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Abstract
Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors 
involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, 
through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical 
research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may 
allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this 
context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase 
systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein 
family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to 
highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic 
reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence 
indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated 
cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some 
of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotec-
tive effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins 
could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new 
avenue in the field of related therapeutic strategies.

Keywords  Selenoproteins · Cardiovascular diseases · Endoplasmic reticulum · Biomarkers · Selenoprotein T

Abbreviations
CVDs	� Cardiovascular diseases
Cys	� Cysteine
DIO	� Iodothyronine deiodinases
ER	� Endoplasmic reticulum
ERAD	� ER-associated protein degradation
FGD	� Familial glucocorticoid deficiency
GPX	� Glutathione peroxidase
H2O2	� Hydrogen peroxide
HbA1c	� Glycated hemoglobin
HF	� Heart failure
HNO	� Azanone
I/R	� Ischemia/reperfusion
IL-1β	� Interleukin-1β
IL-6	� Interleukin-6
Met	� Methionine
MI	� Myocardial infarction
MSRB1	� Methionine sulfoxide reductase B1
NO	� Nitric oxide
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O2
·	� Superoxide radical

OH·	� Hydroxyl radical
ONOO-	� Peroxynitrite
PACAP	� Pituitary adenylate cyclase-activating 

peptide
PCH2D	� Ponto-cerebellar hypoplasia type 2D
RNS	� Reactive nitrogen species
ROS	� Reactive oxygen species
RSNO	� S-Nitrosothiols
S	� Sulfur
Se	� Selenium
Sec	� Selenocysteine
SECISBP2	� SECIS binding protein 2
SELENOH	� Selenoprotein H
SELENOI	� Selenoprotein I
SELENOK	� Selenoprotein K
SELENOM	� Selenoprotein M
SELENON	� Selenoprotein N
SELENOO	� Selenoprotein O
SELENOP	� Selenoprotein P
SELENOS	� Selenoprotein S
SELENOT	� Selenoprotein T
SELENOV	� Selenoprotein V
SELENOW	� Selenoprotein W
SELENOF	� Selenoprotein F
SEPHS2	� Selenophosphate synthetase 2
SEPSECS	� Sep (O-phosphoserine) tRNA:Sec (sele-

nocysteine) tRNA synthase
SNPs	� Single nucleotide polymorphisms
STEMI	� ST-segment elevation MI
TNF-α	� Tumor necrosis factor-α
TRU-TCA1-1	� Transfer RNA-Sec [TCA] 1-1
Trx	� Thioredoxin
TXNRD	� Thioredoxin reductase
UPR	� Unfolded protein response

Introduction

Cardiovascular diseases (CVD) and their consequences remain 
the most common worldwide cause of death, accounting for 
more than 4 million deceases each year across Europe, and 
representing the most important health problem of the Western 
world [1, 2]. The major cardiac syndromes, myocardial infarc-
tion (MI) and heart failure (HF), are responsible for a large 
portion of CVD-dependent deaths; in these common diseases, 
cell death, occurring primarily by apoptosis or necrosis, is an 
important component of their pathogenesis [3]. Along with 
other factors, reactive oxygen species (ROS) are considered 
the initiators of the harm in CVD, being responsible for lipid 
peroxidation, protein oxidation and DNA damage. An excess 
of ROS results in oxidative stress and may cause cell death [4]. 

Accordingly, oxidative stress has been associated with diverse 
pathophysiological events, including CVD [5, 6].

MI is a leading cause of death in its acute phase, but the 
long-term morbidity and mortality are also alarmingly high 
[7]. Early and successful restoration of myocardial reperfusion 
after an ischemic event represents the most effective strategy 
to reduce infarct size, preserving the left ventricular systolic 
function and improving the clinical outcome. Paradoxically, 
the reperfusion strategy itself may induce further myocardial 
damage in a phenomenon named “lethal reperfusion-induced 
injury” [8, 9]. The subsequent condition results in inflamma-
tion and oxidative damage through the induction of oxidative 
stress rather than immediate restoration of normal function 
[7–9]. In addition, even if performing a successful reperfusion, 
mortality and morbidity are significant after an acute ST-seg-
ment elevation MI (STEMI) by electrocardiography analysis in 
a 1-year follow-up [10]. For these reasons, additional mechani-
cal and pharmacological cardioprotective strategies, able to 
limit the reperfusion injury and further enhance the benefit of 
reperfusion, are urgently needed.

To preserve their integrity against oxidative stress-depend-
ent damages and to repair deleterious structural oxidative 
modifications, cells employ potent endogenous antioxidative 
systems for ROS detoxification [11]. In mammalian cells, glu-
tathione/glutathione peroxidase and thioredoxin/thioredoxin 
reductase systems constitute the principal endogenous antioxi-
dant defense line involved in multiple redox-regulated signal-
ing pathways [12–15]. The crucial enzymes belong to the sele-
noprotein family and display several fundamental functions 
mostly related to the oxidative cell balance control [12–15].

Several selenoproteins catalyse redox reactions by involv-
ing the oxidation of sulfhydryl groups and/or reduction of 
disulfides [16, 17]. As ROS-detoxifying enzymes, selenopro-
teins represent an array of antioxidants with different specific 
subcellular localization and chemical reactivities [18]. In par-
ticular, different experimental evidences show that selective 
selenoproteins contribute to redox regulation in CVD, display-
ing cardioprotection and representing promising therapeutic 
tools in the treatment of these pathological disorders [19, 20].

This review aims to focus on the specific function played 
by selenoproteins in CVD and to introduce the emerging 
role of one of them, namely Selenoprotein T (SELENOT), in 
cardioprotection, as the first results indicate that this member 
is crucial for the cardiovascular function.

The selenoprotein family

Distinctive structural and functional features 
of selenocysteine (Sec)

Selenium (Se) is an essential trace element co-translationally 
incorporated into the polypeptide chain as component of the 
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amino acid selenocysteine (Sec), the 21st amino acid in the 
genetic code, which is encoded by TGA [21, 22]. It has been 
observed that selenoproteins are found in all kingdoms of 
life including certain types of fungi and viruses [16, 23, 24]. 
Proteins including Sec in their polypeptide chain are defined 
as selenoproteins [14].

Sulfur (S) and Se are members of the chalcogen group of 
elements having very similar chemical and physical proper-
ties, that can be involved in similar chemical reactions, such 
as thiol/disulfide and thiol-disulfide-like (that is selenol/
disulfide or thiol/selenosulfide when Se replaces S) exchange 
reactions [25]. Among the trace elements used as cofactors 
by enzymes, Se has unique properties; in fact, unlike other 
metal cofactors such as zinc and copper, Se is not only a 
part of the polypeptide chain in the form of an amino acid, 
but Sec can be also localized in the enzymatic catalytic site 
[16]. In selenoproteins, Sec function is partially preserved 
only when cysteine (Cys) replaces Sec; however, in most 
cases, the substitution of Sec with Cys leads to a detrimental 
reduction in the catalytic efficiency [17], as demonstrated 
by Zhong et al. [26] in a study by mutagenesis carried out 
on the rat thioredoxin reductase (TXNRD). The higher 
importance of Sec compared to Cys in protein function, is 
a debated issue, but a common view suggests the ability of 
Se to provide some superior chemical or physical properties 
able to improve the functions of the macromolecules [17]. 
Accordingly, unlike other amino acids, Sec is normally used 
only when required for protein function, supporting the idea 
that this amino acid is a key functional (catalytic) group in 
proteins. [16, 27, 28].

Additionally, Sec could have a protective effect in pro-
teins. In fact, the one-electron oxidized product of Sec 
(selanyl radical), is less oxidizing compared to the cysteine-
thiyl radical [29]. Consequently, the selanyl radical is not 
sufficient to alter proteins, while cysteine-thiyl radical can 
do this with a higher efficiency [29]. Accordingly, Bianco 
et al. [30] reported that, similarly to thiols, selenols are also 
target for nitroxyl (azanone, HNO); however, while HNO-
induced modifications of thiols can be either reversible and 
irreversible, HNO-induced modifications of selenols appear 
to be only irreversible [30]. Other studies provided evi-
dences about the biochemical significance of Sec-containing 
enzymes under oxidative conditions. For example, Snider 
et al. [31] compared the effect induced by several oxidant 
species [ROS, reactive nitrogen species (RNS) and reactive 
halogen oxidants] exposition on the Sec-containing TXNRD 
with respect to the Cys-ortholog TXNRD. These authors 
clearly demonstrated that the Sec-containing TXNRD results 
in a significantly higher capacity to resist to inactivation by 
oxidation, while the Cys-containing TXNRD was inactivated 
under the same conditions of oxidative stress.

Very recently, Ingold et al. [32] further contributed to 
the knowledge of the function exerted by Sec, providing 

additional evidence for the advantage to use Se in the 
form of Sec in proteins. To show this, they compared the 
selenolate- versus thiolate-based catalysis in mice with a 
targeted mutation of the catalytically active Sec to Cys in 
glutathione peroxidase 4 (GPX4), demonstrating that Sec-
containing GPX4 prevents ferroptosis due to its resistance 
to irreversible inactivation mediated by overoxidation.

These findings indicate that, unlike thiol containing 
proteins, selenoproteins are resistant to irreversible oxi-
dative modification, reflecting the advantage of selenolate- 
versus thiolate-based catalysis.

The higher reactivity of Sec compared to Cys is also 
indicated by the higher catalytic activity exerted by the 
Sec-containing enzymes, which are typically 100- to 1000-
fold more active than their Cys mutants [33]. This could 
account for the presence of Sec in biological systems and 
might be the rationale of Sec selection over Cys in specific 
enzymes [17].

Biologically, the unique property of Sec is that, unlike 
the other amino acids, its biosynthesis always occurs on its 
own selenocysteine-specific tRNA, designated tRNA[Ser]Sec, 
that controls the expression of all the Selenoprotein family, a 
process that is not reported for any other tRNA species [16, 
27]. The gene for tRNA[Ser]Sec is designated as Trsp [34, 35] 
and Sec incorporation during protein synthesis is depend-
ent on both a UGA codon in the open reading frame and a 
selenocysteine insertion sequence (SECIS) in the 3′-untrans-
lated region [34]. Since two different homozygous muta-
tions found in the human Sep (O-phosphoserine) tRNA:Sec 
tRNA synthase (SEPSECS) gene, encoding for an enzyme 
crucially involved in the selenocysteyl-tRNA[Ser]Sec synthe-
sis [36], are associated with progressive cerebello-cerebral 
atrophy, an essential functional role of Sec biosynthesis 
can be postulated. Other mutations in SEPSECS gene have 
been identified in several ethnicities in the world [37, 38]. 
These mutations are able to generate a phenotype which is 
clinically similar among all patients and is now classified as 
ponto-cerebellar hypoplasia type 2D (PCH2D), leading to 
decreased selenoprotein levels and to an augmented brain 
susceptibility to oxidative stress [36, 39, 40].

Mutations of two other genes involved in the Sec inser-
tion pathway are responsible for pathological conditions. In 
particular, mutations in SECISBP2 (SECIS binding protein 
2) gene and TRU-TCA1-1 (transfer RNA-Sec [TCA] 1-1) 
gene, encoding tRNA[Ser]Sec, cause a multisystem disorder 
with myopathic features, induced by the loss of selenopro-
tein N (SELENON), increased oxidative stress due to the 
alteration of crucial antioxidant selenoproteins (i.e. GPXs 
and TXNRDs) and thyroid dysfunction induced by iodothy-
ronine deiodinases (DIOs) deficiency [39–44]. Additionally, 
Trsp gene knockout in mice results in embryonic lethality, 
indicating that selenoprotein synthesis is strictly required for 
mammalian life [45].
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Selenoproteins and the selenoproteome

The first identified selenoprotein was the mammalian glu-
tathione peroxidase 1 (GPX1) [46]. Subsequently, thanks 
to a combination of bioinformatic and experimental 
approaches, a large number of selenoproteins were identified 
in all the life kingdoms, and the full human selenoproteome, 
encoded by 25 selenoprotein genes was characterized [27]. 
Among these genes are included the glutathione peroxidases 
(GPXs), the thioredoxin reductases (TXNRDs) and the iodo-
thyronine deiodinases (DIOs) [16].

GPXs are major components of the antioxidant defense 
and redox homeostasis, strongly involved in a wide range of 
physiological functions [14]. They use glutathione as a co-
factor to catalyze the reduction of hydrogen peroxide (H2O2) 
and/or phospholipid hydroperoxide [14, 47]. In humans, 
there are eight genes encoding GPX enzymes and five of 
these are selenoproteins (GPX1–4, GPX6) containing Sec 
in the active site [27, 47].

TXNRDs, three of which have been identified in mam-
mals (TXNRD 1–3) are members of the pyridine nucleotide-
disulfide oxidoreductases that, together with thioredoxin 
(Trx) and NADPH, represent the major disulphide reduc-
tion system of the cell [15, 16]. The two most important 
features of TXNRDs are the N-terminal redox-active dithiol/
disulfide in one subunit [48] and a 16-residue C-terminal 
elongation with the conserved selenothiol active-site in the 
adjacent subunit (sequence: -Gly-Cys-Sec-Gly-OH) [49]. 
This structure forms the redox-active center of the enzyme 
[48]. Several other proteins having these characteristic struc-
tural features are considered members of the Trx family.

The three mammalian DIOs (DIO1-3) are vitally involved 
in the regulation (activation/deactivation) of thyroid hor-
mone activity by reductive deiodination [16]. DIO1 or DIO2 
catalyze the activation of thyroid hormone by converting the 
prohormone thyroxine (3,5,3′,5′ tetraiodothyronine, T4) to 
the biologically active form, 3,5,3′-triiodothyronine (T3), 
while DIO3 catalyzes the irreversible inactivation of T3 and 
T4 to yield the inactive hormones 3,5-diiodo-l-thyronine 
(T2) and reverse T3 (rT3), respectively [50].

Overall, TXNRDs, GPXs and DIOs are the three-best 
characterized selenoprotein subfamilies. They have differ-
ent enzymatic activities, but all require reductants to provide 
the electrons for their catalytic redox cycle [14].

The human selenoproteome also includes the methio-
nine sulfoxide reductase B1 (MSRB1) that, together with 
TXNRD and GPX isoforms, synergically act to provide anti-
oxidant defense [16]. While two other selenoproteins are 
crucially involved in selenoprotein synthesis (selenophos-
phate synthetase 2, SEPHS2) and transport (selenoprotein 
P, SELENOP) [16, 28], the role of many selenoproteins and 
their mechanisms of action (referring to selenoprotein W, 
SELENOW, selenoprotein T, SELENOT, selenoprotein H, 

SELENOH, selenoprotein V, SELENOV, selenoprotein I, 
SELENOI, selenoprotein F, SELENOF, selenoprotein M, 
SELENOM, selenoprotein K, SELENOK, selenoprotein S, 
SELENOS, selenoprotein O, SELENOO, and selenoprotein 
N, SELENON [16, 27], are still elusive.

However, the role of specific selenoproteins is emerging. 
After the complete identification of the selenoprotein fam-
ily members in 2003 [27], which occurred after the Human 
Genome Project, their nomenclature was revised in 2016 
[51]. Selenoproteins with characterized functions are desig-
nated according to their functions (GPXs, TXNRDs, DIOs, 
MSRB1 and SEPHS2). Selenoproteins without a clearly 
demonstrated enzymatic function, structure, tissue and 
cellular localization, are indicated by the common symbol 
SELENO followed by a specific letter [51]. Some of them, 
containing structures encompassing Trx folds (where Cys 
residues, normally present in the active site, are replaced 
by Sec residues), namely Trx-like proteins, include SELE-
NOF, SELENOH, SELENOM, SELENOO, SELENOP, 
SELENOT, SELENOV, and SELENOW, and act in a Trx 
similar manner also contributing to the Trx system activ-
ity [47]. Considering the presence of the Trx fold, a thiol-
based oxidoreductase activity has been postulated for these 
SELENO members [52]. Among them, SELENOP possesses 
unique features, i.e. it is the only selenoprotein with multi-
ple Sec residues that facilitates Se transport between organs 
[53]. In addition, since SELENOP is transported across the 
blood–brain barrier [47, 54] it is the most commonly used 
selenoprotein as a marker of Se status [55, 56].

However, an impressive emerging interest has been given 
to the group of the endoplasmic reticulum (ER)-resident 
selenoproteins (SELENOF, SELENOK, SELENOM, SELE-
NON, SELENOS, SELENOT). These selenoproteins pre-
dominantly contribute to the calcium ion (Ca2+) signaling, 
the protein folding and ER-associated degradation [57–61]. 
In particular, Hamieh et al. demonstrated that SELENOT 
knockdown is dramatically associated with the unfolded pro-
tein response (UPR) and ER stress and lowers ER-associated 
protein degradation (ERAD) and hormone production [62].

Cardiovascular role of selenoproteins

Selective selenoproteins are essential for life

It is well known that, under aerobic condition, cells con-
tinuously react with ROS, such as superoxide radical 
(O2·–), hydrogen peroxide (H2O2), lipid and hydroxyl 
radical (OH·), which derive from several metabolic reac-
tions, and counteract their effects through a wide range 
of endogenous antioxidant enzymes [63]. High and per-
sistent ROS levels lead to a dramatic imbalance between 
ROS and the antioxidant defence system [64]. Under these 
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conditions, ROS can damage macromolecules due to their 
ability to react with specific amino acid residues present in 
the protein structure, thus inactivating their function, and 
with DNA and chromatin causing mutations or double-
stranded breaks in a phenomena overall known as “oxida-
tive damage” [65]. The current concept of “oxidative dam-
age or oxidative stress” includes pathways also related to 
the “nitrosative stress” and, considering their implication 
in cellular and extracellular metabolic processes, to the 
“metabolic stress” [66]. So far, the definition of oxidative 
stress, firstly confined only to ROS, has been extended to 
RNS, such as nitric oxide (NO), peroxynitrite (ONOO−) 
and S-nitrosothiols (RSNO) [66]. Today, it is widely 
accepted that metabolic stress has been associated with 
diverse patho-physiological events, including CVD [6].

In this context, while the role of many selenoproteins 
remains to be better established and their study is under 
continuous investigation and development, the funda-
mental role exerted by selenoproteins for life is widely 
accepted [45, 67]. These enzymes rapidly consume and 
neutralize H2O2, with a consequent significant decrease 
of H2O2 levels and a limitation of its transmission signal 
space by diffusion in the cell [68].

An important contribution regarding the mechanism by 
which selenoproteins are involved in antioxidant defense 
following oxidative stress was given by Touat-Hamici 
et al. [69]. These authors studied, in different cell models, 
the regulation of the expression of several selenoproteins 
secondary to H2O2-induced oxidative stress, in the pres-
ence of high and low selenium concentration. Interest-
ingly, the results demonstrated that antioxidant seleno-
proteins, including GPX1, GPX4, TXNRD1, SELENOS, 
SELENOK, SEPHS2, are up-regulated by H2O2 when 
selenium is limiting. Conversely, in the presence of high 
selenium concentration, selenoprotein expression was not 
sensitive or was down-regulated in response to oxidative 
stress [28, 70]. These observations indicate that selenium 
status selectively influences the response of selenoprotein 
expression to oxidative stress, which induces the upregula-
tion of UGA selenocysteine recoding efficiency and relo-
calization of SBP2, EFsec and L30 recoding factors from 
cytoplasm to nucleus [69].

In vivo studies using knockout/transgenic animal models 
demonstrated that selenoproteins are crucially involved in 
protecting the cells against oxidative stress and in maintain-
ing the redox homeostasis [71, 72].

For instance, it has been shown that, in mice, the genetic 
disruption of GPX4, TXNRD1, and TXNRD2 is responsi-
ble for an embryonic lethal phenotype [73–76]. In addition, 
depletion of the liver SELENOP gene alters the delivery 
of Se to peripheral target tissues, leading to growth retar-
dation and impaired motor coordination in mice [77, 78]. 
Interestingly, the more recently discovered SELENOT is the 

only ER-resident selenoprotein so far whose genetic ablation 
causes embryonic lethality in mice [79, 80].

On the other hand, genetic invalidation of other seleno-
proteins (for example GPX1 and MSRB1 [81, 82]) revealed 
that they play a key role under stressful conditions.

Noteworthy, it has been observed that a reduced sele-
noprotein activity is counterbalanced by a cytoprotective 
response mediated by the transcription factor NF-E2 related 
factor 2 (Nrf2), which may represent an essential compen-
satory response for maintaining cellular redox homeostasis 
and viability [67, 83]. In the same study, the importance of 
Trsp/Nrf2 axis was further highlighted by demonstrating the 
key role of selenoprotein activity and of Nrf2 gene in the 
oxidative homeostasis of erythrocytes and in the prevention 
of hemolytic anemia [84].

Selective selenoproteins are required for heart 
development and function

As could be expected, mutations in selenoproteins and sele-
noenzymes have been associated with several disorders, 
including CVD [85]. Considering that the mouse tRNASec 
knockout mutant exhibits an embryonic lethal phenotype 
[45], it is not surprising that mutations of factors taking-
part in the synthesis and co-translational incorporation of 
Sec, such as SEPSECS can affect the selenoprotein synthesis 
machinery itself [36].

Accordingly, the cell-specific alteration of selenoprotein 
expression, using the Cre-LoxP technology to remove the 
Trsp gene, revealed the essential role of selenoproteins in 
endothelial cell development and in proper cardiac muscle 
function, suggesting a direct connection between the loss 
of selenoprotein expression in this cell type and CVD [86]. 
In particular, and as reviewed by Conrad et al. [73], genetic 
disruption in mice of the cytosolic thioredoxin reduc-
tase (TXNRD1), the mitochondrial thioredoxin reductase 
(TXNRD2) and glutathione peroxidase 4 (GPX4), provokes 
embryonic lethality, thus revealing that selonoproteins are 
required not only for murine embryogenesis, but also for 
the regulation of cellular redox metabolism [73]. These 
findings are extremely relevant from a cardiovascular point 
of view. In fact, the knockout of TXNRD2, which exerts 
an essential role in hematopoiesis, heart development, and 
heart function, provokes congestive HF symptoms and post-
natal death in a heart-specific TXNRD2-knockout mouse 
model [75]. It is of particular interest that these mice also 
showed phenotypic similarities with the histopathologic phe-
notype of Friedreich’s cardiomyopathy, that itself reflects 
the dilated congestive cardiomyopathy typical of severely 
Se-deficient patients [87]. Accordingly, the same authors 
described mutations in the TXNRD2 gene in a fraction of 
patients affected by dilated cardiomyopathy, thus revealing 
a novel mechanism for HF development linked to a crucial 
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antioxidant enzyme involved in the regulation of cellular 
redox state [88]. On the other hand, Prasad et al. [89] identi-
fied homozygosity for a nonsense mutation in the TXNRD2 
gene associated with familial glucocorticoid deficiency 
(FGD), a rare autosomal recessive disorder characterized by 
isolated glucocorticoid deficiency without mineralocorticoid 
deficiency [90]. The study was carried out in an extended 
consanguineous Kashmiri kindred and the results attest for 
the fundamental role of this selenoprotein in maintaining the 
adrenocortical redox state [89]. In the family involved in this 
study, heterozygotes individuals were clinically unaffected 
and, unexpectedly, neither the heterozygote nor homozygote 
subjects, with the absence of TXNRD2, had any evidence 
of cardiomyopathy, except two homozygous patients who 
presented cardiac anomalies, probably due to other genetic 
or environmental factors [38, 89].

Other studies identified a critical role for TXNRD2 in 
preserving the morphological and functional integrity of 
mitochondria in aging cardiomyocytes, pointing to a criti-
cal role of this selenoprotein in the prevention of age-related 
functional cardiac decline [91].

Embryonic depletion of GPX isoforms is also associated 
with cardiac dysfunction. Indeed, mice with homozygous 
null mutation for the cytosolic GPX1, the most abundant 
GPX, show susceptibility to oxidative stress and viral myo-
carditis and acceleration of cardiac hypertrophy and dys-
function [92]. Wentzel et al. [93] observed that maternal 
diabetes causes congenital malformations and a general 
altered antioxidant embryonic profile in rats, and that the 
decreased cardiac GPX1 levels significantly contribute to an 
increased risk of developing congenital cardiac malforma-
tion [93]. Forgione et al. [94] demonstrated that heterozy-
gous deficiency of GPX1 leads to endothelial dysfunction, 
which in turn triggers significant structural abnormalities in 
vascular and cardiac tissues [94]. Furthermore, mice with 
GPX1 deficiency exhibit a decrease in bioavailable NO [94].

As demonstrated, the gene of human GPX1 is located 
on chromosome 3p21.3 and contains two exons [95, 96]. 
An increasing body of clinical studies showed the occur-
rence of different polymorphisms in GPX1 associated with 
negative effects on the cardiovascular system, confirming 
the detrimental consequences linked to GPX1 alteration in 
the heart. In this regard, Winter et al. [97] observed that 
individuals with one or two ALA6 alleles of GPX1 have a 
modest increased risk of coronary artery disease. Functional 
variants in the GPX1 gene were associated with increased 
intima-media thickness of carotid arteries and risk of cardio-
vascular and peripheral vascular diseases in type 2 diabetic 
patients [98]. Among other single nucleotide polymorphisms 
(SNPs) that have been documented for this gene, the poly-
morphisms of the cytosine-to-thymine (C>T) substitution 
(rs1050450) at codon 198 and 197 generate the Pro198Leu 
and Pro197Leu variations [99]. Several observations suggest 

a possible correlation between these polymorphisms and 
CVD. Accordingly, a Pro197Leu substitution of the GPX1 
gene correlates with a significant genetic susceptibility to 
coronary-arteriosclerosis in type 2 diabetes patients [100]. 
In line with results obtained by Hamanishi et al. [98], Oguri 
et al. [101] showed that the Pro198Leu polymorphism of 
GPX1 significantly associated with in-stent restenosis in a 
Japanese population. A meta-analysis study conducted by 
Zhang et al. [102] revealed a significant relationship of these 
GPX1 variants and CVD risk in East Asian populations. and 
a hospital-based case–control study, in a Chinese population, 
indicates that the GPX1 variant 198Leu allele is significantly 
associated with an increased risk of CAD [103]. Although 
other studies to strengthen statistical significance are needed, 
the effect of the GPX1 Pro/Leu variants on the function of 
this selenoenzyme is substantial; in fact, several studies indi-
cate a lower GPX1 activity in the Pro198Leu variant [98, 
104, 105], suggesting that the correlation found between this 
functional variant and the increased risk of CVD, in par-
ticular CAD, might be related to a decreased GPX1 enzyme 
activity [104, 105].

GPX3 is the major plasma antioxidant enzyme, which 
controls the vascular tone and the thrombotic properties of 
the vascular endothelium [106]. A GPX3 deficiency inevi-
tably leads to an impaired catalytic reduction of H2O2 and 
organic hydroperoxides to their corresponding alcohols 
[107]. Consequently, there is a decreased NO bioavailability 
[108, 109] that can augment platelet activation and arterial 
thrombosis [110]. The potential relationship between GPX3 
deficiency and platelet-dependent thrombosis was addressed 
by Jin et al. [107], who developed a mouse model present-
ing a phenotype resembling that of two brothers with GPX3 
deficiency, with arterial thrombosis and stroke syndromes 
[111]. GPX3 deficiency alters ROS metabolism, resulting 
in a pro-thrombotic state and vascular dysfunction, and pro-
motes platelet-dependent arterial thrombosis [111].

These results are corroborated by the correlation found 
between decreased GPX3 activity and arterial thrombosis 
in humans [112]. Starting from idiopathic childhood stroke 
patients, whose clinical manifestations and thrombosis 
were in a familiar GPX3 and NO bioavailability reduction 
[111, 113], the authors hypothesized that mutation(s) or 
polymorphism(s) in the plasma GPX3 gene promoter may 
be responsible for the reduction in enzyme activity and pre-
dispose to a thrombotic disorder. Accordingly, in patients 
with arterial ischemic stroke, a novel GPX3 promoter haplo-
type reduces the gene expression with consequences typical 
of the lack of a crucial antithrombotic and antioxidant key 
enzyme [111, 113]. Of note, mice with embryonic knock-
down of phospholipid hydroperoxide GPX (GPX4), the main 
antioxidant enzyme known to directly inhibit lipid peroxi-
dation by reducing phospholipid hydroperoxides and lipo-
proteins within membranes, exhibit abnormal development 
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of the heart, lacking the left atrium [114]. Interestingly, in 
support to the essential role displayed by this enzyme in 
the development of the cardiac system, Smith et al. [115] 
identified selective mutations of GPX4 as responsible of 
Sedaghatian type of spondylometaphyseal chondrodyspla-
sia (SSDM), a neonatal lethal form of spondylometaphyseal 
dysplasia described as a new autosomal recessive disorder 
in 1980 [116]. Accordingly, SSDM patients die prematurely 
by cardio-respiratory failure [117]. In particular, patients 
present with severe hypotonia and cardiorespiratory prob-
lems, most die within days of birth due to respiratory failure 
and, as showed in an article by Aygun et al. and reference 
therein [117], several patients presented cardiac conduction 
defects, complete heart block and different structural cardiac 
anomalies [38, 115].

While the essential role of TXNRDs and GPXs in the 
heart development and function is well established, promis-
ing results have also been obtained for another selenopro-
tein, MSRB1 [118]. MSRB1, located in the cytosol and 
nucleus, reduces the enantiomer R of methionine sulfoxide, 
R-MetO [119–121]. In 2009, Fomenko et al. [82] found that 
the knock-out of MSRB1 in mice leads to potent oxidative 
stress in several organs, such as liver and kidney that highly 
express MSRB1 under physiological conditions, but to a 
lesser extent in the heart [82].

Glutathione peroxidases and thioredoxin 
reductases contribute to redox regulation 
and cardioprotection in cardiovascular disease

The expression of selenoproteins during cardiogenesis, and 
during/after stressful events, and their antioxidant function, 
is complex and intriguing. In cardiac adaptation to different 
stimuli, the evaluation of selenoprotein expression patterns 
and enzymatic activities under physiological and pathologi-
cal conditions may provide important information about the 
role of this enzyme in counteracting cardiac sufferance [19]; 
above all, a specific role of the selenoproteomic response in 
protecting the heart against stress-induced damage repre-
sents an ambitious goal for basic and translational research.

In this regard, studies by Hoffman et  al. [122], pro-
vided insights in the expression and the enzymatic activ-
ity of key cardioprotective selenoproteins during oxidative 
stress-dependent cardiac stress. In particular, these authors 
reported significant increases of mRNA and protein levels 
of MSRB1 [123], TXNRD1, GPX3 and GPX4 in mouse 
models of T3- or isoproterenol-induced myocardial hyper-
trophy. Along with the results described above showing the 
cardiac abnormalities after genetic disruption of selective 
selenoproteins, these data suggest a significant induction of 
the selenoproteome response to cardiac damage, where some 
selenoproteins seem to be indispensable for cardioprotection 
in circumstances of oxidative injury.

GPXs and TXNRDs are certainly among those antioxi-
dant enzymes most involved in cardiovascular pathologies 
[12–14, 124]. The direct role of GPX1 in myocardial I/R, 
endothelial dysfunction, athero-thrombotic vascular disease, 
and cardiotoxicity induced by chemotherapeutic agents has 
been extensively studied in in vitro and in vivo models [125]. 
Among the many studies related to the cardioprotective 
potential of GPX1, a work published in The New England 
Journal of Medicine by Blankenberg et al. [126] examined 
the protective effect of GPX1 against cardiovascular events 
in a large prospective cohort of patients with coronary artery 
disease. The authors found that low erythrocyte GPX1 activ-
ity [126] identifies patients with coronary artery disease who 
are at the highest risk for cardiovascular events [126]. These 
results indicate that the GPX1 activity assay provides a key 
information for identifying patients who would benefit from 
preventive antioxidant treatment.

In addition to GPX1, GPX3 (plasmatic isoform of GPX) 
also affords heart and vasculature protection against oxida-
tive stress in a NO-dependent mechanism, contributing to 
preserve the platelet function in human arterial thrombosis 
[125]. Noteworthy a recent study carried out by Pastori et al., 
provides novel evidence regarding the association between 
reduced levels of GPX3 and increased risk of cardiovascular 
events in patients with atrial fibrillation. The authors also 
found a negative correlation between age and GPX3 levels, 
proposing the GPX3 decline as a possible mechanism for the 
enhanced cardiovascular risk in the elder population [127]. 
Besides, GPX4 protects lipids from oxidative damage dur-
ing myocardial hypertrophy and I/R injury [125]. Finally, 
the roles displayed by the Trx and TXNRD system in car-
diovascular events have been extensively reviewed, and the 
crucial participation of these redox-regulating and sensitive 
enzymes in the control of various cardiac functions is well 
established.

Cardiovascular effects of the emerging 
endoplasmic reticulum‑resident 
selenoproteins

Selenoprotein S

An important role is played by the ER-associated SELE-
NOS in cardiac function. SELENOS is also located in the 
plasma membrane and is involved in the retro-translocation 
of misfolded proteins from the ER lumen to the cytosol for 
degradation [128], and thus in cell protection against oxida-
tive stress and inflammation, typical events of the misfolded 
protein response [129].

SELENOS seems to be particularly linked to inflam-
matory processes [130, 131]. Variations in the SELENOS 
gene influence the circulating levels of the inflammatory 
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cytokines interleukin 1 beta (IL-1β), interleukin 6 (IL-6) 
and tumor necrosis factor alpha (TNF-α) [130], and the 
SELENOS gene expression is activated by inflammatory 
cytokines [131]. A case-cohort design and time-to-event 
analysis demonstrated that variation in the SELENOS locus 
may be associated with specific risk factors for CVD [132].

In 2013, in a large number of European Americans from 
the family-based Diabetes Heart Study, the association 
between SELENOS genetic variants and the risk for sub-
clinical CVD and mortality in type 2 diabetes patients was 
postulated [133]. Considering the link of SELENOS gene 
variation and inflammatory response, the involvement of 
this selenoprotein in type 2 diabetes and HF should not be 
surprising. Accordingly, an association of SELENOS poly-
morphisms with coronary and carotid calcified plaque, as 
well as with glycemia and glycated hemoglobin (HbA1C) 
was observed [133].

A recent study provides evidence about selective alleles 
of SELENOS gene (i.e. rs34713741T) associated with an 
increased risk of peripheral arterial disease, while other vari-
ants (i.e. rs3877899A) seem to prevent the risk for develop-
ing abdominal aortic aneurysm [134]. Of course, all these 
observations deserve further genetic investigations to better 
clarify the role of this gene and protein in the pathogenesis 
of these diseases.

Selenoprotein K

Another ER transmembrane selenoprotein that appears 
to have multiple biological functions, including cardiac 
influences, is SELENOK. There is evidence that SELE-
NOK mRNA is highly expressed in human heart and that 
its overexpression might reduce ROS production protect-
ing cardiomyocytes from oxidative stress-induced by H2O2 
exposure [135]. In addition, purified human SELENOK has 
been shown to reduce phospholipid hydroperoxides [136]. 
SELENOK, through interaction with other protein factors, 
may participate to the transport of glycosylated misfolded 
proteins and to the regulation of ER stress in particular cell 
types, contributing to ER homeostasis [137, 138]. For this 
reason, the effects observed in cardiomyocytes suggest a 
potential antioxidant action of SELENOK by regulating ER 
stress, a key process highly sensitive to oxidative stress.

On the other hand, Verma et al. found that SELENOK 
is strongly expressed in cells of the immune system, where 
it exerts an important role for their function and activation 
[139]. A knockout mice model for SELENOK revealed 
serious impaired activities of immune response activation, 
including impairment in cell migration, proliferation, and 
oxidative status, particularly evident for macrophages [139, 
140]. It has also been observed that SELENOK deficiency 
inhibits the uptake of modified low density lipoprotein 
(LDL), which may lead to foam cell formation in primary 

macrophages, and inhibits the TNF-α-induced scavenger 
receptor CD36 surface expression [141]. These results sug-
gest the important role of SELENOK in the expression of 
CD36 in macrophages during inflammation, thereby contrib-
uting to foam cell formation and atherogenesis, significant 
inflammatory processes also associated with cardiovascular 
complication [142].

However, the limited number of studies related to SELE-
NOK in the heart, and the lack of in vivo analysis of its car-
diac antioxidant potential warrant further studies to decipher 
its precise cardiovascular implication.

Other endoplasmic reticulum‑resident 
selenoproteins: focus on SELENOT

The results obtained on the cardiac involvement of SELE-
NOS and SELENOK suggest that other ER-resident seleno-
proteins (SELENOM, SELENON, SELENOT, and SELE-
NOF) could be involved in ER homeostasis in the heart.

As critically reviewed by Pitts and Hoffmann [57], these 
selenoproteins are involved in calcium flux modulation into 
and from the ER lumen, in the regulation of protein folding 
and maturation, and in ER redox homeostasis. Through their 
antioxidant activity, displayed by a Sec residue in the active 
site, the ER-resident selenoproteins participate to fundamen-
tal biological processes such as proliferation, survival, and 
apoptosis [57].

Noteworthy, type 2 iodothyronine deiodinase (DIO2), 
a classical type-1 membrane protein residing on the ER 
membrane and the main T4-activating enzyme [143, 144], 
is very sensitive to ER stress [145]. In fact, pharmacologi-
cally induced dysregulation of the ER status triggers a rapid 
loss of DIO2 activity and protein via a posttranscriptional 
mechanism that leads to a decrease in intracellular T3 pro-
duction [145].

However, from a cardiovascular point of view, limited 
results have been obtained so far for this subfamily of sele-
noproteins (particularly for SELENOM, SELENON, and 
SELENOF). Since ER stress (in terms of disrupted ER 
homoeostasis and ER altered functions) is a key process 
regulating death/survival mechanisms of cardiomyocytes 
under several types of stressful stimuli [146], the research 
in this field appears mandatory and may lead to an increase 
of the potential clinical-therapeutic impact.

Several studies indicate that ER stress is involved in the 
development and progression of diverse heart diseases, such 
as cardiac hypertrophy, ischaemic heart diseases and HF 
[146]. In this context, an emerging selenoprotein able to pre-
vent ER-stress is SELENOT. After the discovery of seleno-
protein R (SELENOR), which is currently known as MSRB1 
[147], SELENOT was the second selonoprotein identified 
using a bioinformatic approach [61]. The identification of 
SELENOT as an up-regulated gene during neuroendocrine 
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cell differentiation in response to the neurotrophic factor 
pituitary adenylate cyclase-activating polypeptide (PACAP) 
[148] paved the way for numerous studies. In this regard, the 
critical review by Anouar et al. recently updated the findings 
that have been reported for SELENOT during the last years 
[61]. SELENOT displays a thioredoxin reductase-like enzy-
matic activity [79] and associated with the ER membrane; in 
this subcellular compartment, the protein can interact with 
other thiol-containing proteins through its Sec active moiety 
[60, 62, 148]. These features strongly suggest that SELE-
NOT exerts a key redox function by controlling protein pro-
cessing in the ER, thus contributing to ER homeostasis. In 
particular, through its thioredoxin-like fold, SELENOT may 
take part to the thiol redox circuits including thiol-disulfide 
oxidoreductase reactions and may participate to the regula-
tion of protein folding and maturation [61].

Accordingly, Hamieh et al. reported that SELENOT is 
required for adaptation to the stressful conditions of high 
hormone level production in endocrine cells [62]. Indeed, 
the knockdown of the protein in corticotrope cells resulted 
in an unfolded protein response (UPR), in ER stress and ER 
altered function, thus identifying SELENOT as an indispen-
sable effector of hormone maturation and secretion [62]. In 
the cardiac ER, the protein has been identified by immuno-
fluorescence analysis, and co-localizes with calsequestrin-2 
during rat cardiogenesis [149]. Our work revealed a strong 
expression of SELENOT in the cardiac ER at E7 (embry-
onic day 7) stage of embryogenesis, which decreased at P14 
(post-natal day 14) and disappeared in the adult and mature 
heart. However, in the adult heart exposed ex vivo to 30 min 
of global, no-flow ischemia, followed by 120 min of rep-
erfusion [myocardial ischemia/reperfusion (I/R) model], 
SELENOT expression was significantly induced, suggesting 
a functional re-activation of this protein during an important 
oxidative burst like that generated by I/R [149]. Therefore, it 
is very likely that SELENOT is not required for heart func-
tion under normal conditions, but its expression can be trig-
gered after exposure to I/R injury. An increased SELENOT 
expression was also observed in a neurological context after 
exposure to noxious toxins that are known to induce a potent 
oxidative stress [79], confirming the importance of this pro-
tein in pathological conditions.

Rocca et al. also highlighted an intriguing role for SELE-
NOT in direct cardiomodulation and cardioprotection (2018) 
[149]. The protective role of SELENOT in the context of 
myocardial I/R injury was further evaluated through post-
conditioning I/R protocols using a SELENOT-derived pep-
tide, PSELT (FQICVSUGYR), that encompasses the active 
Sec-containing redox motif (CVSU) [149]. PSELT was able 
to improve the cardiac performance and to reduce the infarct 
size after I/R insult [149]. These effects were strictly related 
to the catalytic motif containing the Sec residue, since an 
analogous peptide lacking this residue did not exert such 

effects [149]. The mechanism that underlies these effects 
consist of the activation of protective pro-survival signalling 
cascades and the inhibition of pro-apoptotic factors [149]. 
Moreover, PSELT decreased ROS and RNS formation [149], 
which are known to be strongly implicated in I/R tissue dam-
age [150, 151]. However, it is still unclear if this is a direct 
or indirect effect of the peptide.

Notably, these findings suggest that SELENOT/PSELT 
could represent a therapeutic tool able to provide an anti-
oxidant protection in individuals at high risk of coronary 
heart disease.

As demonstrated by Grumolato et al. [60] and reviewed 
by Pitts and Hoffmann [57], SELENOT upregulation 
is dependent on cAMP levels and intracellular calcium 
flux during differentiation of pheochromocytoma cells in 
response to PACAP. In addition, these authors found that 
SELENOT plays an important role, via its redox activity, in 
maintaining calcium homeostasis and influencing prolifera-
tion, survival and apoptosis in neuronal and endocrine cells. 
SELENOT can modulate calcium signaling likely through a 
redox mechanism involving thiol groups on calcium chan-
nels and pumps [57, 60, 152].

Future studies to improve the knowledge about the mech-
anism of action exerted by SELENOT in an ischemic heart 
may allow a better understanding of a novel adaptive path-
way by which cardiomyocytes could combat the calcium 
overload in the ischemic heart disease.

A comprehensive picture of the intracellular signaling 
involved in the selenoproteins action in cardiomyocytes is 
represented in Fig. 1.

Role of selenoprotein W

SELENOW is a 85–88 amino acid protein first identified 
in sheep suffering from selenium deficiency [153]. Its sele-
nocysteine residue is located in the N-terminal portion of 
a relatively short functional domain [153] and different 
studies demonstrated a tissue-specific distribution of the 
protein [154]. Indeed, in sheep and primates SELENOW 
is highly expressed in the muscle, heart and brain [154]; on 
the contrary, in cardiac tissues from rodents the levels are 
very low [154]. SELENOW protein levels correlated with 
its mRNA levels but not with tissue selenium concentrations 
[155]. SELENOW is known to play a key antioxidative role 
in many cell types [156–158]. Interestingly, an alteration of 
SELENOW levels is able to influence the mRNA expression 
of other selenoproteins, maybe depending on the amount of 
ROS [159]. In a study performed by Yang et al. [160] on 
chicken embryo myocardial cells, SELENOW was sensi-
tive to Se levels mediating, supposedly, its protective effects. 
Recently, it was found that a reduced Trx expression inhibits 
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SELENOW in chicken cardiomyocytes demonstrating a 
close mutual relationship between these two systems [161].

Selenoproteins as biomarkers 
in cardiovascular diseases

Currently, a molecule is considered to be a biomarker if it 
represents a distinctive indicator of a biological process or 
condition [162]. A link between CVD and selenoproteins 
can be straightforwardly postulated since a relative Se defi-
ciency is detected in different cardiac pathologies [163]. For 
example, the Se deficiency observed in patients with chronic 
HF [164] could be responsible of the inactivation of the sele-
noprotein enzymes TXNRD and GPXs [26]. Conversely, the 
cardiovascular protective effects of Se supplementation in 
populations with low serum levels have been widely dis-
cussed [165].

Owing to their properties, selenoproteins could repre-
sent good markers for cardiovascular pathologies related to 
oxidative stress. This is the case for preeclampsia [166], a 
condition characterized by high blood pressure in pregnancy 
that represents a leading cause of maternal and perinatal 
mortality and morbidity [167, 168]. Presumably, preeclamp-
sia results from a reduced placental perfusion that increases 
ROS levels that, in turn, induce oxidative stress and endothe-
lial cell dysfunction, resulting in hypertension and in the 
typical manifestations of preeclampsia [169]. Under nor-
mal conditions, the antioxidant selenoprotein GPX works by 
limiting these effects, but in preeclamptic women reduced 
plasma levels of Se [170, 171] and of plasma and placental 
GPX levels can be detected [166] and may represent useful 
biomarkers in this contest.

Oxidative stress has a well-known effect also in cer-
ebrovascular events, such as stroke [172]. Reduced serum 
levels of SELENOP can be found in patients who under-
went a stroke and are associated with a higher risk to 

Fig. 1   Proposed model for the action of selenoproteins in cardiomyo-
cytes, focusing on the redox state control in both cytosolic and mito-
chondrial compartments. The mechanism of action of the well-char-
acterized selenoproteins thioredoxin reductase (TXNRD), glutathione 
peroxidase (GPX) and methionine sulfoxide reductase B1 (MSRB1) 
is illustrated. The mechanism of action of the emerging endoplas-
mic reticulum-resident selenoproteins in the heart, based on previous 
studies, is postulated. Selenoproteins are indicated with a yellow box. 
CAT​ catalase, DIO2 iodothyronine deiodinase type 2, GPX4 mito-
chondrial isoform of glutathione peroxidase, GSH glutathione, GSSG 
glutathione disulphide, GSR glutathione-disulfide reductase, H2O2 

hydrogen peroxide, IL-1β interleukin-1β, IL-6 interleukin-6, Met 
methionine, MSRB1 methionine sulfoxide reductase B1, NO nitric 
oxide, O2

· superoxide radical, OH· hydroxyl radical, OH hydroxide 
ion, ONOO− peroxynitrite, PRX peroxiredoxin, RNS reactive nitro-
gen species, ROS reactive oxygen species, SELENOF selenoprotein F, 
SELENOK selenoprotein K, SELENOM selenoprotein M, SELENON 
selenoprotein N, SELENOS selenoprotein S, SELENOT selenoprotein 
T, SOD superoxide dismutase, TNF-α tumor necrosis factor-α, TrxOx 
oxidized thioredoxin, TrxRed reduced thioredoxin, TXNRD2 mito-
chondrial isoform of thioredoxin reductase, UPR unfolded protein 
response
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develop this severe pathology [173]. This finding could be 
ascribed to the fact that SELENOP is the main Se supplier 
to the brain [174], and its decreased levels could reduce 
the protection against ROS through the Se-dependent anti-
oxidant enzymes, leading to increased stroke risk [175]. 
A recent study assessed the plasma levels of SELENOP 
also in patients with metabolic syndrome accompanied by 
a history of CVD [176], and demonstrated that a decrease 

in circulating SELENOP levels also occurs in patients with 
documented CVD [176].

Thus, available data showing the potential use of selo-
noproteins as clinical biomarkers in cardiovascular dys-
function need to be further substantiated, but they already 
represent a promising starting point for translational 
medicine.

In addition, very recently, SELENOP plasma levels 
have been associated to acute MI, more precisely to its 

Table 1   Selenoproteins in cardiovascular diseases

Selenoprotein Localization Biological function Cardiovascular implication

TXNRD1 Cytosol, nucleus [14]. Oxidoreductase activity; antioxidant defense 
[21].

knockout associated with embryonic lethal 
phenotypes; associated with hypertrophy and 
oxidative stress in response to pressure over-
load; implication in cardiovascular diseases 
[19, 73, 124].

TXNRD2 Mitochondria [14]. Oxidoreductase activity; antioxidant defense 
[75].

Involvement in hematopoiesis, heart develop-
ment and heart function; congestive heart 
failure and postnatal death (knockout-model); 
dilated congestive cardiomyopathy (human); 
metabolic and contractile dysfunction [73, 75, 
87, 88, 91].

GPX1 Ubiquitous, cytosol [14]. Oxidoreductase and perodoxidase activities; 
antioxidant defense [14].

Susceptibility to oxidative stress and viral myo-
carditis; acceleration of cardiac hypertrophy 
and dysfunction; increased risk of developing 
congenital cardiac malformation; structural 
abnormalities in vascular and cardiac tissues; 
modest increased risk of coronary artery 
disease; susceptibility to coronary-arterio-
sclerosis; protection against cardiovascular 
pathologies [92–94, 97, 98, 100, 122, 126].

GPX3 Plasma [14]. Oxidoreductase and perodoxidase activities; 
antioxidant defense [14].

Decreased NO bioavailability; platelet activation 
and arterial thrombosis; stroke syndromes; 
control of the tone and the thrombotic proper-
ties of the vascular endothelium

[14, 106, 110–112].
GPX4 Ubiquitous [14]. Oxidoreductase and perodoxidase activities; 

antioxidant defense [14].
knockout associated with embryonic lethal phe-

notypes; abnormal cardiac development; lack 
of the left atrium [73, 114].

MSRB1 Cytosol and nucleus [119]. Oxidoreductase activity; antioxidant defense 
[14].

Contribution to the redox control in several 
organs, but to a lesser extent in the heart [119].

SELENOS Endoplasmic reticulum; 
plasma membrane [128].

Retro-translocation of misfolded proteins; 
antioxidant defense; endoplasmic reticulum 
stress response [128].

Association with specific risk factors for 
cardiovascular diseases; risk for subclinical 
cardiovascular diseases and mortality in type 
2 diabetes; coronary and carotid calcified 
plaque; risk of peripheral arterial disease 
[132–134].

SELENOK Endoplasmic reticulum [135]. Antioxidant defense; regulation of endoplas-
mic reticulum stress [135–138].

Association with impaired activities of immune 
response activation; atherogenesis; inflamma-
tion in cardiovascular diseases [139, 142].

SELENOP Plasma [14]. Se transport; antioxidant defense [175]. Correlation with metabolic syndrome and car-
diovascular disease [176, 177].

SELENOT Endoplasmic reticulum [60]. Antioxidant defense; intracellular Ca2+ regula-
tion; regulation of endoplasmic reticulum 
stress [60, 62, 79].

knockout associated with embryonic lethal phe-
notypes; increased expression in the cardiac 
embryogenesis; sensor of myocardial ischemia 
damage [79, 80, 149].

SELENOW Cytosol [52]. Antioxidant defense [153]. Myocardial oxidative damage [159].
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related inflammatory response and mortality in patients 
with cardiogenic shock [177]. In this pathological condi-
tion SELENOP levels increase in a significative manner 
and correlate with C-reactive protein levels, an inflam-
matory marker, suggesting its diagnostic potential in this 
context [177].

In Table 1 is reported a schematic representation of the 
major implications of selenoproteins in cardiovascular 
diseases.

Conclusions

Oxidative stress, due to increased ROS production or 
reduced ROS detoxification, is one of the leading causes 
of the onset and the progression of cardiovascular diseases. 
Potent endogenous antioxidant systems, such as selenopro-
teins, represent a fundamental defense mechanism able to 
counteract the detrimental effects of these noxious agents. 
Recent studies of the ER-resident selonoproteins, in particu-
lar SELENOT and its derivative peptide PSELT, pave the 
way for a possible therapeutic application in the ischemic 
heart, as post-conditioning agents. Further studies are 
needed to better clarify and describe the clinical potential 
of selenoproteins both as drugs and biomarkers, but the 
existing information already indicates that they represent 
promising factors in this field.
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