-
activated receptor 2, C/EBP-α/β CCAAT/enhancer-binding protein α, RUNX-2 runt-related transcription factor 2, SOX9 sex-determining region 
of the Y chromosome-box 9

MSC multipotency function Adipocyte Chondroblast Osteoblast References

Upstream molecular pathways
 BMP-2, -4, -6 − + + Sekiya et al. [151], Friedman et al. [149]
 EGF − − + Kratchmarova et al. [303], Platt et al. [304]
 FGF-2 − + + Chiou et al. [143], Miraoui et al. [305]
 IGF-1 + + − Scavo et al. [306], Indrawattana et al. [148]
 TGF-β1, -β3 − + − Roelen et al. [307], Maeda et al. [308]

Intracellular signaling pathways
 HH − + + Fontaine et al. [156], Oliveira et al. [309]
 MAPK − + + Chang et al. [310], Celil et al. [152]
 Notch − − + Oldershaw et al. [157], Ugarte et al. [314]
 Smad-3, -4 − + + Furumatsu et al. [147], Zhou et al. [312]
 Wnt-3a, -7a/β-catenin + + + Tuli et al. [142], De Boer et al. [129]

Downstream transcription factor
 C/EBP-α/β + − − Qian et al. [313], Cristancho et al. [140]
 Osterix/Sp7 − − + Celil et al. [152], Zhu et al. [317]
 PPAR-γ2 + − − Cristancho et al. [140], Yu et al. [316]
 RUNX-2 − − + Xu et al. [315], Thiagarajan et al. [314]
 SOX9 − + − Indrawattana et al. [148], Furumatsu et al. [147]
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Mainly, the action of Wnt/β-catenin signaling is required 
for commitment of MSCs into preadipocytes, whereas in 
later stages, the inactivation of the Wnt/β-catenin path-
way seems necessary to complete the maturation of adi-
pocytes [139]. Thus, the Wnt/β-catenin pathway affects 
the downstream action of specific TFs such as CCAAT/
enhancer-binding protein α/β (C/EBP-α/β) and peroxisome 
proliferator-activated receptor γ2 (PPAR-γ2). Both C/EBP-
α/β and PPAR-γ2 activities are essential during early and 
late stages of adipogenesis [139, 140].

Chondrogenesis in vitro ensues usually with MSCs 
placed in aggregate or pellet cultures and stimulated with 
transforming growth factor-β1 or -β3 (TGF-β1 or -β3), 
and/or insulin-like growth factor 1 (IGF-1), fibroblast 
growth factor 2 (FGF-2), or bone morphogenic protein 2 
(BMP-2) [73, 141–145]. FGF-2 facilitates chondrogenesis 
of aggregated MSCs stimulated with TGF-β1 or -β3 and/
or IGF-1 [143, 144]. Particularly, FGF-2 alone does not 
induce chondrogenesis; rather, FGF-2 enables chondro-
genesis by upregulating FGF-R2 and transcription factor 
SOX9 [143]. During chondrogenesis, progenies gradually 
produce sulfated proteoglycans such as aggrecan and type 
II and IX collagen, with the development of a distinc-
tive chondroblast cell morphology [73, 141]. MSC dif-
ferentiation into chondroblasts is regulated by molecular 
pathways including Wnt/β-catenin, TGF-βs, hedgehog 
(HH), BMPs, and FGFs [139, 146]. Together, activation 
of these upstream signaling pathways converges to dictate 
the proper action of TFs belonging to the sex-determining 
region of the Y chromosome-box (SOX) family, notably 
not only SOX9, but also SOX5 and SOX6, which are 
required for completion of chondrogenesis [146–148].

Osteogenesis can be achieved in vitro by stimulating 
MSCs with ascorbic acid, β-glycerophosphate, vitamin D3 
and/or BMP-2, -4, -6 and -7 [73, 149]. MSCs commit to 
osteoblast progenies with increasing activity of alkaline 
phosphatase L (ALPL) isoform (also known as tissue non-
specific isoform or liver, kidney, or bone isoform) and cal-
cium deposition, progressively assuming the morphology 
and phenotype of osteoblasts [73, 150, 151]. Osteogenic 
differentiation of MSCs implies multiple signaling path-
ways, which ultimately depends mostly on the action of the 
TF runt-related transcription factor 2 (RUNX-2) associated 
with other specific TFs such as Osterix/SP7 [152–154]. 
RUNX-2 acts to modify transcription in favor of bone-
related gene expression and is regulated by upstream path-
ways, especially Wnt/β-catenin, HH, Notch and BMPs 
[142, 151, 155–157].

Other studies suggested that MSCs may also differenti-
ate into endothelial progenitors and myoblasts as well as 
specialized cells beyond the mesoderm lineage, notably 
neuroblasts [158–160]. Such differentiation potential of 
MSCs remains not well substantiated, and findings of their 

signaling pathways are still lacking, especially if they are to 
be considered events of cell transdifferentiation [161].

The MSC multipotency function was long thought to be 
therapeutically practical for tissue regeneration with the 
adoptive transfer of MSCs to improve conditions in degen-
erative disorders [162]. Early initiatives evaluated the thera-
peutic effects of MSC adoptive transfer in patients with oste-
ogenesis imperfecta (OI), a congenital disease with altered 
expression of collagen genes leading to skeletal malfunc-
tions. Some results from preliminary clinical studies showed 
bone tissue reinforcements after adoptive transfer of MSCs 
in children with severe OI symptoms, including recovery 
of skeletal growth and strength [163]. However, MSCs in 
the host bone tissue accounted for less than 1% of the total 
MSCs given to these patients, which suggests that the multi-
potency function is probably not essential in ameliorating 
OI symptoms [163, 164]. Likewise, suggestions that MSCs 
could differentiate into neurons led some investigators to 
consider MSC therapy in patients with eye diseases such as 
glaucoma, macular degeneration and retinitis pigmentosa 
[165]. Preclinical studies have shown a certain therapeutic 
benefit of MSC adoptive transfer in improving conditions in 
experimental models of retina diseases [165, 166], yet evi-
dence showing MSC engraftment into the retina has not been 
clearly established [166]. Similarly, clinical studies show-
ing reduced symptoms of retinal degeneration in patients 
after MSC adoptive transfer [167–169] supported that the 
beneficial effects are not likely related to MSC engraftment 
and that the therapeutic effect results from a transient pres-
ence of MSCs into damaged tissue [170, 171]. Furthermore, 
amelioration of disease after MSC adoptive transfer has been 
substantiated in experimental models of acute kidney injury 
[172], cardiomyopathy [173], diabetes complications [174], 
and liver cirrhosis [175]. Yet again, any permanent engraft-
ment of MSCs into these diseased tissues has not been veri-
fied, which suggests that the multipotency function does 
not likely explain the therapeutic ability of MSCs in degen-
erative diseases [164, 176]. Overall, both preclinical and 
clinical studies have provided indications supporting MSC 
therapy in degenerative diseases, but the mechanism lead-
ing to the observed therapeutic effects is considered solely 
executed via a brief “hit-and-run” mode of action of MSCs 
[17, 164, 177, 178].

By contrast, the multipotency function of MSCs may 
be exploited in tissue engineering for therapeutic needs in 
trauma and/or in malfunctioning or loss of an organ [179, 
180]. Particularly, tissue engineering based on MSCs may be 
used in orthopedics to attempt to improve the formation of 
organs related to the skeletal system that are deficient [179]. 
Tissue engineering combining innovative biomaterials with 
MSCs offers interesting alternatives that allow for produc-
ing advanced prosthetics to align biological functionality 
and mechanical compliance [181]. MSCs seeded on 3-D 
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biomaterial scaffolds facilitate cell differentiation toward 
the formation of skeletal-related tissues [181, 182]. Hence, 
3-D culture systems have been found to augment cell–cell 
interactions, favoring organized tissue formation while being 
compliant for transplantation [182, 183]. Biomimetic porous 
materials resembling the composition of bones, including 
hydroxyapatite and β-tricalcium phosphate, or biodegrad-
able polymers such as polylactic acid, are regularly used 
as scaffolds for MSCs for tissue-engineering organs related 
to the skeletal system [183]. As well, pioneering research 
is focusing on advanced 3-D microfluidic bioprinting tech-
nologies based on MSCs and are currently being developed 
for clinical practice [184]. Tissue engineering using MSCs 
is rapidly evolving and is still in its infancy. Nonetheless, 
some clinical studies have shown therapeutic benefits with 
use of tissue engineering based on MSCs, remarkably in 
healing of femoral osteonecrosis [185] as well as for aiding 
the functional restoration of mandibles in severely atrophied 
mandibular defects [186].

Mesenchymal stem cell trophic function

MSCs are considered to regulate homeostasis within hemat-
opoietic niches in vivo by supporting the maintenance, 
expansion and/or differentiation of HSCs. Also, MSCs may 
support the in vivo homeostasis of other progenitors [67, 
179, 187, 188]. The MSC trophic function toward HSCs 
could be attributed to MSCs producing: (1) growth fac-
tors such as stem cell factor, platelet-derived growth factor, 

macrophage-colony stimulating factor (M-CSF), granu-
locyte-CSF (G-CSF), FMS-like tyrosine kinase-3 ligand, 
thrombopoietin, erythropoietin (EPO), angiopoietin 1 (Ang-
1); (2) chemokines such as CXCL12, also known as stromal-
derived factor 1, and CCL5, also known as regulated on acti-
vation normal T cell expressed and secreted (RANTES); (3) 
interleukins (ILs) including IL-3 and IL-6; and (4) extracel-
lular matrix molecules such as hyaluronans [47, 189–191]. 
Hence, HSCs co-transplanted with MSCs enable HSC trans-
plant success in vivo, which was revealed in a phase 1/2 
clinical trial showing both amelioration of HSC engraftment 
in bone marrow and improvement in hematopoietic function 
recovery [192].

Beyond the ability to sustain homeostasis of HSCs and 
bone tissue, the MSC trophic function (Table 3) might be 
beneficial in favoring tissue healing and regeneration in dif-
ferent organs [47, 69]. To exemplify, Ang-1 and CXCL12 
produced by MSCs have a significant impact on angio-
genesis by recruiting adjacent endothelial progenitor cells 
in vivo [193, 194], whereas brain-derived neurotrophic fac-
tor (BDNF) or neurotrophin-3 (NT-3) released by MSCs acts 
on neural progenitors in the lesion area, thereby improving 
neurogenesis [195, 196]. Hence, the therapeutic effects of 
MSCs in preclinical models of neurodegenerative diseases 
were revealed particularly in amyotrophic lateral sclerosis 
(ALS), Huntington disease, multiple sclerosis, Parkinson 
disease, and spinal cord injury [197]. The benefits of MSC 
therapy are alleged to occur via neurotrophic factors pro-
duced by MSCs, such as BDNF, ciliary neurotrophic factor, 
glial cell-derived neurotrophic factor (GDNF), nerve growth 

Table 3  Fundamental molecules 
of MSC trophic function

The most critical molecules produced and secreted by MSCs for their trophic function. Data are summa-
rized from references [195, 200, 220, 318–338]
Ang-1 angiopoietin-1, EGF epidermal growth factor, EPO erythropoietin, FGF-1 or -18 fibroblast growth 
factor 1 or 18, GDNF glial cell line-derived neurotrophic factor, BDNF brain-derived neurotrophic fac-
tor, HGF hepatocyte growth factor, IGF-1 insulin-like growth factor 1, KGF keratinocyte growth fac-
tor, PDGF-AB platelet-derived growth factor AB, SDF-1 stromal cell-derived factor 1, VEGF vascular 
endothelial growth factor

Growth factors Biologic effect on progenitors References

MSC trophic function
 Ang-1 Angiogenesis Pedersen et al. [318], Kingham et al. [319]
 EGF Pleiotropic Li et al. [320], Ding et al. [321]
 EPO Angiogenesis Zwezdaryk et al. [322], Hu et al. [323]
 FGF-1, -18 Pleiotropic Wu et al. [324], Zhang et al. [325]
 GDNF Neurogenesis Horita et al. [326], Ding et al. [327]
 BDNF Neurogenesis Jeong et al. [328], Pollock et al. [195]
 HGF Pleiotropic Neuss et al. [329], Kennelly et al. [220]
 IGF-1 Neurogenesis Zhang et al. [330], Tfilin et al. [331]
 KGF Epithelialization Casey et al. [332], Zhu et al. [333]
 PDGF-AB Pleiotropic Ding et al. [334], Osborne et al. [335]
 SDF-1 (CXCL12) Angiogenesis, neurogenesis Mishra et al. [336], Lin et al. [200]
 VEGF Angiogenesis Mayer et al. [337], Beckermann et al. [338]



3332 A. Naji et al.

1 3

factor, and NT-3 [196–202]. Furthermore, in experimental 
models of neurodegenerative diseases, MSC production of 
other growth factors including vascular endothelial growth 
factor (VEGF) acted synergistically with neurotrophic 
factors to improve conditions [197, 203]. Furthermore, in 
a clinical study of 37 patients with ALS, organ improve-
ments were correlated with the paracrine actions of the 
neurotrophic factor BDNF and growth factors including 
VEGF [204]. Consistently, in a clinical trial of ten patients 
with secondary progressive MS treated with MSC adoptive 
transfer, the benefits were assessed by functional and physi-
ological amelioration, including some visual endpoints that 
suggested neuroprotection [171].

The clinical use of culture-conditioned or genetically 
engineered MSCs with enhanced aptitude to produce neu-
rotrophic factors has been considered to improve the effi-
cacy of MSC therapy in neurodegenerative disorders [195, 
197]. For instance, in a phase 1/2 clinical trial, investiga-
tors examined MSCs overexpressing neurotrophic factors 
(MSC-NTFs) induced by a culture stimulation method 
before adoptive transfer in patients with ALS [205]. The 
results suggested that intratracheal and intramuscular adop-
tive transfer of MSC-NTFs in patients with ALS is safe, with 
significant enhancement of clinical benefits, to be confirmed 
in an upcoming phase 3 clinical trial (ClinicalTrials.gov: 
NCT03280056).

The MSC trophic function has been assessed in experi-
mental models of degenerative diseases affecting the kid-
ney (acute kidney injury), liver (liver cirrhosis), or multi-
ple organs (diabetes complications) [172, 206, 207]. Organ 
condition and/or function improvements with MSC therapy 
in those diseases are associated with MSC production of 
growth factors, notably hepatocyte growth factor (HGF), 
IGF-1, and sometimes growth factors related to angiogen-
esis and neurogenesis such as VEGF, EPO, and GDNF 
[208–212]. Likewise, in degenerative diseases affecting the 
heart such as myocardial infarction, preclinical and clini-
cal findings support the therapeutic benefit via a paracrine 
action of various growth factors after MSC adoptive trans-
fer, to improve heart condition and function [213–215]. 
Remarkably, often this amelioration is associated with neo-
vascularization into damaged myocardium, which suggests 
a role for growth factors associated with angiogenesis in the 
therapeutic effect of MSCs [216–218]. Other investigators 
suggested a broader role for growth factors involved in myo-
cardium remodeling, including IGF-1 and HGF, produced 
by MSCs [218]. Similarly, preclinical studies associated 
the beneficial therapeutic effects of MSCs in lung emphy-
sema and chronic obstructive pulmonary disease (COPD) 
with production of HGF and VEGF by MSCs [219, 220]. 
Consistently, in phase 1 clinical trials, adoptive transfer of 
MSCs in patients with COPD facilitated functional recov-
ery of respiratory capacities, and the therapeutic benefits of 

MSCs may involve trophic factors [221, 222]. Moreover, a 
clinical assay undertaken on a compassionate basis involv-
ing two patients with severe acute respiratory distress syn-
drome (ARDS) receiving MSC adoptive transfer reported 
some positive outcomes with recovery of respiratory capaci-
ties concomitant to a lessening in lung tissue damage [223]. 
Especially, the investigators suggested that the MSC mode 
of action in ARDS may involve at least in part the action of 
a number of growth factors, and a further phase 1/2 clinical 
trial is ongoing [223].

Mesenchymal stem cell homing/migration 
function

The MSC fate resulting from systemic adoptive transfer 
might occur with (1) passage/location in non-specific tissues, 
(2) homing into native niches or (3) migration into damaged 
and/or diseased tissues [224]. Whatever the MSC fate within 
a short time after systemic adoptive transfer, how and under 
which conditions MSCs might survive or be eliminated from 
the host is not well established [177, 225]. This situation has 
critical significance both in terms of pharmacokinetics and 
pharmacodynamics of a given MSC therapy [226, 227]. The 
MSC function of homing/migration (Table 4) has been docu-
mented in preclinical studies, but the actual biodistribution 
of MSCs after systemic adoptive transfer in humans is just 
being revealed [227, 228]. Of note, some preclinical studies 
gave clues to the prospective mode of action of MSC hom-
ing/migration including for chemotaxis, rolling/adhesion, 
diapedeses and interstitial migration [53, 55, 56, 58, 60–62, 
229, 230]. After adoptive transfer, MSCs may move along 
blood vessels, pass through the endothelial wall, and home 
into niches where they naturally reside or further migrate 
into tissues that are damaged and/or diseased [231, 232]. 
The expression and functionality of adhesion molecules, 
chemokine receptors, and enzymes belonging to the molecu-
lar class of metalloproteinases (MMPs) are indispensable for 
enabling trafficking of MSCs from peripheral blood toward 
specific target organs [231, 233].

The interaction of MSCs with endothelial cells (ECs) 
requires adhesion molecules, most being integrins. How-
ever, recent findings indicate that MSCs show a deficit 
in expression and/or functionality of adhesion molecules 
implicated in homing/migration as compared with HSCs or 
leukocytes [234]. Hence, P-selectin (CD62P) glycoprotein 
ligand 1 (PSGL-1) is not found to be expressed on MSCs 
[59]. Yet, adhesion of MSCs onto microvasculature seems 
to remain fully dependent on a CD62P receptor expressed 
on ECs. Actually, MSCs interact with CD62P but via at 
least another glycoform ligand of CD62P that is dissimi-
lar to the natural ligand PSGL-1 [59, 229]. In addition, 
firm adhesion of MSCs with ECs is mediated by integrins, 
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including heterodimeric integrin α4β1, also known as very 
late antigen-4 (VLA-4), which interacts with its receptor 
vascular cell adhesion molecule 1 (VCAM-1) expressed on 
ECs [229, 235–237]. Both CD62P and VCAM-1 expressed 
on ECs are required for MSCs in rolling/adhesion pro-
cesses, which has been verified in vivo in preclinical stud-
ies [230, 231]. Similarly, MSCs showed a weak aptitude 
to interact with E-selectin (CD62E) [230]. CD62E is 
expressed constitutively by cells of blood vessels irrigating 
bone marrow and is expressed on any ECs when activated 
by inflammatory cytokines [230, 231]. Although MSCs 
express CD44, an adhesion molecule that interacts with 
selectins, CD44 on MSCs lack proper posttranslational 
glycosylation modifications, so it is unable to interact 
well with CD62E [59, 230, 235]. Especially cell homing 
into bone marrow requires the expression of a ligand to 
CD62L/CD62E, also known as hematopoietic cell E-/L-
selectin ligand (HCELL), a competent glycoform of CD44, 
and although HSCs express HCELL, MSCs do not [59, 
230]. Thus, modifying CD44 expressed on MSCs in vitro 
to enhance in vivo trafficking of MSCs to bone marrow 
has been considered [59, 230]. A preclinical study showed 
that converting the native CD44 glycoform on MSCs into 
molecules resembling HCELL using enzymatic glycosyla-
tion procedures could significantly improve MSC homing 
to bone marrow [59].

Chemokine receptors that are expressed variably on the 
cell surface of MSCs include CCR2, 3, 4, 7, 10, and CXCR4, 
5, and 6 [238–240]. Notably, CXCR4 is an important mol-
ecule regulating homing/migration of HSCs and is likely 
involved in MSC homing/migration as well [240]. However, 
CXCR4 is expressed sporadically on the cell surface of 
MSCs as compared with HSCs [240]. Still, the expression of 
CXCR4 on MSCs could be upregulated with inflammatory 
cytokine stimulation such as tumor necrosis factor α (TNF-
α) and interleukin 1β (IL-1β) [241, 242]. Moreover, MSCs 
with enhanced production of CXCR4 enabled by genetic 
engineering showed better homing/migration in vivo in pre-
clinical studies [243].

The activity of proteolytic enzymes belonging to the 
molecular class of MMPs enables diapedeses and interstitial 
migration of MSCs toward tissues [231]. Notably, MMP-2 
and its activator membrane type-1-MMP and tissue inhibitor 
of metalloproteinases 2 have been found critical for diape-
desis of MSCs [244]. Other MMP pathways with various 
collagenase activities such as MMP-1, -3 and -9 were also 
found positively associated with MSC homing/migration 
[245, 246].

Research of the MSC homing/migration function has 
involved mostly preclinical models, but in certain aspects, 
some results agree with clinical findings, especially regard-
ing the biodistribution of MSC post-adoptive transfer [192, 

Table 4  Fundamental molecules 
of MSC homing/migration 
function

The most critical molecules—adhesion molecules, chemokine receptors and metalloproteinases—involved 
in the MSC homing/migration function. Data are summarized from references [59, 61, 237, 238, 244–246, 
339–348]
CD cluster of differentiation, CCR  CC chemokine receptor, CXCR CXC chemokine receptor, MMP matrix 
metalloproteinase, MT1-MMP membrane type 1-MMP, TIMP tissue inhibitor of metalloproteinases

Molecule class MSC homing/migration 
function

References

Adhesion molecules CD44 Herrera et al. [339], Sackstein et al. [59]
Integrin α1 Popov et al. [340]
Integrin α3 Frith et al. [341]
Integrin α4 Semon et al. [237]
Integrin α5 Veevers-Lowe [342]
Integrin β1 Semon et al. [237]

Chemokine receptors CCR2 Ringe et al. [238]
CCR7 Sordi et al. [61]
CCR10 Von Lüttichau et al. [343]
CXCR4 Ringe et al. [238], Baek et al. [344]
CXCR5 Baek et al. [344]
CXCR6 Baek et al. [344], Jung et al. [345]

Metalloproteinases MT1-MMP Lu et al. [346]
MMP-1 Ho et al. [245]
MMP-9 Kim et al. [246]

Protease inhibitors TIMP-1 Egea et al. [347]
TIMP-2 Ries et al. [244]
TIMP-4 Chelluboina et al. [348]
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231, 234, 247]. Thus, modification of MSCs by biological 
manipulations with enzymatic procedures or genetic meth-
ods to reinforce MSC homing/migration is envisaged to 
improve MSC therapy [231, 234].

Considered routes for adoptive transfer of MSCs may be 
topical into damaged/diseased tissue or systemic into periph-
eral blood. In this context, preclinical studies compared the 
therapeutic effects of MSCs with topical or systemic deliv-
ery of MSCs [164, 225, 231]. When adoptive transfer of 
MSCs is topical, that is, by intra-articular, intracoronary, 
intramuscular, intrathecal, or intratracheal routes, the thera-
peutic effects of MSCs are expected to be exerted locally. 
Therefore, MSC homing/migration is rather less indispen-
sable, except from essential interstitial migration of MSCs 
within damaged/diseased tissue itself [164]. If delivery of 
MSCs is systemic, using intravascular adoptive transfer via 
intraarterial or intravenous routes, MSC homing/migration 
is absolutely required for MSCs to reach their target [164, 
231]. Of note, MSC homing/migration may be also affected 
by whether adoptive transfer of MSCs is by intra-arterial or 
intravenous means [164, 225, 231]. MSCs delivered via the 
intraarterial route may avoid the lung first-pass effect inher-
ent to any intravenous injection that considerably reduces 
the pharmacodynamics of MSCs. After an adoptive transfer 
of MSCs via an intra-arterial route, MSC entrapment into 
the lung is virtually absent as compared with the intravenous 
route [248]. However, intra-arterial injection is a complex 
procedure that requires medical expertise and has health 
risks [248, 249]. Therefore, intravenous delivery of MSCs, 
despite its disadvantages, is regularly used in both preclini-
cal and clinical settings.

Further investigations are needed to properly define 
MSC homing/migration in vivo in humans and to determine 
whether findings from preclinical studies could be valuable 
to enhance the efficacy of MSC therapy.

Mesenchymal stem cell immunosuppression 
function

MSCs expanded in  vitro are rather hypoimmunogenic 
because they do not express HLA-class II molecules or 
costimulatory molecules including CD40, CD80, CD83, 
CD86 and CD154. Yet, MSCs express HLA-class I mol-
ecules, and MSCs stimulated with interferon γ (IFN-γ), 
IL-1β, and/or TNF-α showed upregulated HLA-class I mol-
ecules and promoted the expression of HLA-class II and 
adhesion molecules [14, 68, 250]. Under these conditions, 
MSCs remain unable to express costimulatory molecules, 
but the capacity for co-stimulation is critical for activating 
T lymphocytes [68, 250]. Counterintuitively, inflammation 
enhances the immunosuppression function of MSCs. Indeed, 
inflammation upregulates HLA-class II molecules on MSCs 

and thus their interaction abilities with T lymphocytes. The 
absence of costimulatory molecules on MSCs, despite the 
inflammatory signals, will result in suboptimal activation 
of T lymphocytes and clonal anergy [251–253]. Of note, 
MSCs do not induce allogeneic proliferation of T lympho-
cytes in vitro, even when HLA class II molecules are upreg-
ulated on MSCs and co-stimulatory signaling is delivered 
by an anti-CD28 monoclonal antibody [68]. This finding 
strongly suggests an active MSC immunosuppression func-
tion, whereas enhancement of this function would require 
a “licensing” signal delivered by inflammatory factors [14, 
251]. Hence, some investigators attributed failures in MSC 
therapy to inappropriate “licensing” of the MSCs used, 
whereas others suggested optimizing MSC therapy with a 
preconditioning treatment, that is, a prior in vitro stimulation 
of MSCs with appropriate inflammatory factors, to obtain 
optimal therapeutic effects in vivo [254, 255].

The MSC immunosuppression function was interpreted 
mostly by preclinical studies, both in vitro and in vivo, 
but substantial results are also sustained in clinical find-
ings [256]. MSCs suppress a broad range of immune cells, 
including T, B, and natural killer (NK) lymphocytes, and 
affect functions of myeloid cells such as monocytes, den-
dritic cells (DCs) and macrophages [68, 257–262]. MSCs 
modulate both innate and adaptive immune cells by dis-
rupting their activation, proliferation, maturation, cytokine 
production, cytolytic activity, or antibody production [256]. 
Specifically, MSCs impede effector T-lymphocyte functions 
such as T helper 17 (Th17) cytokine production [263, 264] 
while favoring tolerogenic  CD4+ Th2 lymphocyte differ-
entiation, at the expense of immunity mediated by  CD4+ 
Th1 lymphocytes [265]. Furthermore, MSCs obstruct B 
lymphocytes from further differentiating into plasma cells 
and impede their ability to secrete immunoglobulins [257]. 
MSCs inhibit the cytotoxic potential of NK lymphocytes 
as well as their ability to secrete INF-γ [258, 259]. Moreo-
ver, MSCs prevent the differentiation of  CD14+ mono-
cytes and  CD34+ progenitors into mature DCs [266]. Also, 
MSCs can diminish the DC ability to express HLA-class 
II as well as CD80 and CD86 costimulatory molecules 
[260, 266]. Notably, MSCs promote the emergence and/
or recruitment of regulatory/suppressive immune subsets, 
including  CD4+CD25+FOXP3+ T lymphocytes [258, 267], 
 CD8+CD28− T lymphocytes [268], IL-10-producing B 
lymphocytes [269], IL-10-producing DCs [270], and alter-
natively activated M2-macrophages [262, 271]. Such MSC 
abilities facilitate the amplification of their immunosuppres-
sion effects by reinforcing the host’s own regulatory/immu-
nosuppressive immune subsets [256].

The MSC immunosuppression function (Table 5) is 
mostly executed via production of soluble factors and their 
paracrine actions on immune cells. Direct cell–cell con-
tacts between MSCs and immune cells are also involved, 
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although seemingly occasional as compared with actions 
obtained by soluble factors [14, 256, 272]. MSCs produce 
and release various soluble factors that are accountable 
for the immunosuppression function; among them are a 
diverse class of molecules comprising ILs, such as IL-6, 
leukemia inhibitory factor, IL-10, TGF-β, and TNF-
stimulated gene 6 (TSG-6) but also metabolic enzymes 
including heme oxygenase 1 (HO-1), indoleamine 2,3 
dioxygenase (IDO), and inducible nitric oxide synthase 
(iNOS) as well as pleiotropic hormones such as prosta-
glandin E2 (PGE2) and other proteins such as galectin-1, 
non-classical HLA-class Ib HLA-G, and semaphorin-3A. 
Relating to membrane-bound molecules expressed on 
MSCs and implicated in their immunosuppressive function 
are immunoregulatory B7 family member proteins such 
as B7-H4, also known as V-set domain-containing T cell 
activation inhibitor 1; but also B7-H1 and B7-DC, also 
known as programmed death-ligand 1 (PD-L1) and PD-L2; 
and TNF family member protein fas ligand, also known 
as CD95L; as well as intercellular adhesion molecule 1, 
also known as CD54; and VCAM-1, also known as CD106 
[4, 14, 66, 256, 272, 273]. Hence, MSCs are multiarmed 

for immunosuppression, which, therefore, validates an 
assessment of their therapeutic value in various immune 
disorders [256].

MSC therapy is used for immunomodulation mostly in 
immune rejection and autoimmunity, including conditions 
such as in HSC transplantation, solid organ transplanta-
tion, Crohn’s disease (CD), rheumatoid arthritis (RA) and 
systemic lupus erythematosus (SLE) [256, 274]. Neverthe-
less, the mode of action of the MSC immunosuppression 
function in vivo is still not known in all aspects [2, 256]. 
Typically, in experimental models, the efficacy of MSC 
therapy is associated with the action of soluble factors 
such as IL-10, IDO, PGE2, TGF-β, TSG-6 and expansion 
of  CD4+CD25+FOXP3+ regulatory T cells [256]. The first 
translational attempts used MSCs for immunomodulation 
purposes, especially for severe GvHD in patients unre-
sponsive to available treatments [66, 273, 275, 276]. The 
proof-of-concept was shown in a pilot study reporting the 
practicability of adoptive transfer of MSCs in a 9-year-old 
patient with acute GvHD grade IV [276]. Adoptive transfer 
of MSCs in this patient resulted in overall improvement of 
his condition, with outcomes observed within few days and 

Table 5  Fundamental molecules 
of MSC immunosuppression 
function

The most critical soluble and membrane-bound molecules involved in the MSC immunosuppression func-
tion. Data are summarized from references [258, 259, 349–367]. Inducible nitric oxide synthase (iNOS) is 
shown in this table because it can be expressed in human MSCs but seems less active than indoleamine 2,3 
dioxygenase (IDO) in the immunosuppression function of human MSCs [358]
IL interleukin, TGF transforming growth factor, TSG-6 TNF-stimulated gene 6, HO-1 heme oxygenase 1, 
PGE2 prostaglandin E2, HLA-G human leucocyte antigen G, ICAM-1 intercellular adhesion molecule 1, 
VCAM-1 vascular cell adhesion molecular 1, B7-DC also known as programmed death-ligand 2, B7-H1 
also known as programmed death-ligand 1, B7-H4 also known as V-set domain-containing T-cell activation 
inhibitor 1, FasL Fas ligand, TNF tumor necrosis factor

Molecule Molecule class MSC immunosup-
pression function

References

Soluble Interleukins IL-6 Najar et al. [349]
IL-10 Beyth et al. [350], Rasmusson et al. [351]
LIF Nasef et al. [352]
TGF-β Sotiropoulo et al. [353], Patel et al. [354]
TSG-6 Choi et al. [355]

Enzymes HO-1 Mougiakakos et al. [356]
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lasting for at least up to 1 year post-treatment [276]. Later, 
the investigators reported promising results for MSC therapy 
in a population of 55 patients with acute GvHD refractory 
to steroid treatments [275]. Notably, patients responded 
to MSCs with higher survival rate, which reached 52% at 
2 years post-treatment, as compared with just 10% in con-
trol patients who did not receive MSCs [275]. Altogether, 
in this phase 2 clinical study, the authors interpreted their 
results positively and suggested that adoptive transfer of 
MSCs might be a suitable therapeutic approach in patients 
with acute GvHD [275]. Meanwhile, a phase 3 clinical trial 
(ClinicalTrials.gov: NCT00366145), explored an MSC 
product  (Prochymal®) produced on an industrial scale by 
Osiris Therapeutics and tested for treatment of steroid-
resistant GvHD in 240 patients [8]. However, the company 
reported non-positive outcomes for  Prochymal®, with failure 
to ameliorate the clinical conditions of GvHD as compared 
with placebo [8]. This non-success was found to contrast 
with results observed in a clinical assay led by academic 
institutions, with use of adoptive transfer of MSCs from 
different donors and sources [8, 275, 276]. MSC product 
uncertainties including the quality of MSCs produced with 
industrial-scale methods and cryopreservation have been 
discussed as possible causes for the failure of  Prochymal® 
[8]. However, an amended type of Prochymal, namely MSC-
100-IV (Remestemcel-L®), produced by Mesoblast, has 
been tested in children with severe GvHD resistant to ster-
oids in a clinical trial (ClinicalTrials.gov: NCT02336230). 
Early in 2018, data from a press release on this clinical 
trial described significant therapeutic benefits in pediatric 
steroid-resistant GvHD, with an overall response of up to 
69% at day 28 after MSC therapy with Remestemcel-L® as 
compared with the protocol-defined control rate of 45% [2]. 
Furthermore, in solid organ transplantation, clinical assays 
to evaluate therapeutic efficacy of MSCs in acute allogeneic 
rejection in kidney transplantation and liver transplantation 
showed that MSC therapy combined with low-dose antical-
cineurin reduced kidney or liver allograft pathology, with 
decreased rejection episodes [277–284]. Moreover, biologi-
cal analyses in clinical studies have shown a link between 
observed therapeutic benefits and an increase in regula-
tory/suppressive subsets in peripheral blood, particularly 
 CD4+CD25+FOXP3+ regulatory T cells, which is consistent 
with most preclinical findings [277, 278, 280–284].

The benefits of MSC therapy have been evaluated in clini-
cal studies for autoimmune diseases, including CD, RA, and 
SLE [285–293]. A phase-2 clinical trial aiming to assess 
both the safety and efficacy of adoptive transfer of MSCs 
for patients with luminal CD has been undertaken [288]. 
Promisingly, results showed that MSC therapy diminished 
both the CD Activity Index and CD Endoscopic Index of 
Severity in patients unresponsive to any available treatment 
[288]. Furthermore, an MSC product (Cx601) from Tigenix 

 (Alofisel®) recently demonstrated long-term therapeutic effi-
cacy in CD perianal fistula complications in 212 patients in 
a phase 3 clinical trial, with remission in 51.5% of patients 
given Cx601 versus 35.6% given placebo [292]. Similarly, 
in patients with RA, MSC therapy seems to be pertinent 
to modulate inflammation and ameliorate conditions of RA 
[290, 291]. A phase 1/2 clinical trial evaluated another MSC 
product (Cx611) from Tigenix: results showed a predisposi-
tion for therapeutic efficacy of Cx611 in patients with RA 
that needs further assessment [289]. In addition, a 5-year 
follow-up study of MSC therapy in 81 patients with severe 
SLE lacking other therapeutic options showed a remark-
able alleviation of conditions with MSC therapy [293]. The 
survival rate was 84% (n = 68/81) after MSC therapy; 34% 
achieved long-term clinical remission with better outcomes 
than controls [293].

Conclusion

MSC identity is still being questioned, and practices in 
culture, cryopreservation and clinical use of MSCs require 
standardization, both in preclinical and clinical settings, 
because these unknowns certainly affect the functions of 
MSCs used in cell therapy. Here, we attempted to deline-
ate MSC functions that are essential in therapeutic effects 
of MSCs, including (1) proliferation, (2) multipotency, (3) 
trophic ability, (4) homing/migration, (5) and immunosup-
pression. Each of these functions may alone and/or when 
combined remain essential to the therapeutic ability of 
MSCs for various diseases.

MSC proliferation function (Table 1) is vital for MSC 
therapy, because the number of MSCs obtainable after iso-
lation from biological sources is scarce, but an elevated 
number of MSCs is often required in clinical settings. Typi-
cally, a dose for MSC therapy represents about 1–10 ×  106 
MSCs/kg body weight [162]. The ability of MSCs to expand 
vigorously in vitro to yield a significant number of MSCs 
is critical to ease the development of MSC therapy. Thus, 
considerable efforts are made both in academia and indus-
try to better address MSC proliferation function to improve 
their production while preserving the safety and therapeutic 
potency of MSC products [162].

Furthermore, permanent engraftment of MSCs into dis-
eased tissues does not seem to occur, so the multipotency 
function of MSCs is not likely involved in the therapeu-
tic ability of MSCs in degenerative diseases [164, 176]. 
Although current research has provided indications sup-
porting MSC therapy in degenerative diseases, the modes 
of actions are considered to occur by a brief “hit-and-run” 
mechanism via the MSC trophic function and/or immuno-
suppression function [17, 164, 177, 178, 294]. However, the 
multipotency function of MSCs (Table 2) is of particular 
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interest in tissue engineering for rebuilding organs to correct 
malfunctioning or replace lost organs following disease or 
trauma, especially in orthopedics [179, 180].

By contrast, the MSC trophic function appears to have a 
critical role in mediating the beneficial effect of MSC ther-
apy for degenerative and/or inflammatory diseases and is 
currently a matter of intensive research [47, 125, 190]. Fur-
thermore, the MSC production of trophic factors (Table 3) 
at lesions close to tissue damage in degenerative diseases 
could be enforced via a paracrine action targeted to specific 
tissue-resident progenitor cells and/or parenchymal cells by 
enhancing their own ability to metabolize, proliferate, dif-
ferentiate and/or migrate, thus limiting further tissue damage 
[47, 69, 179].

To allow MSCs to exert their therapeutic effects after sys-
temic adoptive transfer, the MSC homing/migration function 
(Table 4) is absolutely required. The MSC function of hom-
ing has been envisaged as comparable to the HSC ability to 
home into bone marrow after the adoptive transfer of HSCs 
into peripheral blood [54, 57, 224, 228, 231]. MSCs may 
also migrate into damaged and/or diseased tissues, where 
allegedly they can deploy their therapeutic effects [224, 228, 
231]. The migration function of MSCs has been considered 
to have similarities to the migration function of leukocytes 
in diseases but, in contrast to leukocytes, MSCs migrate for 
a longer time, with specific modes of action [224, 228, 231]. 
Here, we considered together the function of homing/migra-
tion of MSCs because the fate of homing or migration of 
MSCs is solely determined by in vivo pathophysiological 
conditions [231, 295]. MSC homing/migration is required in 
therapeutics but is not sufficient to ensure that MSCs would 
reach damaged and/or diseased organs. Indeed, administra-
tion routes for adoptive transfer of MSCs may also signifi-
cantly affect MSC homing/migration abilities [164]. Hence, 
selection of MSC delivery routes is critical because it ulti-
mately affects the pharmacokinetics and pharmacodynamics 
of a given MSC therapy [164, 225, 231].

Most importantly, the MSC immunosuppression func-
tion (Table 5) is thought to mediate most of the therapeutic 
effects in the treatment of severe inflammatory diseases with 
limited medical options, including GvHD, immune rejection 
in allogeneic solid organ transplantation, sepsis, ARDS, CD, 
RA, and SLE [10, 69, 256, 258, 272, 273]. Significantly, 
the immunosuppression function of MSCs currently serves 
in functional in vitro assay approaches as release criterion 
for MSC products intended for clinical use [9]. The ISCT 
has proposed novel guidance for therapeutic potency assess-
ment of MSCs intended for clinical release on the basis of 
their immunosuppression function in vitro [1, 10, 115, 125]. 
The recommendation is motivated by the need to improve 
consistency and effectiveness of MSC therapy and is based 
on the assumption that ensuring in vitro robustness of the 
immunosuppression function of MSCs would be associated 

with the therapeutic effect in vivo [2, 8–11]. Thus, use of 
easy-to-implement in vitro potency assays imply co-culture 
of MSCs with activated peripheral blood leukocytes in con-
ditions under which lymphocyte proliferation inhibition is 
measurable concurrent with the secretome and transcriptome 
dynamic response of MSCs [223]. These in vitro immunopo-
tency assay matrices are now being developed and the first 
clinical results seem relevant to help define release criterion 
for MSC products, with anticipation to bring more stringent 
consistency in MSC therapy [2, 10].

However, the biological functions of MSCs might remain 
incompletely defined. Indeed, the trophic function and the 
immunosuppression function could be associated with their 
function to modulate uncontrolled cell death occurring dur-
ing diseases [6, 187, 296–302]. Therefore, further investiga-
tions are needed to understand the biological functions of 
MSCs, to improve and facilitate the use of MSC therapy in 
the clinic.
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