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Abstract
Technological breakthroughs in genomics have had a significant impact on clinical therapy for human diseases, allowing us 
to use patient genetic differences to guide medical care. The “synthetic lethal approach” leverages on cancer-specific genetic 
rewiring to deliver a therapeutic regimen that preferentially targets malignant cells while sparing normal cells. The utility of 
this system is evident in several recent studies, particularly in poor prognosis cancers with loss-of-function mutations that 
become “treatable” when two otherwise discrete and unrelated genes are targeted simultaneously. This review focuses on 
the chemotherapeutic targeting of epigenetic alterations in cancer cells and consolidates a network that outlines the interplay 
between epigenetic and genetic regulators in DNA damage repair. This network consists of numerous synergistically acting 
relationships that are druggable, even in recalcitrant triple-negative breast cancer. This collective knowledge points to the 
dawn of a new era of personalized medicine.
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Abbreviations
HR	� Homologous recombination
NHEJ	� Non-homologous end joining
MMEJ	� Microhomology-mediated end joining
HDAC	� Histone deacetylase
HDAC	� Histone deacetylase inhibitor
DSB	� Double-stranded DNA break
PARP	� Poly (ADP-ribose) polymerase
PARPi	� Poly (ADP-ribose) polymerase inhibitor
PRC	� Polycomb repressive complex
miRNA	� Micro-RNA
siRNA	� Small interference-RNA
LncRNA	� Long non-coding RNA
RNAi	� RNA interference

H3K4	� Histone H3 lysine 4
H3K4me	� Methylated histone H3 lysine 4
H3K27me	� Methylated histone H3 lysine 27
H3K36me	� Methylated histone H3 lysine 36
SAHA	� Suberoylanilide hydroxamic acid
PARylation	� Poly ADP ribosylation

Introduction

Anti-cancer chemotherapy reached a critical juncture in recent 
years, with the realization that subtle genetic variations could 
be leveraged to create better and more targeted therapies, with 
improved patient care and fewer adverse effects. The advent 
of powerful genetic tools, such as next-generation sequencing, 
allowed for correlations between chemotherapeutic responses 
and specific genetic backgrounds. Chemotherapeutic agents to 
this point—developed more than 50 years ago—were first-gen-
eration drugs that preferentially targeted actively proliferating 
cells, which were presumed to be cancerous. This presumption 
was based on the knowledge that most normal somatic cells are 
predominantly quiescent, with the exception of progenitor cells 
at sites subjected to constant abrasion, such as cells in the skin, 
hair follicles, bone marrow, and digestive tracts, which require 
continual replacement. Consequently, these normal, highly pro-
liferative regions are also targeted by anti-cancer drugs, leading 
to significant side effects for the patient.
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This awareness, along with the knowledge that the “one-
size-fits-all” approach to cancer treatment was not univer-
sally beneficial [1, 2], led to more recent objectives toward 
personalized or precision medicine. This coincided with 
the advent of powerful genetic tools, such as next-genera-
tion sequencing, which provided opportunities to correlate 
chemotherapeutic responses with specific patient genetic 
backgrounds. Indeed, the identification of specific genetic 
polymorphisms in cancers were proposed to serve as not 
only prognostic or diagnostic markers, but as targets for can-
cer treatment regimens [3, 4]. Recognizing the power of this 
approach, various medical establishments initiated consorted 
efforts to streamline genomic acquisition toward precision 
medicine for chemotherapeutic success [5, 6].

One of the most significant discoveries in personalized 
medicine arose from the findings of oncogenic addiction. 
First proposed almost two decades ago [7], oncogenic addic-
tion describes how tumors rely on cancer-specific, oncogenic 
proteins that arise from genetic instability events for their 
survival and growth. For example, in most patients with 
chronic myelogenous leukemia (CML; [8]), chromosomal 
translocation between chromosomes 9 and 22 leads to the 
formation of a new chromosome 22 (Philadelphia chro-
mosome), which contains the BCR-ABL fusion gene [9]. 
Chromosomal translocations occur in response to numerous 
DNA double strand breaks (DSBs) that are misjoined rather 
than repaired, resulting in the formation of aberrant chro-
mosomes. The later development of the Imatinib tyrosine 
kinase inhibitor against the BCR-ABL fusion product revo-
lutionized the field, with significant improvement in patient 
responses and survival rates, raising the hope that protein 
kinase inhibitors would also act as “magic bullets” for other 
cancer types. However, aberrations deriving from chromo-
somal changes account for only a small fraction of malig-
nancies [10–12], and alternative approaches are required for 
most patients.

The synthetic lethality approach 
in personalized medicine

About 100 years ago, the study of gene–gene interactions 
in budding yeasts and fruit flies revealed a phenomenon 
referred to as “synthetic lethality” [13], which described a 
loss of cell viability following the concurrent disruption of 
synergistically acting genes, but not either gene alone [13, 
14]. The concept of synthetic lethality has since found appli-
cations in cancer therapy, taking advantage of the changes in 
cellular rewiring that occur in response to altered or mutated 
gene expression to invoke new vulnerabilities. Conceptually, 
the same addiction/dependency unique to cancer cells that 
presents through genetic rewiring can be leveraged to kill the 
cancer cells, posing minimal side effects to the normal cells 

that lack these rewired networks or mutations. This is best 
exemplified in BRCA1/BRCA2-deficient cells in ovarian 
and breast cancers. These BRCA-deficient cells are defec-
tive in homologous recombination (HR) and must rely on the 
less-stringent non-homologous end joining (NHEJ) for the 
repair of DNA DSBs. This dependency renders the cells sus-
ceptible to inhibitors against poly (ADP-ribose) polymerase 
(PARP), a nuclear enzyme that aids in the detection of DNA 
damage and is involved in end-joining, including NHEJ [15, 
16]. The loss of both genes results in an accumulation of 
replication defects and causes cell death. The successes that 
ensued from PARPi in BRCA-deficient cancer cells led to 
the search for other targeted approaches against a range of 
gain-of-function and loss-of-function mutations hitherto 
considered to be undruggable [14].

There are three key scenarios where the synthetic lethal 
approach can be leveraged (Fig. 1): (1) where two genes are 
exclusive, key members of an essential protein complex. For 
example, BRG1 and BRM are two mutually exclusive cata-
lytic subunits of the chromatin remodeling switch/sucrose 
non-fermentable (SWI/SNF) complex, which is increas-
ingly implicated in cell survival in several cancer types [17, 
18]. BRM and BRG1 are frequently inactivated in kidney, 
ovarian, and lung cancers, and a recent study shows that 
targeting BRG1 in BRM-deficient cells in lung cancer is 
synthetic lethal, reminiscent of the BRCA/PARP scenario 
in breast and ovarian cancers (Fig. 1a). (2) Where there is 
a dependency on a specific pathway for survival following 
an inactivating mutation that occurs in a parallel regulatory 
mechanism (Fig. 1b). For example, ataxia telangiectasia 
(ATM) and ataxia telangiectasia and Rad3-related (ATR) 
both transmit DNA damage signals to activate a checkpoint 
kinase [19, 20]. Loss-of-function mutations in ATM are 
commonly found in cancers, and predispose cells to uncon-
trolled growth [21]. Treatment of ATM-deficient cells 
with ATR inhibitors can lead to synthetic lethality in lung 
adenocarcinoma, gastric cancer and mantel cell lymphoma 
[22–24]. (3) Finally, where a repressor protein keeps an anti-
survival pathway in check. For example, BAG1 keeps in 
check the route to MYC-induced apoptosis. Thus, its down-
regulation in conjunction with MYC overexpression would 
induce apoptosis (Fig. 1c) [25].

Yet, identifying which targets can be used in synthetic 
lethal combinations is not straightforward. There has been 
much effort invested into performing synthetic lethal screens 
using siRNA libraries to search for targetable factors. One 
example is TAK1/MAP3K7 kinase, which was identified 
through a siRNA-mediated screen for factors that, when 
downregulated, enhanced the potency of the topoisomer-
ase I inhibitor, camptothecin. The downregulation of TAK1 
resulted in breast cancer cell death in conjunction with the 
LMP-400 Top1 inhibitor [26]. However, screens are costly 
and can be technically challenging. Model organisms such 



3383Targeting epigenetics using synthetic lethality in precision medicine﻿	

1 3

as yeast are also used as an alternative first-line screening 
option [27, 28]. Indeed, using the fission yeast model organ-
ism, we previously showed that vacuolar ATPase acts along-
side the ABC drug-transporter multidrug resistance protein 
1 (MDR1; also known as p-glycoprotein) to sensitize cells to 
doxorubicin, a topoisomerase II inhibitor [29, 30]. Doxoru-
bicin also induces cell death when delivered with a histone 
deacetylase inhibitor in fission yeast [28]. Although DNA 
damage response pathways remain one of the most—if not 
the most—useful pathways for inducing synthetic lethality 
in cancer cells, recent findings point to leveraging the co-
operation between epigenetic regulators of chromatin archi-
tecture and canonical cancer-related signaling mechanisms 
to induce cell death.

Epigenetic dysregulation in cancer

Epigenetic regulation involves genomic alterations that are 
independent of changes in DNA sequences [31, 32]. The 
genome can be epigenetically regulated through chemi-
cal modifications to the scaffolding histone proteins [33] 
and DNA nucleotide bases [34]; through altered nucleoso-
mal spacing [35, 36]; and via post-translational regulation 
of transcribed templates, mediated by RNA interference 
(RNAi) mechanisms with non-coding small RNAs (e.g., 
microRNAs [miRNAs] or small interference-RNA [siRNA]) 
[37, 38]. Long non-coding RNA (LncRNA) can also affect 
the localization and activity of chromatin enzymatic com-
plexes in conjunction with histone and DNA modifications 
[39–41]. These epigenetic regulations, in turn, affect DNA 
metabolic pathways such as gene transcription, chromosomal 

segregation mechanisms, and DNA replication, recombina-
tion, and the damage detection/repair [31, 33, 35].

Except when mutated, DNA sequences remain 
unchanged. In contrast, the epigenetic status can be remod-
eled in accordance with environmental cues and growth 
signals [42, 43], which are stably and faithfully maintained 
across cell generations [44–46]. This level of plasticity 
makes epigenetic regulation ideal to maintain developmen-
tal fate, as observed in dosage compensation, X-inactivation, 
and genomic imprinting [31]. Epigenetic dysregulation is 
thus often associated with or drives the development of 
human disease, particularly cancer, with different stages of 
oncogenesis liable to epigenetic control [47, 48]. Epigenetic 
abnormalities may, therefore, underlie cancer-specific phe-
notypes and represent targetable, molecular vulnerabilities 
for cancer therapy using the synthetic lethality approach.

Epigenetic aberrations caused by gene fusion (chromo-
somal translocation) can give rise to tumor-specific fusion 
products and resemble cancers with gain-of-function muta-
tions that lead to oncogenic addiction. For instance, fusion 
between the transcriptional activation domain of NUP98 
with the methylated histone H3 lysine 4 (H3K4)-binding 
domain of the H3K4 demethylase JARID1 underlies a sub-
set of acute myeloid leukemia [49, 50], causing aberrant 
transcription of the homeobox genes that maintain stemness 
in bone marrow cells. Like many other fusion products and 
gain-of-function mutations, fusion events between epi-
genetic regulators are rare, and this has discouraged the 
pursuit of inhibitors for therapies against such aberrations. 
Yet, recurrent loss-of-function mutations in epigenetic 
regulators, particularly in histone modifiers and chromatin 
remodeling factors [51–57], have been useful in the stratifi-
cation of tumors [58, 59] and employed in synthetic lethality 

Fig. 1   Genetic interactions that can contribute to a synthetic lethal 
relationship. The concurrent inactivation of two factors in the genetic 
relationship can result in cumulative functional inactivation or cell 
death. a BRG1 and BRM are mutually exclusive subunits of a com-

plex. b ATR and ATM act synergistically to sense DNA damage, an 
important process that maintains genomic stability in the cell. c The 
repressor protein BAG1 inhibits an anti-proliferative apoptotic mech-
anism that counteracts proliferation induced by the Myc oncoprotein
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approaches to target cancer cell viability. Below, we will 
explore how chromatin remodeling and histone modification 
pathways have been targeted in the treatment of cancer using 
the synthetic lethality approach.

Epigenetic dysregulation as a basis 
for synthetic lethality

Chromatin remodeling

The chromatin structure—repeating nucleosome units of 
DNA wound around histone proteins—represents the first-
line of defense against agents that threaten to undermine the 
integrity of DNA. Indeed, the loss of nucleosomal integrity 
leads to a substantial increase in chromosomal breaks [60, 
61]. Yet, DNA sequences must be readily accessible to inter-
act with protein machineries during replication, repair and 
recombination.

DNA damage can be caused by a range of exogenous (UV 
exposure, ionizing radiation, chemical exposure and cyto-
toxic drugs) and endogenous (errors in replication, sponta-
neous deamination, oxidation and methylation changes) fac-
tors, and the cell employs various processes to circumvent or 
repair damage. Chromatin remodeling complexes, for exam-
ple, hydrolyze ATP to overcome the energy barrier to slide, 
reposition via disassembly, and replace histone octamers on 
the DNA template [35, 36]. The SWI/SNF complex is one 
of several conserved chromatin-modifying complexes that 
uses ATP hydrolysis to mobilize nucleosomes and remodel 
chromatin. Mutations in the SWI/SNF complex have been 
found in genomic studies in multiple cancers [62, 63]. First 
identified in budding yeast and subsequently shown to be 
conserved in human cells, the SWI/SNF complex hosts 
two mutually exclusive DNA-dependent ATPases: BRG1/
SMARCA4 and Brahma/BRM/SMARCA2 [35, 36]. The 

loss of BRM or BRG1 is commonly found in kidney, ovar-
ian, and lung cancers [63–66]. Recent ChIP-seq efforts 
revealed colocalization of BRM and BRG1 on overlapping 
set of genes in the TNFα–NFκB pathway. These genes are 
transcriptionally co-regulated by SWI/SNF factors [67], and 
are targeted by hypoxia-induced transcription factor [68] and 
growth factors [69]. BRM and BRG1 can also differentially 
interact with RB and p53, checkpoint proteins that regulate 
progression within the cell cycle [70, 71].

A recent unbiased shRNA screen in > 50 cancer cell lines 
showed that BRG1/SMARCA4-mutant cancer cells are 
highly sensitive to BRM/SMARCA2 depletion [18]. Indeed, 
in BRG1-deficient non-small cell lung cancer (NSCLC) 
cells, BRM depletion can attenuate cell growth [17]. BRG1 
and BRM thus likely constitute mutually exclusive catalytic 
subunits of different sub-populations of the SWI/SNF com-
plex required for essential cellular processes, such as tran-
scription [67, 72] (Fig. 2).

The SWI/SNF complex also contains the AT-rich inter-
active domain 1A and 1B (ARID1A and ARID1B) subunit 
pair, which are also implicated in cancer. Like BRM and 
BRG1, ARID1A and ARID1B also seem to be alterna-
tively expressed and mutually exclusive [73]. ARID1A is 
frequently mutated in cancers, with ~ 57% of ovarian clear 
cell carcinomas (OCCC) associated with ARID1A muta-
tions [63, 74–76]. ARID1B, on the other hand, is associated 
with only minor perturbations to chromatin accessibility fol-
lowing its knockdown in colorectal cancer cells [77], and 
mutations have been detected in liver cancer, neuroblastoma, 
and melanoma [55, 78, 79]. There is also a report of the co-
occurrence of ARID1A and ARID1B mutations in ovarian 
cancer [80]. Although ARID1B plays a less significant role 
in the SWI/SNF complex, it compensates for the absence of 
ARID1A function, and thus presents a specific vulnerability 
in cancers with ARID1A mutations [81]. Knocking down 
ARID1B in ARID1A-deficient cells increases chromatin 

Fig. 2   Mutually exclusive 
‘sibling’ subunits; for example, 
within SWI/SNF chromatin 
remodeling and polycomb 
repressive complex, PRC2. a 
SWI/SNF complex contains 
either one of the ATPase 
counterparts BRG1 or BRM; 
or b ARID1A or ARID1B. c 
PRC2 complex contains either 
one of the two enhancer of zeste 
homologues EZH1 or EZH2 
catalytic subunits. Concurrent 
downregulation of both ‘sibling’ 
factors renders the complex 
inactive and results in synthetic 
lethality (SL)
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accessibility, especially at enhancer sequences, to control 
the binding of transacting factors [77]. The mutually exclu-
sive occurrence of ARID1A and ARID1B, therefore, results 
in specific “subtypes” of the SWI/SNF complex that control 
nucleosomal spacing, which is essential for the control of 
cellular events, such as the transcription of important genes; 
these subtypes of SWI/SNF complexes (containing different 
ARID1 subunits) could, therefore, be leveraged for synthetic 
lethal targeting (Fig. 2).

Modifying enzymes of histones

Histone H3 lysine 27 methylation

Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit 
of the polycomb repressive complex 2 (PRC2), a histone-
lysine N-methyl transferase that primarily trimethylates his-
tone H3 at lysine 27 (H3 K27me) to silence developmental 
genes in metazoans [82]. Mutations in EZH2 have been 
detected in multiple cancers and are associated with poor 
prognosis, whereas mutations in the core components of the 
PRC2 (EED and SUZ12) are found in nerve sheath tumors 
[83–92]. Previous work has shown that inhibition of EZH2 
activity and downregulation of EED and SUZ12 can counter 
tumor growth; this strongly suggests an oncogenic driver 
role for the PRC2 complex [93, 94], and EZH2 as a potential 
therapeutic target [93, 95–98]. Furthermore, the dual inhibi-
tion of EZH1 and EZH2—as mutually exclusive catalytic 
subunits of PRC2—offers greater anti-tumorigenicity than 
inhibiting EZH2 alone [99] (Fig. 2).

OCCC is an aggressive form of ovarian cancer that shows 
poor prognosis and is refractive to the canonical cisplatin-
based chemotherapeutic regimens [100, 101]. Sequencing 
of OCCC revealed that up to 57% of tumors bear ARID1A 
mutations, and a shRNA-based screen further showed that 
inhibition of EZH2 can destabilize ARID1A-deficient 
OCCC by suppressing the PI3K-AKT pathway to reduce 
cell growth and induce apoptosis [76]. This synthetic lethal 
strategy advances the therapeutic hope surrounding this 
largely incurable cancer. The same approach of targeting 
EZH2 can be used in cancers that are deficient in other subu-
nits of the SWI/SNF complex [102] (Fig. 2). For example, 
EZH2 inhibition can significantly increase the susceptibility 
of BRG1-deficient lung cancer cells to a topoisomerase II 
inhibitor [103].

H3K27me recruits a PRC1 complex comprising BMI1 
(B cell specific, Moloney murine leukemia virus integra-
tion site 1). This subunit is implicated in stem cell renewal 
and may act as a cancer-initiating factor because of its tel-
omerase-activating and senescence-suppressing activities. 
Recent work [104, 105] notes that the concurrent downregu-
lation of BMI1 and EZH2 can be used against glioblastoma 
tumors, suggesting that PRC1 and PRC2 may not simply act 

sequentially in the same epistatic pathway, but are involved 
in some non-overlapping roles as part of a much more com-
plicated network.

Histone H3 lysine 36 methylation

Histone H3 lysine 36 methylation (H3K36me) facilitates 
a wide range of cellular processes, including transcription 
and splicing, and recent studies have focused on the con-
nection between this histone modification and the detection 
and repair of DNA damage [106, 107]. The histone meth-
yltransferase SETD2, which trimethylates H3K36, is com-
monly mutated in cancer [57, 108–110], suggesting a tumor 
suppressor role for the protein [107]. It also has potential 
prognostic value in cancers like gastric cancer, renal cancer, 
and leukemia [111–113]. Targeting other loss-of-function 
mutations in association with a SETD2 mutation, while 
challenging, could be approached using synthetic lethality. 
Pfister et al. reported that H3K36me-deficient cancer cells 
and SETD2-attenuated xenografts show preferential suscep-
tibility toward an inhibitor of the Wee1 kinase, which sup-
presses cyclin-dependent kinase (CDK). SETD2 disruption 
downregulates the RRM2 ribonucleotide reductase (RNR) 
subunit, which, when combined with Wee1 inhibition (acti-
vating CDK and repressing RRM2), causes cells to enter 
into and arrest in S-phase. Cells that linger in S-phase are 
induced to undergo apoptosis [114] (Fig. 3).

SETD2 also methylates other targets that affect cancer 
development; for example, the oncogenic signaling factor 
STAT1 [115] and tubulin for cytoskeleton remodeling [116, 
117]. These findings add more complexity—but also oppor-
tunities—to exploit SETD2 inhibition in the synthetic lethal 
targeting of cancers.

Histone H2AX phosphorylation and other chromatin 
modulations in DNA damage response—PARP and BRCA 
at center stage

The formation of DNA DSBs is the most detrimental type 
of DNA damage that can threaten genomic stability and 
cell viability. Upon detection of a break, cells activate sig-
nal transduction via the phosphorylation of histone H2AX 
(γH2AX) primarily by two DNA damage checkpoint sign-
aling kinases—ATM and ATR. γH2AX is detectable over 
a long stretch of chromatin encompassing the break site, 
and this is thought to amplify the damage signal and recruit 
DNA damage repair factors [118]. ATM and ATR exist syn-
ergistically, and their relationship can be exploited to induce 
synthetic lethality when following attenuation of other DNA 
damage repair pathway regulators, such as topoisomerase I 
and DNA polymerase δ [119–121].

Through chemical screens for γH2AX-interacting factors, 
several studies have identified that both 53BP1, a DSB repair 
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factor, and MDC1, a signaling kinase substrate of ATM, 
interact with γH2AX via their BRCT domains [122–124]. 
These factors direct the recruitment of downstream DNA 
repair factors—BRCA1, Rad51 and the NBS component, 
Mre11—to regulate HR repair [125–128]. 53BP1, however, 
is also associated with NHEJ at specific chromosomal loci, 
and it appears that stabilization of 53BP1 is associated with 
an increase in NHEJ, which is observed when the chromatin 
remodeler CHD1 is downregulated in prostate cancer cells 
[129, 130] (Fig. 3).

Even though direct targeting of γH2AX is not commonly 
employed in cancer strategies, the loss of its downstream 
effector, BRCA, predisposes cells to become susceptible 
to PARPi, and this understanding exposes the prominent 
“Achilles’ heel” in ovarian and breast cancers that could 
similarly be exploited for other cancers. Indeed, a similar 
synergistic relationship is apparent for Rad51C with PARPi 
[15, 16, 131]. Thus, the use of PARPi in situations with HR 
attenuation is currently actively translated for clinical treat-
ments in combination with conventional DNA damaging 
chemotherapeutics [132–134].

Unfortunately, despite the success of PARPi in BRCA-
deficient cells, numerous parallel signaling pathways in 

cancer cells can confer chemoresistance toward PARPi. For 
example, activation of a backup DNA end resection pathway 
can bypass the early step of Rad51 recruitment coordinated 
by BRCA proteins [135, 136]. One of these is the repres-
sion of Rad51 accumulation by REV7, a translesion syn-
thesis (TLS) polymerase ζ component, which is recruited 
by γH2AX independently of polζ, but requires a physical 
interaction with 53BP1. Enhancing the role of REV7 down-
plays HR and, in combination with PARPi, results in syn-
thetic lethality thus proposing the usefulness of an agonist 
of REV7 to effect synthetic lethal targeting in cancer cells 
[137, 138] (Fig. 3).

HR repair also acts in parallel with the error-prone 
microhomology-mediated end joining (MMEJ) or alterna-
tive NHEJ (alt-NHEJ, or alternative end joining [alt-EJ]) 
catalyzed by polymerase θ (Polθ), which is encoded by the 
POLQ gene [134, 139–144]. Polθ downregulation results 
in a heavier reliance on HR activity through the release of 
RAD51 protein, which can be sequestered upon physical 
binding to a RAD51-binding motif on Polθ [142]. Consist-
ently, the loss of Polθ function in HR-deficient epithelial 
ovarian cancer cells and BRCA​−/− mouse embryonic fibro-
blasts results in synthetic lethality [141, 142]. Translocation 

Fig. 3   The genetic–epigenetic interplay involved in cell cycle regu-
lation and DNA damage repair. Cell cycle regulators are in dark 
blue (WEE1, CDK, RNR, RB), DNA repair factors in red (BRCA, 
53BP1, MRE11, NBS); chromatin remodeling factors in grey (CHD1, 
BRG1), DNA polymerase-linked factors in yellow (Polθ and REV7), 
nucleosomes in beige, and chromatin-modifying proteins in light blue 
(HDAC, PARP1, SETD2, MLL) Flags indicate histone modifications 
that include phosphorylation (Ph) of histone H2AX (γH2AX), meth-
ylation (Me) of histone H3 lysine 4 (H3K4) and histone H3 lysine 
36 (H3K36). Many regulators of homologous recombination repair 

(HR) and non-homologous end joining (NHEJ) and microhomology 
end joining (MMEJ) show synthetic lethal relationship with BRCA 
proteins. Abbreviations: R.F. replication fork; Ac acetyl group; RNR 
ribonucleotide reductase; CDK cyclin-dependent kinase; RB ret-
inoblastoma protein; HDAC histone deacetylase; PARP1 poly (ADP) 
ribose polymerase 1; MLL mixed lineage leukemia; NBS Nijmegen 
Breakage Syndrome; Polθ polymerase θ. Double-headed maroon 
lines indicate interconnecting factors that showed synthetic lethality 
or suppression upon downregulation. Blue lines represent an induc-
tion (positively regulating) and repression (negatively regulating)
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of Polθ on chromatin can also facilitate the removal of sin-
gle-stranded DNA-stabilizing Replication Protein A (RPA) 
complex from resected DSBs to expose stretches of homol-
ogy for annealing and subsequent joining by MMEJ [145]. 
Thus, in cells with altered HR activity, MMEJ can overcome 
the effect of PARPi. However, the additional use of a Polθ 
inhibitor could potentially prevent this route of chemoresist-
ance (Fig. 3).

Unexpectedly, the simultaneous loss of PARP and BRCA 
function can lead to synergistic viability [146, 147]. A con-
siderable proportion of the damage found in BRCA-deficient 
cells is due to disrupted replication fork stability, which can 
be strengthened by preventing the recruitment of MRE11 to 
degrade nascent DNA at the fork. This is sufficient to restore 
viability to BRCA-deficient cells even in the presence of 
PARPi and platinum-based agents. However, MRE11 
recruitment relies on several histone modifications at the 
replication fork, including H3K4me and poly ADP-ribosyla-
tion (PARylation) [148, 149]. Therefore, the downregulation 
of MLL3/4 H3K4 methyltransferase complex combined with 
PARPi treatment can suppress the growth defect in BRCA-
deficient cells [146, 147] (Fig. 3). As a result, the sequence 
of inactivation of PARP and BRCA function is important, 
rendering either a synthetic lethal (BRCA inactivation before 
PARP inactivation) or rescue phenotype [147]. This observa-
tion profoundly impacts the chemotherapeutic application 
of PARPi. Although the inhibitor would be efficacious in 
a total loss-of-function BRCA​−/− background, most BRCA 
mutations do not result in total loss of function. Thus, the 
pharmacokinetics of PARPi and the administration sequence 
must be carefully considered for the efficacy of this approach 
and, in some cases, BRCA function must be downregulated 
before that of PARP. Furthermore, the extent of functional 
impairment to BRCA genes is conceptually important, as a 
deletion that removes the bulk of its BRCT and DNA bind-
ing domains still retains HR competency. Thus, the type of 
BRCA mutation in patients may reliably predict the efficacy 
of PAPRi-based regimens [150].

Histone acetylation will also affect the efficacy of 
PARPi. In vitro experiments have shown that PARylation 
can occur preferentially on acetylated histones [149]. His-
tone acetyltransferases (HAT) and deacetylases (HDAC) 
play essential roles not only in gene transcription (e.g., 
in the transcription of the chief oncogene, MYC [151]), 
but also in DNA damage repair, and inhibitors of these 
enzymes can induce cancer cell death. HDAC inhibi-
tors (HDACi), such as suberoylanilide hydroxamic acid 
(SAHA), are approved for chemotherapy against cutane-
ous lymphoma [152–154]. HDACi sensitize cancer cells 
toward many DNA damaging chemotherapeutic drugs, 
presumably by inducing an opened chromatin conforma-
tion to facilitate DNA access or by impeding cell cycle 

progression by disrupting DNA replication integrity. Thus, 
HDACi can act in a synthetic lethal manner with other 
DNA aberrations (drug-induced or otherwise) to induce 
apoptosis [28, 152, 155, 156]. Unexpectedly, HDACs 
were recently shown to positively regulate several key HR 
genes, and HDAC inhibition was found to dampen HR and 
enhance the susceptibility of triple-negative breast cancer 
cells towards PARPi [157] (Fig. 3). This insight and others 
highlight the need to fine-tune therapeutic applications of 
HDACi for specific patients and in other types of cancers.

There is a pressing need for a more comprehensive 
understanding of the interactive network between PARPi 
and BRCA genes and their role in anti-cancer therapy 
[158]. The links between epigenetic and genetic factors in 
governing pathway choices is complex and likely enriched 
by synergistically acting factors (Fig. 3). Collectively, 
these studies have highlighted the options for targeted 
therapy and offer potential treatment regimens for cancers, 
including triple-negative breast cancers, which have been 
problematic to treat up to now.

Concluding remarks

Technology that permits whole-genome interrogation 
brings forth the dawn of precision medicine, allowing 
links to be made between previously disconnected factors 
within the global gene network. This also excites the pos-
sibility of targeting the epigenetic mechanisms that affect 
the entire genome. First-generation epigenetic drugs tend 
to be toxic and associated with significant side effects. 
However, a better understanding of the networks involved 
should help in the selection of more applicable drugs and 
sidestep the off-target effects seen with drugs that targets 
cells based on proliferation. Furthermore, experimental 
successes in cultured cells or animal models must be fur-
ther scrutinized in primary human normal and cancerous 
cells; these largely intractable models await further gene-
editing breakthroughs. However, with the success of the 
synthetic lethality approach in targeting once-intractable 
cancers, there is a high hope of customized and personal-
ized treatment strategies for patients, and it will be exciting 
to see the development in this field in the coming years.
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