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Abstract
Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding 
antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules 
of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch 
directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942–4954, 2011; Roostalu et al., 
Science 332:94–99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus 
of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential 
intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus 
end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role 
of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several 
laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants 
that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus 
end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain 
kinesin-5 motors to switch directionality when moving along MTs.
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Introduction

The precise segregation of chromosomes during mitosis 
is essential for maintaining genetic integrity and prevent-
ing defects that can lead to chromosome instability and 
cancer. Lower eukaryotes such as fungi, divide by closed 
mitosis in which the nuclear envelope remains intact, while 
higher eukaryotes, such as metazoans, undergo open mitosis 
in which the nuclear envelope breaks down (reviewed in 
[1–4]). Chromosomes are segregated by the mitotic spindle, 
an intracellular microtubule (MT)-based bipolar structure. 
MTs are comprised of αβ-tubulin heterodimers which are 

assembled into thirteen parallel protofilaments and exhibit 
dynamic instability manifested in alternating growth and 
shrinkage phases occurring primarily at the MT plus end, 
terminating with a β-tubulin subunit [5, 6]. Within mitotic 
spindles, MTs are arranged in an antiparallel bipolar array, 
emanating from the centrosomes or spindle pole bodies 
(SPBs) in yeast, with their minus ends concentrated at the 
SPBs.

Three types of MTs are found in the eukaryote spindles, 
with each exhibiting different architecture and function 
(Fig. 1), as reviewed previously [7, 8]. Kinetochore MTs 
(kMTs) capture kinetochores (protein structures where 
MTs attach to chromosomes) at their plus ends and control 
chromosome movement within the spindle [9, 10]. Astral or 
cytoplasmic MTs (cMTs) are captured at specific sites on the 
cell cortex and facilitate spindle positioning [11–13]. Inter-
polar MTs (iMTs) which span the two spindle poles overlap 
in an antiparallel array in the middle region of the spindle, 
termed the midzone [14–16]. iMTs are tightly focused in 
parallel arrays near the poles, as recently reviewed [8].
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To properly segregate the genetic material, the mitotic 
spindle undergoes extensive morphological changes that 
are regulated and coordinated temporally and spatially in 

each mitotic cycle. The bipolar spindle is assembled through 
the separation of the two centrosomes or SPBs from their 
initial position close to one another to their final location, 

Fig. 1   Schematic representation of the major roles of kinesin-5 
motors in mitotic spindle dynamics. a Spindle-pole (SP) separation 
during spindle assembly in open and closed mitosis [150]. Kinesin-5 
motors provide the spindle pole-separating forces by crosslinking and 
sliding antiparallel spindle MTs apart. The minus end-directed motor 
dynein (yellow shape) contributes to spindle-pole separation in cells 
dividing via open mitosis only [151, 152]. The direction of move-
ment of the kinesin-5 motors and the spindle poles are indicated by 
the blue and brown arrows, respectively. b Metaphase, bipolar mitotic 
spindles with chromosomes congressed at the middle of the spindle. 
Three types of MTs, kinetochore MTs (kMTs, purple), astral or cyto-
plasmic MTs (cMTs, pink) and interpolar MTs (iMTs, light blue), are 
indicated by different colors. At metaphase, the chromosomes appear 
as pairs of sister chromatids that align in the middle of the spindle 
and are attached to kMTs by their kinetochores. Kinesin-5 motors 
crosslink antiparallel iMTs at the midzone and stabilize the spindle. 
In metazoans, kinesin-5 motors drive poleward flux and maintain 
spindle bipolarity [39, 84, 153]. c Anaphase A. Loss of cohesion 
between the sister chromatids marks the onset of anaphase, with sister 
chromatids being pulled to the opposite spindle poles. Anaphase A 
starts with poleward flux-based depolymerization of kMTs. d Ana-
phase B spindle elongation is marked by separation of the two oppos-
ing spindle poles, pulling along disjoined sister chromatids, leading to 
final chromosome segregation. Anaphase B results in a two- to five-
fold increase in the distance between the spindle poles in both bud-

ding and fission yeast [154, 155]. Spindle elongation is mediated by 
cortical force generators, such as dynein motors attached to the cortex 
which translocate along cMTs, and kinesin-5-mediated forces pro-
duced by sliding antiparallel iMTs apart at the midzone. e Schematic 
presentation of a full-length kinesin-5 tetramer and its arrangement 
in crosslinking spindle MTs. Left: the model depicts the motor and 
tail domains at the end of the bipolar structure connected through the 
central stalk. The central stalk which mainly consists of a coiled-coil 
structure formed from the four helixes joining each motor domain to 
the corresponding tail domain, includes the bipolar-assembly (BASS) 
domain in the middle region, which is important for the organization 
of bipolar homo-tetrameric kinesin-5 complex [57, 110]. The mod-
els of Cin8 motor (aa 73–522) and tail (aa 970–1038) domains were 
construct by homology modelling using the Swiss Model server [152] 
and depicted using UCSF Chimera [155]. The motor domain is super-
imposed on the cryo-electron microscopy structure of a S. pombe 
Cut7 motor domain-decorated MT in the AMP-PNP-bound state 
(PDB: 5M5I) [128]. The motor domains are represented in green, 
with the large loop 8 in motor domain of Cin8 (see below) in red and 
loop 5 in cyan; the tail domain is shown in olive green. Right: the pair 
of motor domains at each end interacts with the two antiparallel MTs 
and hence, crosslinks and slides them apart. Blue arrows indicate the 
direction of kinesin-5 head movement on the MTs; black arrows rep-
resent the directions of MT movement during antiparallel sliding



1759Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative…

1 3

where one lies opposite the other and with interdigitating 
iMTs linking the two (Fig. 1a) [2, 17, 18]. This separation 
is primarily achieved by pushing forces applied from within 
the spindle, on the iMTs [19–23]. In higher eukaryotes that 
divide by open mitosis, additional pulling forces applied by 
cortex- or nuclear envelope-bound dynein motor proteins on 
cMTs have also been demonstrated to contribute to centro-
some separation during spindle assembly (Fig. 1a) [24–29]. 
On the other hand, in yeast cells, the role of dynein in the 
initial SPB separation during spindle assembly had not been 
demonstrated (Fig. 1a). Following mitotic spindle assem-
bly, the chromosomes are attached via their kinetochores 
to the plus end of MTs emanating from the SPBs. Properly 
attached chromosomes are congressed to the middle of the 
spindles by balanced forces applied by MTs emanating from 
each pole. At this stage (metaphase; Fig. 1b), the spindle 
assembly checkpoint is activated to prevent sister chromatid 
separation prior to proper attachment of all chromosomes, as 
reviewed elsewhere [30–33]. When all of the chromosomes 
are attached to kMTs from opposite poles and the spindle 
assembly checkpoint is inactivated, sister chromatids are 
separated by degradation of the cohesion complex [34–36] 
and move towards opposing poles via depolymerization of 
the kMTs at their plus ends. This process is termed as ana-
phase A (Fig. 1c) [37, 38]. Following anaphase A, the spin-
dle elongates between two to five times its original length, 
depending on cell type, so as to further separate the two 
groups of chromatids. This process, termed anaphase B, is 
achieved primarily by pushing forces from within the spindle 
and by elongation/polymerization of iMTs at their plus ends 
(Fig. 1d) (reviewed in [39, 40]).

The mitotic kinesin‑5 motors

One of the factors that govern the morphological changes 
mediated by the mitotic spindle is molecular motors that use 
ATP hydrolysis to move along the MT tracks, for review, 
see [41–47]. Among the mitotic motor proteins, members 
of the conserved kinesin-5 family, previously termed BimC 
proteins, have been shown to perform essential roles in 
the mitotic spindle dynamics of eukaryotic cells [20, 23, 
48–54]. Kinesin-5 motors are homo-tetrameric proteins 
with two pairs of catalytic motor domains located at oppo-
site sides of a central minifilament in the active motor com-
plex [55–57]. This unique architecture enables kinesin-5 
motors to crosslink and slide antiparallel spindle MTs apart 
by their plus end-directed motility on both of the MTs they 
crosslink (Fig. 1e) [58, 59], thus allowing them to perform 
their conserved functions in spindle assembly in fungi and 
higher eukaryotes [20, 21, 60–62], and maintenance of the 
bipolar spindle structure [54]. In some organisms, such 
as Saccharomyces cerevisiae, and mouse and Drosophila 

melanogaster embryos, kinesin-5 motors were shown to play 
a role in facilitating spindle elongation during anaphase B, 
likely by sliding apart the antiparallel MTs at the midzone 
[63–68]. However, in other cell types, such as in Caenorhab-
ditis elegans and porcine kidney epithelial cells, kinesin-5 
motors were shown to act as a “brake” that restricts the rate 
of spindle elongation during anaphase B [69, 70]. It is not 
clear while acting as a brake if kinesin-5 is immobile and 
only crosslink spindle MTs or whether they perform slow 
antiparallel MT sliding. Examination of spindle elongation 
rates in cells expressing kinesin-5 mutants impaired in their 
ATPase activity [71] should shed light on this question.

In addition to the well-established functions of kinesin-5 
motors in mitotic spindle dynamics that rely on their ability 
to slide antiparallel iMTs apart (Fig. 1), other intracellular 
functions have been described for kinesin-5 motors in differ-
ent organisms. For instance, kinesin-5 is expressed in fully 
differentiated neurons [72]. Inhibition of kinesin-5 func-
tion in neuronal cells facilitates the growth of axons and 
dendrites [73–77], suggesting that kinesin-5 motor activity 
in these cells antagonizes the forces of other motors and 
provides a brake on the MT bundle mobility required for 
axon and dendrite growth [74]. Kinesin-5 motors have also 
been demonstrated to affect MT dynamics. Reports regard-
ing this effect are, however, contradictory. On the one hand, 
kinesin-5 has been shown to stabilize MTs in vitro [78] and 
in vivo [79], likely due to the motors pausing at the MT plus 
ends and enhancing polymerization by stabilizing longitu-
dinal tubulin–tubulin interactions [78]. On the other hand, 
in vivo evidence has demonstrated that the S. cerevisiae 
kinesin-5 Cin8 is a MT destabilizer [80, 81]. The mecha-
nism of this effect is, however, not clear. In higher eukary-
otic cells, kinesin-5 have been shown to affect the poleward 
turnover of tubulin (poleward flux) in kMTs and iMTs [82], 
thus contributing to the maintenance of spindle length, chro-
mosome congression, and separation [67, 83, 84]. Poleward 
flux is not observed in fungal S. cerevisiae and Schizosac-
charomyces pombe cells [85, 86], however, kinesin-5 motors 
have been shown to bind to kinetochores, focus kinetochore 
clusters and limit the length of the kMTs in S. cerevisiae [81, 
87–89]. Finally, the S. cerevisiae kinesin-5 Kip1 is required 
for the segregation of the 2-μm plasmid [90–92], the func-
tion which can be related to the minus end-directed motility 
of Kip1 [79] (discussed below).

Kinesin motor proteins are defined by their conserved 
catalytic motor domains that contain ATP- and MT-bind-
ing sites (reviewed in [47, 93–97]. The motor domain is 
followed by a flexible 14–18 residue-long neck linker that 
contains family-specific features and is believed to interact 
directly with the catalytic domain and influence processiv-
ity and directionality [53, 98–103]. The subsequent stalk 
and tail domains are important for interactions with other 
subunits of the holoenzyme or with cargo molecules [104, 
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105]. The majority of the kinesin motors carry their catalytic 
domain at the N-terminus and have been shown to move 
towards the plus end of the MTs. Until recently [106, 107], 
the only exception to this rule were members of the kine-
sin-14 sub-family that carry their catalytic motor domains 
at the C-terminus and are minus end-directed, as reviewed 
elsewhere [108, 109].

Kinesin-5 motors are structurally adapted to mediate 
antiparallel MT sliding to perform their unique mitotic 
functions. These motors are unique in that they function 
as homotetramers, with pairs of catalytic motor domains 
located on opposite sides of a 60-nm-long rod-like minifila-
ment structure, forming an elongated bipolar structure in 
the dumbbell-shaped molecule [55–57, 110] (Fig. 1e). This 
structure is believed to be essential for crosslinking and the 
sliding apart of two antiparallel MTs during mitosis [58, 
59], as the monomeric and dimeric forms are non-functional 
in vivo [55, 111]. In addition, it had previously been dem-
onstrated that tetrameric kinesin-5 chimeras containing the 
catalytic domains of kinesin-1 or chromokinesin exhibited 
MT crosslinking activity but were non-functional in spindle 
dynamics [112], indicating that the tetrameric structure is 
essential but not sufficient for kinesin-5 mitotic functions in 
spindle dynamics. The kinesin-5 stalk contains four regions 
of heptad repeat sequences that form an α-helical coiled-coil. 
The stalk region contains structural elements that are respon-
sible for tetramerization of the kinesin-5 motors. Deletion 
studies on the S. cerevisiae kinesin-5 Cin8 and phylogenetic 
comparisons with other kinesin-5 proteins suggest that the 
coiled-coil region of 100–200 amino acids located imme-
diately after the neck region is essential for self-interaction 
and sufficient for dimer formation [111]. After this coil, all 
kinesin-5 homologues exhibit an extended region of high 
and moderate coiled-coil probability. Besides coil 1, most 
kinesin-5 homologues present a 30–60 residue-long stretch 
at the end of the stalks that is essential for tetramerization. 
In two separate studies, Hildebrandt et al. and Tao et al. 
found that the central bipolar-assembly (BASS) domain that 
spans some 200 residues in the central part of the stalk is 
essential for kinesin-5 activity and cell viability [111, 113], 
indicating the importance of this domain in the organiza-
tion of the bipolar homotetrameric kinesin-5 complex. In 
recent studies, this BASS domain was shown to form a 
bipolar minifilament, with deletion of this bipolar minifila-
ment resulting in monomeric kinesin-5 proteins [57, 110]. 
Scholey et al. further elucidated the crystal structure of the 
D. melanogaster kinesin-5 Klp61F BASS domain and found 
that it consists of two antiparallel coiled-coils at its center, 
stabilized by alternating hydrophobic and ionic four-helical 
interfaces. The helixes emerge from the central part towards 
the N-terminal, where they bend, swap partners and form 
parallel coiled-coils offset by 90°. Based on this structure, 
these authors proposed that the central bass domain plays 

a role in transmitting forces between motors situated at the 
opposite ends of the molecule [57].

Bidirectional motility of kinesin‑5 motors

The sliding apart of antiparallel MTs at the spindle mid-
zone, and hence the separating of spindle poles by kinesin-5 
motors, can only be accomplished by the plus end-directed 
motility of the catalytic motor domains in the homotetra-
meric kinesin-5 motor complex. Indeed, in vitro plus end-
directed motility is a well-established characteristic of a 
number of kinesin-5 motors [58, 114–117]. Surprisingly, 
two independent studies have reported that the S. cerevisiae 
kinesin-5 Cin8 was minus end-directed, when moving as a 
single molecule on a single MT in high ionic strength condi-
tions, and changed directionality in multi-motor MT gliding 
and antiparallel MT sliding assays (Fig. 2) [106, 107], as 
well as in low ionic strength conditions [106]. These reports 
broke the accepted dogma regarding kinesin directionality 
on two fronts. First, Cin8 was the first kinesin motor with an 
N-terminal motor domain that was reported to move proces-
sively towards the MT minus end. Second, kinesin motors 
were believed to be exclusively either plus or minus end-
directed [108, 109], whereas Cin8 was reported to change 
directionality depending on the experimental conditions 
(Fig. 2) [106, 107, 118]. Following the first reports on Cin8 
bidirectionality, the second S. cerevisiae kinesin-5 Kip1 and 
S. pombe Cut7 kinesin-5 homologs were also reported to 
be bidirectional and exhibit switchable directionality under 
certain conditions [79, 119]. Interestingly, S. pombe Cut7 
was reported to be minus end-directed in both single mol-
ecule and multi-motor MT gliding assays [119]. The fact that 
bidirectional motility is a characteristic of several kinesin-5 
motors suggests that such behavior is important for their 
in vivo functions.

One of the conditions under which the S. cerevisiae 
kinesin-5 Cin8 was shown to switch from fast minus end- 
to slow plus end-directed motility is when the motor tran-
sitions from a state of being attached to a single MT to 
a state where it crosslinks two antiparallel MTs during 
Cin8-mediated antiparallel MT sliding (Fig. 2c) [106, 
107, 120]. Because of the polarity of MTs in the spindle 
apparatus (Fig. 1), such a switch is necessary to produce 
the outward-directed force that separates the spindle poles 
during mitosis, one of the major functions of kinesin-5 
motors [96, 97]. This switch, occurring upon the binding 
of the two pairs of motor domains to antiparallel MTs, 
is likely to be transduced by the stalk and BASS domain 
between the two pairs [57], and resembles the activation 
of Xenopus laevis kinesin-5 Eg5, which under high ionic 
strength conditions switches from diffusive to proces-
sive plus end-directed motility upon binding to the two 
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MTs the protein crosslinks [116]. Interestingly, Aspergil-
lus nidulans KlpA, a member of the minus end-directed 
kinesin-14 sub-family, was recently shown to be plus 
end-directed on the single molecule level but switched 
directionality in multi-motor MT gliding and antiparallel 
MT sliding assays [121], similar to S. cerevisiae Cin8 and 
Kip1 [79, 106, 107]. This indicates that context-depend-
ent directionality switching is not unique to kinesin-5 
motors and may reflect an adaptation of different kinesin 
sub-families to their physiological functions.

Regulation of the bidirectionality 
of kinesin‑5 motors

A recent study demonstrated that the forces produced by 
Cin8 in the plus-end and minus-end directions are similar 
[122], suggesting a similar mode of motility in the two 
directions. However, the molecular mechanism and regu-
lation of bidirectionality of Cin8, Kip1 and Cut7 remain 
largely unknown. Several structural elements, discussed 

Fig. 2   Different directionalities of kinesin-5 motors in the various 
types of motility assays. a Single molecule fluorescence motility 
assay. Fluorescently labeled MTs are immobilized on a glass sur-
face and fluorescently labeled kinesin-5 motors [usually with green 
fluorescent protein (GFP)] move on the immobilized MTs, likely 
by interactions of one of the two pairs of catalytic domains with the 
immobilized MT. In such an assay, Cin8, Kip1 (in high ionic strength 
conditions) and Cut7 were shown to be minus end-directed [79, 106, 
107, 119]. Accumulation of Cin8 in clusters on a single MT was 
shown to reverse directionality to plus end-directed motility [120]. 
b Multi-motor MT gliding assay. Motor proteins are immobilized 
to a glass surface and fluorescently labeled MTs undergo kinesin-

5-driven motility. The directionality of the MTs is opposite to that of 
the immobilized kinesin-5 motors. When using long MTs in such an 
assay, Cin8 and Kip1 were shown to be plus end-directed [80, 106, 
107, 115], while Cut7 was shown to be minus end-directed [119]. 
With shorter MTs, Cin8 exhibited minus end-directed motility [107]. 
c Antiparallel MT sliding assay. One set of MTs is immobilized to 
the surface while the other set, sometimes differently labeled, is free 
to float in solution. The free MTs undergo antiparallel sliding on top 
of the immobilized MTs, mediated by kinesin-5 motors that cross-
link and walk on both MTs [58]. In such an assay, Cin8 was shown to 
undergo plus end-directed motility [106, 107, 120], similarly to kine-
sin-5 motors in higher eukaryotes [58, 116]
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below, have been considered in terms of regulating the 
directionality of these motors (Fig. 3).

N‑terminal non‑motor extension

Previous studies have indicated that sequences at the N-ter-
minal non-motor region affect kinesin-1 and kinesin-5 motor 
function [99, 123–126]. Molecular dynamics simulations 
demonstrated a nine residue-long N-terminal region in kine-
sin-1 motors (termed the neck linker cover strand (CS), or 
β0) responsible for conformational change of the neck linker 
that is essential for force generation. Upon ATP binding, 
this region contributes to the formation of a β-sheet with the 
neck linker, the structure that was thought to be involved in 

stabilization of the motor domain-docked confirmation of 
the neck linker, important for the plus end-directed motility 
[123–126]. The N-terminal non-motor region of kinesin-5 
motors contains longer extensions, compared to kinesin-1 
(Fig. 3b). However, cryo-electron microscopy and kinetic 
experiments have indicated that the longer N-terminal region 
of the plus-end-directed kinesin-5 Eg5 is docked onto the 
motor domain with the neck linker under several nucleo-
tide-based conditions [99], suggesting that although their 
lengths are different, the neck linker CS performs similar 
functions in stabilizing docked conformations of the neck 
linker of kinesin-1 and kinesin-5 motors. Moreover, a recent 
study had demonstrated that the neck linker of the plus-end-
directed kinesin-5 Eg5 assumes different conformations, 
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compared to kinesin-1, in some nucleotide-bound states 
[53]. Stabilization of these conformations in the Eg5 motor 
may occur through sequences in the neck linker CS, in a 
manner specific to plus-end-directed kinesin-5 motors 
(Fig. 3b). Sequence alignment reveals that the bidirectional 
kinesin-5 motors contain longer and divergent non-motor 
N-terminal extensions, compared to kinesin-1 and the plus-
end-directed kinesin-5 motors (Fig. 3b). These extensions 
are present within and upstream to the neck linker CSs of 
kinesin-1 and plus-end-directed kinesin-5s (Fig. 3b). It is 

tempting to speculate that these additional sequences stabi-
lize the conformation(s) of the neck linker (or other struc-
tural elements within the motor domain) compatible with 
bidirectional motility. Mutagenesis studies of the N-terminal 
region of bidirectional kinesin-5s will shed light on the func-
tion of this region in the bidirectional motility of kinesin-5 
motors.

To date, the function of the non-motor N-terminal region 
has been studied in the bidirectional kinesin-5 Cut7 only. 
It was shown that partial or complete deletion of the N-ter-
minal non-motor extension of Cut7 reduced its MT binding 
[127], however, these deletions had minor effects on minus 
end-directed motility in single molecule and multi-motor 
MT gliding motility assays [119, 127]. Interestingly, partial 
but not complete deletion of this region resulted in a non-
functional kinesin-5 motor in vivo [127]. In support of this 
notion, another recent report indicated that the N-terminal 
extension is not involved in the directional stepping of Cut7 
but is directly involved in binding MTs and increases drag, 
thereby slowing velocity [128]. However, in a cryo-EM 
reconstruction of the MT-bound Cut7 motor domain, the 
N-terminal extension was found to be only partially proxi-
mal to the neck linker [128]. Therefore, it remains unclear if 
the N-terminal extension of bidirectional kinesin-5 motors 
interacts with the neck linker in a similar manner as was 
suggested for other kinesin motors and whether it affects 
directionality.

Loop 8 and phosphorylation in the catalytic domain

Loop 8 of the kinesin motor catalytic motor domain [129] is 
considered to be part of the MT-binding domain as it faces 
the MT lattice in the MT-bound state of the kinesin motor 
domain [130, 131]. In the dimeric structure of kinesin-1, 
loop 8 of one motor domain was shown to interact via a 
salt-bridge with loop 10 of the other motor domain. This 
interaction was suggested to serve as an inter-subunit switch 
sensitive to the bound nucleotide state during the catalytic 
cycle of kinesin motors [131]. The amino acid sequence of 
S. cerevisiae Cin8 contains a large 99 amino acid insert in 
loop 8 (Fig. 3a), which is the largest insert among kinesin 
motors and is not essential for Cin8 function in vivo [20]. 
However, loop 8 of Cin8 was found to be important for the 
regulation of directionality, since replacement of this non-
conserved large insert with the short loop 8 of the homolo-
gous Kip1 induced bias to the minus end-directionality of 
Cin8 in vitro [106]. Moreover, it has been recently demon-
strated that the motor domain of Cin8 exhibits noncanonical 
binding to MTs with about four motor domains bound per 
αβ-tubulin dimer [132]. Deletion of the large loop 8 of Cin8 
abolished this effect, reverting Cin8 to canonical binding of 
one motor domain to an αβ-tubulin dimer [132], indicating 

Fig. 3   Structural features that affect the directionality of kinesin-5 
motors. a A Cin8 motor bound to αβ-tubulin dimer. The model of 
Cin8 motor domain is super-imposed on the cryo-electron micros-
copy structure of a S. pombe Cut7 motor domain-decorated MT in 
the AMP-PNP-bound state (PDB: 5M5I) [128]. Except for the non-
motor N-terminal extension, the structure of Cut7 was omitted from 
the overlay for clarity. α- and β-tubulin subunits are indicated in light 
and dark gray, respectively. The structural elements are highlighted 
in different colors, with the Cut7N-terminal extension in purple, the 
ATP-binding p-loop in orange, loop 5 in cyan, Cin8-specific loop 8 in 
red, the neck linker in yellow and the three Cdk1 phosphorylation site 
S277, T285 and S493 as brown spheres. The Cin8 model was created 
using the homology modelling Swiss-Model server [152], while the 
superimposition and molecular graphics were performed with UCSF 
Chimera [155]. b–d Amino acid sequence alignments of seven kine-
sin-5 homologs (top seven sequences) and three kinesin-1 homologs 
(bottom three sequences). Organisms are indicated on the left: Sc: 
Saccharomyces cerevisiae, Spo: Schizosaccharomyces pombe, Kl: 
Kluyveromyces lactis, Ag: Ashbya gossypii, Dm: Drosophila mela-
nogaster, Hs: Homo sapiens, Rn: Rattus norvegicus. Numbers rep-
resent amino acid positions in the sequence of each homolog. The 
sequences were aligned using Unipro UGENE software and adjusted 
to align the consensus secondary structure elements depicted at the 
bottom of each alignment. The threshold for consensus residue high-
lighting was fixed at 30%. The directionalities of kinesin-5 proteins 
are represented on the left, and although the directionalities of KlKin 
and AgKin are unknown, they are included here as they contain the 
loop 8 insertion, similar to ScCin8. The UniProt ID of the sequences 
are: ScCin8–P27895, ScKip1–P28742, SpoCut7–P24339, KlKin–
Q6CSH2, AgKin–Q8J1G7, DmKlp61F–P46863, HsEg5–P52732, 
HsKHC–P33176, DmKHC–P17210, RnKHC–Q2PQA9. b N-termi-
nal non-motor extension. The first β-strand of the catalytic domain 
(β1) is indicated on the bottom. The nine residues that can form a 
β-sheet while interacting with the docked neck linker and form a neck 
cover strand (CS) in kinesin-1 motors [124] are indicated as kinesin-1 
CS. The kinesin-5-specific N-terminal region that was shown to func-
tion as a CS [96, 99] is indicated above as kinesin-5 CS. The isoelec-
tric pH values for the N-terminal extensions were calculated as fol-
lows: ScCin8—9.47, ScKip1–11.42, SpoCut7—9.39, KlKin—3.57, 
AgKin—4.58, DmKlp61F—9.99, HsEg5—9.82, HsKHC—3.67, 
DmKHC—4.00, RnKHC—3.67. The unique Cdk1 sites present in 
ScKip1, SpoCut7 and KlKin are underlined. The roles of these sites 
are unknown. The Cin8 sequence starts from methionine at position 
− 39, relative to the first methionine indicated in electronic databases, 
since previous publications reported that Cin8 is expressed from 
–  39M [106, 107, 111, 133], indicated here as the first methionine, 
M1. c Loop 8, with red and black asterisks indicating the conserved 
and non-conserved Cdk1 phosphorylation sites, respectively. The 
bordering β-strands are indicated at the bottom. d The C-terminal tail 
domain. The BimC boxes containing the Cdk1 phosphorylation site 
are underlined. Other Cdk1 sites are indicated by asterisks

◂
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the importance of the large loop 8 of Cin8 in regulating its 
activity and binding to MTs.

Loop 8 of Cin8 contains two (S277 and T285) of the 
three Cdk1 phosphorylation sites in the motor domain of 
Cin8 that were implicated in regulating the in vivo func-
tions of the protein [133–135]. Interestingly, the S277 site 
is conserved among fungal kinesin-5 homologs that contain 
inserts in loop 8, whereas the T285 site is unique to Cin8 
(Fig. 3c). The third site, S493, is highly conserved among 
kinesin-5 motors and is located near the kinesin motor ATP-
binding P-loop (Fig. 3a) [136]. It has been demonstrated 
that phospho-mimic mutations at these three sites promote 
minus end-directed motility of Cin8 in vitro [136], indica-
tive of the directionality of kinesin-5 motors being, at least 
in part, regulated by phosphorylation of the motor domain. 
The fact that a Cin8 mutant lacking loop 8 behaves similarly 
to the phospho-mimic mutant indicates that loop 8 contains 
a molecular switch, possibly in the form of phosphoryla-
tion, which regulates the directionality of Cin8. High ionic 
strength conditions that induce minus end-directed motility 
of Cin8 [106, 118] may mimic the effects of phosphorylation 
by affecting the binding of Cin8 to MTs or other proteins that 
activate the molecular switch regulating the directionality.

The C‑terminal tail domain

The tail domain of kinesin motors has been shown to modu-
late kinesin activity. For example, the tail domain of kine-
sin-1 has been reported to inhibit its motility [137]. The 
mechanism of this inhibition likely involves crosslinking 
of the two catalytic domains by the tail in the active kine-
sin dimer [138]. Direct evidence for interaction between 
the motor and tail domains in kinesin-5 motors has yet to 
be demonstrated. However, the tail domain of kinesin-5 
motors from X. laevis and D. melanogaster has been shown 
to be involved in MT crosslinking [59, 139], suggesting 
direct interaction with MTs. Likewise, interaction of the 
tail domain with MTs has not been demonstrated for fungal 
kinesin-5 motors, however, the motor domain of S. cerevi-
siae Cin8 was shown to be essential for its intracellular func-
tions [111], indicating that the tail domain alone is insuf-
ficient to produce MT crosslinking activity as part of the 
intracellular functions of Cin8. Kinesin-5 homologs contain 
a Cdk1 (p34/Cdc2) kinase phosphorylation site in the tail 
domain (Fig. 3d). In kinesin-5 motors of higher eukaryotes, 
the Cdk1 site is located within a conserved “BimC box” 
reportedly phosphorylated during mitosis [61]. Phospho-
deficient mutants of human, D. melanogaster and X. laevis 
kinesin-5 homologs at this site did not localize to the spindle 
apparatus [61, 140, 141]. The role of Cdk1 phosphorylation 
in the tail is less clear in fungi as mutations at this site in S. 
cerevisiae and S. pombe kinesin-5 homologs produced no 
obvious phenotype [133, 142].

The influence of the tail domain of kinesin-5 motors on 
directionality has been addressed in several studies. In a 
study focused on the tail domain of S. cerevisiae Cin8 and 
involving a chimera of the kinesin-5 Cin8 and kinesin-1 from 
D. melanogaster, Duselder et al. found that although the 
bidirectionality of Cin8 was the inherent characteristic of the 
motor domain, control over bidirectionality was lost in Cin8 
lacking the tail domain (Cin8Δtail) [143]. The motility of 
single Cin8Δtail molecules in high ionic strength conditions 
was slow, processive and bidirectional, in stark contrast to 
the behavior of wild-type Cin8. Moreover, Cin8Δtail was not 
found to properly cross-link MTs in vitro. In vivo, Cin8Δtail 
was unable to support viability of the cell when present as 
the sole kinesin-5 motor [143]. On the other hand, deletion 
of the tail domain of S. pombe Cut7 did not seem to affect 
minus end-directionality in a multi-motor MT gliding assay, 
although single molecule motility of the tailless Cut7 variant 
was not examined [119]. Since in the tetrameric complex, 
the C-terminal tail domains of kinesin-5 motors are likely 
to be found in close proximity to their N-terminal motor 
domains [57, 110], regulation of kinesin-5 motor motility 
through direct interactions between motor and tail domains 
had been suggested in a number of studies [19, 57, 110]. It 
is, therefore, tempting to speculate that specific interactions 
between the tails and motor domains regulate the direction-
ality of bidirectional kinesin-5 motors. In support of this 
notion, it had been demonstrated that a dimeric version of 
Cin8 is bidirectional [143], while a truncated monomeric 
versions of Cut7 that only contain the motor domain and 
neck linker exclusively produce plus end-directed motility 
[128]. These reports indicate that the tetrameric kinesin-5 
complex, which likely includes motor-tail interactions, is 
essential for the processive minus end-directed motility.

Inter‑molecular interactions affect 
the directionality of bidirectional kinesin‑5 
motors

Several lines of evidence indicate that inter-molecular inter-
actions between bidirectional kinesin-5 motors or between 
these motors and non-motor proteins affect their directional-
ity. First, it has been suggested that in multi-motor MT glid-
ing and antiparallel MT-sliding assays, the switch from fast 
minus end- to slow plus end-directed motility is induced by 
a coupling of S. cerevisiae Cin8 motors through the MT with 
which they interact [107]. This model was mainly based on 
the finding that in the multi-motor gliding assay, the switch 
in directionality was dependent on MT length, such that the 
longer the MT, the more frequent was the occurrence of plus 
end-directed motility, indicating that the number of motors 
interacting with the same MT determines directionality 
(Figs. 2b, 4a) [107]. This model was recently supported by 
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a theoretical study [144]. The generality of this mechanism, 
however, remains unclear since S. pombe Cut7 was reported 
to be minus end-directed in both single molecule and multi-
motor MT gliding assays [119].

Second, it has been recently proposed that the minus 
end-directed stepping action of Cut7 is selectively inhib-
ited by collisions with neighboring proteins under crowded 
conditions, whereas its plus end-directed motility, being 
less “space-hungry”, is not [128]. Using in vitro MT glid-
ing assays and total internal reflection fluorescence (TIRF) 
microscopy, [128] proposed that the proximity sensing 
mechanism regulates directional switching in Cut-7, which 
depends on the local density of motors. They demonstrated 
that crowding of Cut7 by motor and non-motor proteins, such 
as the dynein MT-binding domain and the kinesin-14 Klp2, 
can drive directional switching from minus end- to plus end-
directed motility and suggested that such crowding acts in a 
steric blocking model (Fig. 4b). This model of directionality 

switch significantly differs from motor-coupling-based mod-
els [107, 144] since it depends on the interaction of kine-
sin-5 motors with motor and non-motor proteins bound to 
the MT and is independent of MT length. Finally, it has been 
recently demonstrated using a single molecule TIRF-based 
motility assay that in high ionic strength conditions, accu-
mulation of Cin8 into clusters on MTs slowed motility in the 
minus end direction and induced a switch from minus end- 
to plus end-directed motility (Figs. 2a, 4c) [120]. While this 
mechanism of directionality switch should be independent of 
MT length, the point should be tested experimentally. This 
study further proposed that since the ability to move in both 
directions is an intrinsic property of Cin8 tetramers [106, 
118, 143], specific inter-molecular interactions between 
Cin8 tetramers in a cluster control its directionality [120]. 
The recent report indicating that the Cin8 catalytic domain 
binds MTs in a super-stoichiometric ratio of approximately 
four motors per αβ-tubulin dimer within the MT lattice [132] 

Fig. 4   Suggested mechanism of directionality switch in yeast kine-
sin-5 motors. a Coupling through the MT. Directionality is altered as 
a result of coupling between motors through the MT with which they 
interact. The number of mechanically coupled motors interacting with 
the same MT determines motor directionality, such that the larger is 
the number, the higher is the probability for the motors to move in 
the plus-end direction [107, 122]. For a constant number of motors, 
the directionality switch is dependent on MT length. Orange arrows 
indicate coupling between motor domains through the MT, promot-
ing plus end directional stepping. b Crowding by MT-binding (motor 
and non-motor) proteins. Bidirectionality depends on the extent of 
motor crowding on the microtubule lattice and is mediated through 

steric blocking or a proximity-sensing mechanism. The crowding of 
kinesin-5 motors by MT-binding proteins reverse the stepping direc-
tion towards the plus-end of the MTs [128]. This mechanism is inde-
pendent of MT length. c Accumulation in clusters. Accumulation of 
Cin8 in clusters induces directionality switch from fast minus-end-
directed to slow plus-end-directed motility [120]. The switch occurs 
due to specific inter-molecular Interactions between Cin8 tetramers 
in a cluster [120]. Alternatively, accumulation of Cin8 in clusters can 
produce crowding in the vicinity of the motor domains and induce a 
directionality switch similarly to the mechanism depicted in b. This 
mechanism is expected to be independent of MT length
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supports the notion that specific interactions between kine-
sin-5 motors in a cluster can affect their motor activity. Such 
interactions could be mediated by the large loop 8 of Cin8 
which was shown to induce non-canonical binding to MTs 
[132] or by the tail domain, deletion of which was shown 
to abolish the minus-end directionality preference of Cin8 
under high ionic strength conditions [143].

The above summarized evidence demonstrates that the 
directionality of bidirectional kinesin-5 motors is sensitive 
to the environment. Although the mechanism of such col-
lective control of directionality remains unclear, two alter-
native models can be proposed to explain this phenomenon 
(Fig. 4). One possibility is that directionality is controlled 
by mechanical communication/coupling between motors 
through the MT [107, 122, 144] (Fig. 4a), while the other 
possibility is that directionality regulation occurs through 
direct interaction of the catalytic domain of the kinesin-5 
motor with other motor and non-motor proteins bound to 
the same MT [120, 128] (Fig. 4b, c). Interestingly, a recent 
study demonstrated that when found in high motor density 
on MTs, Cin8-induced MT gliding was plus-end-directed. In 
contrast, MTs moved in both directions when found at low 
density [122]. This finding is consistent with both models 
since higher motor density could potentially increase the 
coupling forces between motors through the MT and/or 
increase the chance of motor–motor interactions, thereby 
inducing a crowding/clustering effect. One of the predic-
tions of the coupling-through-MT model is that application 
of an external load would affect the directionality of kinesin-
5-driven MT motility. However, this recent study [122] had 
also demonstrated that under low motor density conditions, 
when Cin8-driven MT motility occurred in both the plus- 
and minus-end directions, application of force onto the mov-
ing MTs using an optical trap did not change MT directional-
ity, suggesting that such directionality is load-independent. 
Work in coming years will likely help to distinguish between 
these two models and shed light on this remarkable environ-
ment-sensitive directionality switch.

A possible physiological role 
for the switchable directionality of kinesin‑5 
motors

The fact that the three bidirectional kinesin-5 motors 
reported thus far are expressed in fungal cells raises the 
possibility that bidirectional motility is required for the 
physiological function of kinesin-5 motors in these cells. 
A recent report indicated that before spindle assembly in S. 
cerevisiae cells, Cin8 accumulates near the spindle poles, 
at the minus end of nuclear MTs, while in assembled spin-
dles, Cin8 is also distributed between the poles, on overlap-
ping spindle MTs [120]. Similar localization patterns were 

reported for Cut7 in S. pombe [50]. Based on these find-
ings, and the report that accumulation of Cin8 in clusters 
promotes antiparallel MT capture and sliding [120], it has 
been recently proposed that prior to spindle assembly, fungal 
kinesin-5 accumulates in clusters near the SPBs via their 
minus end-directed motility on single MTs. These kinesin-5 
clusters capture MTs emanating from neighboring SPBs and 
promote their plus end-directed antiparallel sliding (Fig. 5) 
[120]. Alternatively, accumulation of kinesin-5 in clusters 
near SPBs can capture MTs from neighboring SPBs and 
function as cross-linkers, with the polymerizing MTs provid-
ing the force necessary for SPB separation [22]. This model 
implies that accumulation of kinesin-5 motors near SPBs at 
this initial stage is required to maximize the crosslinking of 
nuclear MTs emanating from the neighboring SPBs, which 
is the key step for kinesin-5-mediated SPB separation and 
spindle formation. The directionality switch and formation 
of clusters at the minus ends of nuclear MTs, near the SPB 
[120], can be also caused by motor crowding on the MT lat-
tice and the proximity-sensing mechanism [128]. Therefore, 
it is possible that during this stage, other proteins near SPBs 
are also involved in inducing the directionality switching of 
kinesin-5 motors.

The minus end-directed motility of kinesin-5 motors 
in yeast may represent an evolutionary adaptation allow-
ing these proteins to perform their essential functions in 
spindle assembly. In higher eukaryotes, nuclear envelope 
breakdown occurs during open mitosis, with cytoplasmic 
dynein having been shown to be involved in the initial spin-
dle-pole separation and, in cooperation with kinesin-5, in 
spindle assembly [145, 146]. In contrast, in S. cerevisiae 
and S. pombe cells which divide via closed mitosis without 
nuclear envelope disassembly, dynein does not play a role in 
mitotic spindle assembly [66, 147, 148]. Therefore, in yeast 
cells, with no external pulling force provided by dynein, the 
minus end-directed motility of kinesin-5 motors is required 
for the initial SPB separation needed for spindle assembly. 
Indeed, a recently proposed computational model suggests 
that the bidirectionality of kinesin-5 motors is essential for 
the generation and stability of spindle bipolarity, as well as 
for proper localization of the spindle [149], supporting the 
notion that the bidirectionality of fungal kinesin-5 motors is 
essential for their intracellular function in spindle assembly.

While the molecular mechanisms of the remarkable bidi-
rectionality of certain kinesin-5 motors remain unclear, work 
conducted in recent years indicates that this bidirectionality 
is more common that was initially appreciated. It is also 
evident that the environment in the vicinity of the motors, 
such as being part of a cluster, other motor proteins cou-
pled through the same MT or non-motor proteins, affects 
the directionality of these motors. Work in coming years 
should provide further insight into the physiological roles 
of this behavior in different organisms and shed light on the 
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mechanism and regulation of the bidirectional motility of 
individual motors and their activity in ensembles.
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