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Abstract
The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly 
synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) 
degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified dur-
ing the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are 
essential for the timely transition of early embryonic development. In this review, we summarize recent progress regarding 
the molecular mechanisms underlying post-translational regulation of maternal component degradation and ZGA during the 
MZT and discuss some important issues in the field.
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Introduction

Embryogenesis begins with the fertilization of a haploid egg 
by a haploid sperm. Then, a highly coordinated cascade of 
events is initiated in the earliest stages of embryogenesis. 
Maternal mRNAs and proteins accumulated in the egg dur-
ing oogenesis control almost all aspects of initial embryonic 
development, but transcription of the zygotic genome is qui-
escent. After several rapid cell divisions, maternal mRNAs 

and proteins are eliminated, the zygotic genome is activated, 
and developmental control is transferred from maternal com-
ponents to the gene products synthesized from the zygotic 
genome, defined as maternal-to-zygotic transition (MZT) 
[1–5]. The MZT involves two major processes, including 
the clearance of maternal mRNA and proteins, which are 
necessary for oocyte maturation and the earliest stages of 
embryogenesis but become unnecessary or possibly harm-
ful in embryonic development, and zygotic genome activa-
tion (ZGA), which establishes new zygotic instructions for 
embryogenesis [1, 2, 4].

During the MZT, there are extensive variations in the 
timing and duration of these events among different species, 
which occur between 2 h (Drosophila) and 2 days (mouse) 
after fertilization (Fig. 1) [2]. In Caenorhabditis elegans, 
about 30% maternal mRNAs appear to decay before the 
four-cell stage, and the first zygotic transcription can be 
detected in the four-cell stage, a little over 2 h after ferti-
lization [6, 7]. In Drosophila melanogaster, the maternally 
deposited mRNAs are destabilized upon egg activation and 
the zygotic transcription first initiates at the cleavage cycles 
8 and increases rapidly until the cleavage cycles 14 [2, 8]. 
In zebrafish, the zygotic genome activation occurs at around 
ten cell cycles after fertilization, together with maternal 
mRNA clearance [9]. In Xenopus laevis, the MZT begins at 
fertilization, and degradation of maternal messages begins 
immediately after fertilization, and ends during gastrula-
tion, the major ZGA occurs 6 h later [10]. In mouse, a large 
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fraction of the maternally supplied mRNAs is degraded by 
the two-cell stage, and the first wave of transcription com-
mencing occurs at the one-cell stage [2, 5]. In human, 10% 
of the expressed maternal mRNAs and 2% of the lncRNAs 
are eliminated between the four- and eight-cell stage, and 
the ZGA occurs at four- to eight-cell stage, 2 days after fer-
tilization [5, 11].

The MZT is one of the most complex and crucial devel-
opmental processes in the life of an organism and multi-
ple mechanisms at different levels regulate the clearance of 
the maternal components and the activation of the zygotic 
genome, including transcriptional, post-transcriptional, 
translational, and post-translational regulation [12–19]. 
Because the zygotic genome is inactive in the early stages of 
embryogenesis, post-translational regulation is particularly 
important in the MZT. Various protein post-translational 
modifications have been identified during this stage, which 
are essential for the timely transition of embryonic devel-
opment. The focus of this review is on recent advances in 
our understanding of the molecular mechanisms underlying 
the post-translational regulation of maternal mRNA-protein 
degradation and zygotic genome activation during the MZT.

Post‑translational regulation of maternal 
mRNAs clearance

At the earliest stages of embryogenesis, the transcription 
of the zygotic genome is quiescent and the developmen-
tal processes in the embryo rely exclusively on maternal 
mRNAs, which are produced by immature oocytes or nurse 
cells and are regulated under the control of mRNA stabil-
ity, translation, and localization [3, 18, 20, 21]. During the 
MZT, approximately 60% of maternal mRNA levels are 
considerably reduced in Drosophila [3, 4, 22] and up to 
90% of maternal mRNA is eliminated in the two-cell stage 
of the mouse [23, 24]. The stability of maternal mRNAs 
is dependent on three main features: the mRNA sequence, 
the 7-methylguanylate (m7G) cap, and the length of the 3′ 
untranslated region (UTR) [4]. Multiple mechanisms for 
maternal mRNA clearance have been identified, including 
(1) RNA-binding proteins (RBPs) that direct the maternal 

degradation machinery to its target maternal mRNAs, (2) 
small RNA-induced silencing, (3) some signaling path-
ways in the early embryos, (4) spatial control of transcript 
clearance, and (5)  m6A-dependent RNA decay, which was 
recently uncovered during zebrafish MZT [3, 4, 20, 25, 26]. 
Post-translational modifications have recently been reported 
to participate in the clearance of maternal mRNAs via the 
activation of maternal mRNA decay machinery, and the reg-
ulation of maternal mRNA clearance-related RNA-binding 
proteins and small RNA biogenesis.

Activation of maternal mRNA decay 
machinery

Little is known about the initiation of maternal mRNA 
decay. Maternal transcripts are destabilized in activated 
eggs, indicating that egg activation is necessary and suf-
ficient to trigger maternal mRNA destabilization, while the 
exact link between them remains unclear [27]. Nonetheless, 
the post-translational cascade triggered upon egg activation 
has been identified to function in maternal transcript desta-
bilization in many organisms, such as the Pan gu (PNG) 
Ser/Thr kinase complex, which regulates the translation of 
Smaug in Drosophila and the extracellular signal-regulated 
kinases 1 and 2 (ERK1/2) mediated phosphorylation is 
essential for the activation of BTG4 in mouse.

In Drosophila, the Pan gu (PNG) Ser/Thr kinase complex 
is a crucial regulator of the S phase to metaphase transition 
by ensuring adequate Cyclin B protein levels and conse-
quently the activity of the cyclin-dependent kinase (CDK)/
cyclin complex [28]. Following egg activation, the PNG 
kinase complex promotes the translation of a multifunctional 
and highly conserved RNA-binding protein (RBP), Smaug 
(SMG), to trigger maternal transcript clearance [27]. Smaug 
is responsible for both the translational repression and degra-
dation of maternal mRNA by binding RNA stem loop struc-
tures, which are called Smaug recognition elements (SREs), 
through a sterile alpha motif (SAM) [29–31]. For maternal 
mRNA clearance, Smaug recruits the CCR4/POP2/NOT-
deadenylase complex to initiate poly (A) tail shortening and 
subsequent mRNA elimination [32–34]. Smaug can also 

Fig. 1  Overview of the mater-
nal-to-zygotic transition in sev-
eral model organisms. Dashed 
curves represent the degradation 
profiles of destabilized maternal 
component in each species. 
The solid line curves illustrate 
cumulatively increase in zygotic 
gene expression
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work together with piRNAs and their associated proteins to 
promote maternal mRNA decay [35]. Microarray analyses 
have shown that Smaug was required for the degradation 
of two-thirds of unstable maternal mRNAs [8]. PNG regu-
lates the cytoplasmic polyadenylation of smg mRNA via the 
PUM (pumilio RNA-binding family member) [8], which is 
an RBP and has been implicated in the deadenylation and 
clearance of maternal mRNAs via binding with Pumilio-
binding element (PBE) and the recruitment of Nanos and 
the deadenylation complex [3, 4, 36]. As in Xenopus, PUM1 
can be phosphorylated during oocyte maturation and may 
induce a conformational change in the complex consisting 
of PUM1 and cytoplasmic polyadenylation element (CPE)-
binding protein (CPEB) that targets CPEB for dissociation, 
which is required for the translational activation of cyclin 
B1 mRNA [37, 38]. Therefore, PNG may phosphorylate 
PUM to induce a conformational change and relieves the 
translational repression of Smaug. Because the restoration 
of polyadenylation in png mutants is not sufficient to rescue 
Smaug translation [8], one or more additional factors may 
act in parallel to modulate Smaug translation through smg 
mRNA’s 3′UTR (Fig. 2a). The activity of PNG could also be 
regulated by Cyclin B/CDK1-catalyzed phosphorylation on 
GNU, preventing binding to PNG–PLU and the activation 
of PNG kinase (Fig. 2a). Thus, meiotic completion promotes 

the dephosphorylation of GNU and PNG kinase activation 
to further regulate Smaug translation [39].

A mitogen-activated protein kinase (MAPK) cascade 
and extracellular signal-regulated kinases 1 and 2 (ERK1/2) 
have also been found to activate the translation of BTG4 
to promote maternal mRNA clearance in mouse [40]. 
Upon oocyte meiotic resumption, ERK1/2 is activated by 
upstream kinases and triggers CPEB1 phosphorylation and 
 SCFβ-TrCP-dependent degradation. The phosphorylation 
and partial degradation of CPEB1 stimulates polyadenyla-
tion and translational activation of BTG4 (Fig. 2b), which 
belongs to the TOB/BTG family of proteins and promotes 
maternal mRNA degradation by recruiting the RNA dead-
enylation complex CCR4-NOT onto target mRNAs [41–43].

Regulation of RNA‑binding proteins

RBPs regulate almost every step of RNA life, including 
RNA stability, translation, and localization, and are cru-
cial for the temporal control of the maternal mRNA decay 
machinery [3, 20, 44, 45]. Several RBPs have been identified 
to bind to and direct the degradation of largely distinct sub-
sets of maternal mRNAs [2–4], such as MEX-5/MEX-6 in 
C. elegans [46]; Smaug, Pumilio, AU-rich element-binding 

Fig. 2  Mechanisms of post-translational regulation of maternal 
mRNA clearance. a PNG-mediated polyadenylation regulates smg 
mRNA translation. Cyclin B/CDK1-catalyzed phosphorylation on 
GNU inhibits the interaction between GNU and PNG–PLU, result-
ing in the inactivation of PNG kinase. Meiotic completion promotes 
GNU dephosphorylation and PNG kinase activation. The active PNG 
kinase phosphorylates PUM and one or more additional factors, 
which act in parallel through the smg mRNA’s 3′untranslated region 
(UTR) to promote the translation of Smaug. b ERK1/2 activates 
the translation of BTG4. Upon oocyte meiotic resumption, ERK1/2 

is activated by upstream kinases and triggers CPEB1 phosphoryla-
tion and  SCFβ-TrCP-dependent degradation. The phosphorylation and 
partial degradation of CPEB1 stimulates polyadenylation and trans-
lational activation of BTG4 to further promote maternal mRNA deg-
radation by recruiting the RNA deadenylation complex CCR4-NOT. c 
Dephosphorylation of EDEN-BP regulates its deadenylation activity 
by deadenylase PARN and Cup. EDEN-BP is phosphorylated during 
oocyte maturation and calcium-dependently dephosphorylated fol-
lowing egg activation
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proteins (ARE-BPs) in Drosophila [8, 22, 31, 47]; embry-
onic deadenylation element-binding proteins (EDEN-BP) in 
Xenopus [48]; and Zinc Finger Protein C3H Type 36-Like 
2 (ZFP36L2) and mouse-specific Y-box protein 2 (MSY2) 
in mouse [49, 50]. The post-translational modifications of 
RBPs have been found to function in maternal transcript 
destabilization in many organisms, including the phos-
phorylation of embryonic deadenylation element-binding 
protein (EDEN-BP) (Xenopus), cytosine–uridine–guanine-
binding protein (CUG-BP) (human), and MSY2 (mouse).

In Xenopus, EDEN-BP recognizes embryonic dead-
enylation element (EDEN), which is rich in uridine/purine 
dinucleotides, to deadenylate the maternal transcripts upon 
fertilization [48, 51]. One hundred and fifty-eight maternal 
mRNAs as binding targets for EDEN-BP have been identi-
fied by microarrays analyses [51]. EDEN-dependent dead-
enylation is active in early Xenopus embryos, whereas the 
quantities of EDEN-BP remain constant from fertilization 
to the tadpole stage in Xenopus [48], suggesting that tempo-
ral and spatial regulation mechanisms are necessary for its 
precise activation. The dephosphorylation of EDEN-BP has 
been shown to regulate this sequence-specific deadenylation 
activity (Fig. 2c) [52]. EDEN-BP is phosphorylated during 
oocyte maturation and calcium-dependently dephosphoryl-
ated following egg activation. EDEN-dependent deadenyla-
tion is not influenced by M-phase promoting factor (MPF) 
reactivation, suggesting that this regulation does not depend 
directly on MPF activity [52].

CUG-BP, the homolog of EDEN-BP in human, interacts 
with PARN deadenylase to promote deadenylation, sug-
gesting that EDEN-BP may also cooperate with PARN to 
promote deadenylation and further clearance of maternal 
transcripts [53]. The phosphorylation of CUG-BP catalyzed 
by myotonin-protein kinase (DMPK) in human somatic 
cells is involved in the regulation of its localization (nuclear 
versus cytoplasmic) [54], indicating that some kinases and 
phosphatases may also regulate the deadenylation activity 
of CUG-BP by modulating its localization.

MSY2 is a DNA/RNA-binding protein that stabilizes 
mRNAs and inactivates the RNA degradation machinery 
in male mouse germ cells [55]. In mouse oocytes, MSY2 
regulates the global stability of mRNA and the knockdown 
and disruption of Msy2 results in an approximate 20% 
decrease in the amount of total mRNA [56, 57]. Follow-
ing fertilization, the amounts of msy2 mRNA and MSY2 
protein decrease [58], suggesting that the decay of MYS2 is 
essential for maternal mRNA clearance. CDC2A-mediated 
phosphorylation of MSY2 has been proven to trigger the 
transition from maternal mRNA stability to instability [59]. 
Overexpression of a nonphosphorylatable form of MSY2 
inhibits maternal mRNA clearance, whereas overexpression 
of a putative constitutively active form of MSY2 triggers 
maternal mRNA degradation in the absence of CDC2A. The 

phosphorylation of MSY2 may increase mRNA accessibility 
to the RNA degradation machinery as overexpressing the 
constitutively active form of MSY2 is far more sensitive to 
degradation by exogenous RNase. The decay of MYS2 upon 
fertilization may also be caused by a positive-feedback loop 
of CDK1-mediated phosphorylation of MSY2 that leads 
to the degradation of msy2 mRNA [59, 60]. Therefore, the 
CDC2A-mediated phosphorylation of MSY2 is essential for 
maternal mRNA clearance. CDC2A can also phosphoryl-
ate the mRNA-decapping complex, consisting of DCP1A 
and DCP2, which is essential for maternal mRNA degrada-
tion through removal of the 5′-monomethyl guanosine cap 
[61]. However, the significance of the maturation-associ-
ated phosphorylation of DCP1A and DCP2 requires further 
investigation.

Small RNA biogenesis

Small RNAs have emerged as widespread regulators of gene 
expression by interacting with mRNA and mediating transla-
tional repression, deadenylation, and mRNA destabilization 
[62]. Many small RNAs have been identified as mediators 
of maternal mRNA clearance, such as miR-35-42, miR-51-
56, and the miR-58/80-82 family in C. elegans [63, 64]; the 
miR-309 cluster and piRNA in Drosophila [35, 65]; miR-
430 in zebrafish [26, 66]; miR-18 and miR-427 in Xenopus; 
and miR-290 in mouse [67]. Dicer is crucial for the genera-
tion of functional miRNA or siRNA by cleaving the dsRNA 
or pre-miRNA into their final siRNA and miRNA forms, 
respectively [68, 69]. In C. elegans, the function of Dicer 
must be dynamically regulated during oocyte maturation and 
embryogenesis as the complete disruption of Dicer blocks 
oocyte meiotic maturation, whereas a reduction in Dicer 
function allows oogenesis to proceed but results in early 
embryonic death [70, 71]. In mouse, an expression analysis 
of Dicer ZP3-cKO oocytes indicated an overabundance of 
mRNA transcripts, which is consistent with a loss of miRNA 
inhibition of translation or mRNA degradation [67], suggest-
ing a conserved functional role of Dicer in maternal mRNAs 
clearance.

The phosphorylation of Dicer, which is catalyzed by 
ERK/MPK-1, has been proven to be important for this 
dynamic regulation in C. elegans [71, 72]. During oogen-
esis, ERK/MPK-1 is active and phosphorylates Dicer on two 
conserved residues in its RNase IIIb and double-stranded 
RNA (dsRNA)-binding domains to trigger Dicer’s nuclear 
translocation and inhibit its function [71]. In oocyte matura-
tion and fertilization, ERK/MPK-1 is inactivated, and Dicer 
is dephosphorylated and activated to generate small RNAs 
and further degrade maternal mRNAs [72]. The post-trans-
lational regulation of Dicer for maternal mRNAs clearance 
in other species still needs further exploration.
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Post‑translational regulation of maternal 
protein degradation

The maternal proteins stored in oocytes are essential for 
fertilization, the meiosis-to-mitosis transition, reprogram-
ming, and the early stages of embryogenesis [2, 4, 5]. After 
fertilization, maternal proteins are quickly degraded, and 
a proteomic study reveals that zygotes show a reduction 
of approximately 900 proteins (~ 100,000 peptides) com-
pared with oocytes in the second meiotic metaphase (MII) 
[73]. In eukaryotes, two major pathways for intracellular 
protein degradation exist, including the autophagy–lyso-
some pathway and the ubiquitin–proteasome pathway [74, 
75]. Both of these proteolysis pathways are necessary for 
some maternal proteins degradation.

Autophagy regulates maternal protein 
degradation

Autophagy is a highly evolutionarily conserved membrane 
trafficking process in which cytoplasmic materials, such 
as long-lived proteins and organelles, are sequestered 
into a double-membrane autophagosome and then deliv-
ered to the lysosome for degradation [76, 77]. At least 
three types of autophagy have been defined, including 
macroautophagy, microautophagy, and chaperone-medi-
ated autophagy [77–79]. The most extensively investi-
gated form is macroautophagy, which is initiated from 
an isolated membrane followed by the formation of an 
autophagosome to engulf cytoplasmic cargos and then fuse 
with lysosomes for degradation [76, 77, 80]. More than 40 
autophagy-related (ATG) proteins have been characterized, 
which consist of several functional units: the ULK1 kinase 
complex, PI3K complex, Atg9–Atg2–WIPI1/Atg18 com-
plex, and two ubiquitin-like conjugation systems [81–83]. 
Recently, autophagy has been found to participate in both 
maternal protein and mRNA degradation.

In mouse, autophagy can be triggered by fertilization 
and transiently suppressed from the late one-cell to mid-
dle two-cell stages and then reactivated after the late two-
cell stage. The disruption of autophagy in an oocyte fails 
to progress beyond the four- and eight-cell stages if the 
oocyte was fertilized by an Atg5-null sperm, indicating 
that autophagy is essential for preimplantation devel-
opment [84]. Protein synthesis rates are decreased in 
autophagy-null embryos, which is likely due to amino acid 
insufficiency [84], suggesting that autophagy may promote 
maternal protein degradation for energy or amino acid 
recycling. During the establishment of anteroposterior 
(AP) polarity in the early embryogenesis of C. elegans, 

P-granules, large ribonucleoprotein complexes, localize 
in the germ line cytoplasm and are essential for cell fate 
determination [85]. In somatic cells, PGL-1, a marker 
of P-granules, is surrounded by autophagosomes, and a 
reduction of autophagy-related genes also blocks the deg-
radation of GFP-PGL-1-positive granules in somatic cells, 
suggesting that autophagy may participate in the elimina-
tion of extra P-granule components in somatic blastomeres 
[86]. During this process, SEPA-1, which directly binds 
to the P-granule component PGL-3 and the autophagy 
protein LGG-1/Atg8, has been identified to function as 
a bridging molecule in the mediation of the specific rec-
ognition and degradation of P-granule components by 
autophagy [86]. Recently, autophagy has also been found 
to influence maternal mRNA degradation. In two-cell- and 
four-cell-stage of porcine parthenote embryos treated with 
3-MA, an autophagy inhibitor, maternal mRNAs remain at 
high levels, but they were significantly reduced in embryos 
treated with rapamycin, which can activate autophagy 
[87]. However, the direct or indirect role of autophagy in 
maternal mRNA clearance is still unknown.

Ubiquitin–proteasome system regulates 
maternal protein degradation

The ubiquitin–proteasome system represents large machinery 
for protein degradation, consisting of protein ubiquitination 
components and a proteasome. Protein ubiquitination is an 
important post-translational modification in which ubiquitin, 
a 76-residue protein, is covalently attached to a lysine or a Ser/
Thr residue in a target protein. Ubiquitination is achieved via 
three classes of enzymes working in sequence. E1 (ubiquitin-
activating enzyme) forms a thioester bond between itself and 
the C-terminus of ubiquitin. Then, E2 (ubiquitin-conjugating 
enzyme) receives the activated ubiquitin from E1 by transthi-
olation. Finally, E3 (ubiquitin ligase) transfers ubiquitin from 
E2 to the target protein. Polyubiquitin chains conjugated on 
the target protein, especially Lys48-linked and Lys11-linked 
ubiquitin chains, can be recognized by the proteasome for fur-
ther proteasomal degradation [88–91]. A proteomic analysis 
reveals that ubiquitination-related proteins are highly enriched 
in the mouse zygote [73], and many studies have identified 
some ubiquitin ligases with important roles in maternal pro-
tein degradation (Table 1) that are essential for meiosis-to-
mitosis transition, spindle transition, and early embryonic 
development.
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Ubiquitin–proteasome system regulates 
the meiosis‑to‑mitosis transition

In most animals, mature oocytes are arrested at MII by Cyc-
lin B, a maturation promoting factor (MPF), and after fertili-
zation, the oocyte relieves the MII arrest and undergoes the 
transition from meiosis to mitosis. The degradation of MPF 
by the anaphase-promoting complex/cyclosome (APC/C), a 
multisubunit E3 ubiquitin ligase, is essential for this process 
[92]. In Xenopus and mouse, Emi2/XErp1, an essential cyto-
static factor (CSF) component, has been identified to serve 
as a necessary protein for maintaining MII arrest before 
egg activation by inhibiting the activity of APC/C [93, 94]. 
Emi2/XErp1 contains three parts: an F-box domain, a C-ter-
minal  Zn2+-binding region (ZBR), and a D-box. The D-box 
and ZBR domain have been found to inhibit APC/C activity 
by binding the D-box receptor on the core of the APC/C and 
blocking the access of substrates to the APC/C [92]. In addi-
tion, phosphorylation of Emi2/XErp1 by the Mos/MAPK/
p90Rsk pathway promotes the association of Emi2/XErp1 
with the APC/C for further inactivation [92, 95]. Upon ferti-
lization,  Ca2+-induced calmodulin kinase II (CaMKII) phos-
phorylates Emi2/XErp1, and the phosphorylation of Emi2/
XErp1 can be recognized by the polo-box domain (PBD) of 
polo-like kinase 1 (Plx1) [96, 97]. Plx1 further phosphoryl-
ates the DSGX3S motif of the Emi2/XErp1 protein, which 
is necessary for the recognition of the Skp1–Cullin–F-box 
(SCF) ubiquitin ligase complex [93]. SCF ubiquitin ligase 
catalyzes the ubiquitination of Emi2/XErp1 and promotes 
its degradation to reactivate the APC/C (Fig. 3) [93]. The 
active APC/C promotes the degradation of Cyclin B to exit 
MII [98, 99]. Some other E3 ligases have also been identi-
fied during this process, such as Ret Finger Protein-Like 4 
(Rfpl4), a RING-type E3 ligase that accumulates in grow-
ing oocytes and quickly disappears during early embryonic 

cleavage. Rfpl4 could interact with Cyclin B1 and promote 
its degradation [100], indicating that Rfpl4 may regulate 
oocyte meiosis-to-mitosis transition. However, the precise 
mechanism still needs further investigation.

In Drosophila, the activation of the APC/C is regulated 
by a meiosis-specific adaptor protein Cortex, which acts as 
an activator of the APC/C and is required for cyclin degra-
dation and the completion of meiosis during egg activation 
[101–104]. Cortex can interact with Polo kinase inhibitor 
matrimony and promote its degradation to activate Polo 
kinase, which is essential for chromosome segregation, 
centrosome dynamics, and cytokinesis [105]. During the 
meiosis-to-mitosis transition, Cortex need to be targeted for 
degradation by the APC/C following egg activation [102], 
which may allow mitotic Cdc20 (Fizzy) to regulate subse-
quent embryonic mitosis.

After the completion of meiosis triggered by fertiliza-
tion, the spindle should transform from a small centro-
somal meiotic spindle to a large mitotic spindle. In C. 
elegans, this spindle transition requires downregulation 
of the microtubule-severing katanin complex [106, 107]. 
The katanin complex is a p60–p80 heterodimeric complex 
consisting of a ‘catalytic’ AAA+ subunit (p60) and an 
‘accessory’ subunit (p80), which are called MEI-1 and 
MEI-2, respectively, in C. elegans [107]. The degradation 
of katanin requires a cullin 3-based E3 ubiquitin ligase, a 
type of cullin-RING ligases (CRL), which are multisubu-
nit enzymes composed of specific substrate-recognition 
modules dedicated to cullin-RING-based catalytic cores 
[108]. MEL-26 functions as a substrate-specific adap-
tor to recognize MEI-1 through its MATH (meprin and 
TRAF homology) domain and bind to the N terminus 
of CUL-3 through its Bric-a-brac, Tramtrack, and Broad 
(BTB) fold [109, 110]. Then, CUL-3 and MEL-26 can 
mediate the polyubiquitination of MEI-1 and promote its 

Table 1  Maternal proteins 
targeted for degradation in 
different organisms

Substrate E3 ligase Function References

Mouse Cyclin B APC/C Meiosis I and II [99]
Cyclin B1 RFPL4 Meiosis I and II [100]
Emi2 SCFβ-TrCP Metaphase II exiting [205]
TAB1 RNF114 NF-κB pathway activation [122]
MATER UCHL1 Polyspermy block [132]

Xenopus CyclinA, Cyclin B APC/C(CORT) Meiosis I and II [102]
Mtrm APC/C(CORT) Polo kinase activation [105]
Cort APC/C Embryonic mitosis [102]
CPEB1 SCFβ-TrCP Maternal mRNAs polyadenylation [129]

C. elegans MEI-1/katanin CUL-3MEL-26 Meiotic spindle degradation [109]
EGG-3 APC/C MBK-2 activation [117]
OMA-1/2 CRL1LIN-23, 

 CRL1FBXB-3, 
 CRL2ZYG-11

ZGA [175]
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degradation [111, 112]. Some other types of post-transla-
tional modification have also been reported to modulate 
CUL-3MEL-26-mediated MEI-1 degradation. Nedd8 is a 
ubiquitin-like protein, and an enzymatic cascade similar 
to ubiquitination catalyzes neddylation [113]. As neddyla-
tion of cullin-RING ligases promotes the recruitment of 
the E2 into them, the neddylation and deneddylation of 
CUL-3 regulates the activity of cullin-RING ligases to 
further target MEI-1 for degradation [114]. The phospho-
rylation of MEI-1 catalyzed by MBK-2, a member of the 
dual-specificity tyrosine-related kinases (DYRKs), is also 
necessary for MEI-1 degradation [115, 116]. With high 
levels of MBK-2-dependent phosphorylation only after 
the completion of meiosis [117], MBK-2-mediated phos-
phorylation on MEI-1 may serve as a temporal regulator 
for the degradation of katanin after meiosis [112]. The 
activity of MBK-2 can also be regulated by ubiquitina-
tion. In oocytes, MBK-2 is sequestered in the cell cortex 
in an inactive state and depends on the pseudo-phos-
phatase EGG-3 [118]. EGG-3 recognizes EGG4/5 and 
uses their PTP domains to bind phosphorylated MBK-2 
to prevent MBK-2 activation. Then, CDK-1-mediated 
phosphorylation activates MBK-2 during oocyte matura-
tion [119, 120] and the APC/C activates the degradation 
of EGG-3 [117], which then releases active MBK-2 into 
the cytoplasm.

Ubiquitin–proteasome system in other 
maternal protein degradation

To analyze the maternal proteome in depth and identify 
crucial ubiquitination-related proteins in it, we previously 
developed and performed one-dimensional sodium dode-
cyl sulfate polyacrylamide gel electrophoresis (1D SDS-
PAGE) and reverse-phase liquid chromatography–tan-
dem mass spectrometry (RP-LC–MS/MS) to analyze the 
mature oocyte proteome [121]. A set of 625 different 
mouse maternal proteins has been identified and RNF114 
(Ring finger 114) protein was identified as one of the 
predominantly expressed proteins in the later stages of 
mouse oocyte maturation [121], indicating that RNF114 
is important for maternal protein degradation. RNF114 is 
predominately expressed in oocytes and in early embry-
onic development. The knockdown of Rnf114 results in 
decreased early embryonic developmental competence. 
Through an unbiased screening of a protein microarray 
with more than 9000 proteins, 13 potential RNF114 sub-
strates have been identified. Further ubiquitination and 
overexpression analyses have shown that TAB1 may be 
the major substrate of RNF114 during the MZT [122]. 
TAB1 is an activator of the MAP kinase kinase kinase 
(MAPKKK) MAP3K7/TAK1, which is an intracellular 

Fig. 3  Emi2 regulates the activity of the APC/C to promote the meta-
phase II exit. Emi2 inhibits APC/C activity by binding the D-box 
receptor on the core of the APC/C and blocking the access of sub-
strates to the APC/C. Upon fertilization, Ca2+-induced calmodulin 
kinase II (CaMKII) phosphorylates Emi2 and the phosphorylation of 

Emi2 can be recognized by the polo-box domain (PBD) of polo-like 
kinase 1 (Plx1) for further phosphorylation on the DSGX3S motif of 
Emi2. The phosphorylation of Emi2 is recognized by the Skp1–Cul-
lin–F-box (SCF) ubiquitin ligase complex, which promotes its ubiqui-
tination and further degradation to reactivate the APC/C
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hub molecule that regulates both the nuclear factor-κB 
(NF-κB) and mitogen-activated protein kinase (MAPK) 
signaling pathways [123, 124]. The activation of the 
NF-κB pathway is crucial to the early development of the 
mouse embryo, and a previous study showed that TAB1 
negatively regulated NF-κB pathway activity [125, 126]. 
We also found a decreased protein level of the inhibitory 
subunit IκBα accompanied by the upregulated phospho-
rylated form and the ratio of phosphorylated IκBα to total 
IκBα increased gradually from MII to the four-cell stage, 
indicating the activation of the NF-κB pathway during the 
MZT [122]. Therefore, RNF114-mediated ubiquitination 
and degradation of TAB1 may be essential to the activa-
tion of the NF-κB pathway during the MZT, directly link-
ing maternal clearance to early embryonic development.

Some other maternal proteins have also been identified 
to be degraded via ubiquitin–proteasome system, such as 
CPEB and MATER. CPEB is a cytoplasmic polyadenyla-
tion element-binding protein that binds to the cytoplasmic 
polyadenylation element (CPE) and plays an important role 
in the translational control of maternal mRNAs in the early 
animal development [20]. During Xenopus oocyte matura-
tion, two waves of phosphorylation of CPEB occur and play 
a role in differential mRNA translation or proper meiotic 
progression [20]. At an early stage of oocyte maturation, 
CPEB is phosphorylated by the kinase Aurora A on ser-
ine 174, which facilitates PARN expulsion from the RNP 
complex and Gld2-catalyzed polyadenylation, activating a 
class of maternal mRNAs [127, 128]. Then, CDC2 catalyzes 
six additional phosphorylation events on CPEB, which may 
cause conformational changes of CPEB and allow T125 
phosphorylation. Polo-like kinase Plx1 binds CPEB at the 
phosphorylated Thr125 residue and facilitates TSG motif 
phosphorylation. β-TrCP, the F-box protein of  SCFβ-TrCP, 
specifically recognizes the phosphorylated TSG motif, 
thereby targeting CPEB for degradation [129]. The poly-
ubiquitination-dependent degradation of CPEB1 may cause 
a change in the CPEB/CPE ratio and result in activation 
of another class of mRNAs [129]. Recently, the peptidyl-
prolyl cis–trans isomerase Pin1 has also been identified as 
an important factor in the promotion of CPEB destruction by 
interacting with CPEB and inducing its isomerization [130]. 
Maternal antigen that embryos require (MATER, Nlrp5) is 
one of the first characterized maternal effect proteins in 
mouse and combines with FLOPED, TLE6, and FILIA to 
create a subcortical maternal complex, which is essential 
for successful preimplantation development [5, 131]. In 
“gracile axonal dystrophy” (gad) female mice, which carry 
an intragenic deletion of Ubiquitin C-terminal hydrolase 
L1 (UCHL1), the MATER protein level increases signifi-
cantly [132], suggesting that the ubiquitination of MATER is 
important for its stability. However, the precise mechanisms 
require further investigation.

Degradation of maternal plasma membrane 
(PM) proteins

In addition to the autophagy–lysosome pathway and the 
ubiquitin–proteasome pathway, endocytosis has also been 
found to participate in the degradation of a subset of mater-
nal PM proteins after fertilization [133], including CAV-1 
[134], RME-2 [135, 136], CHS-1 [137], and EGG-1 [138]. 
PM proteins destined for degradation are sorted into intra-
luminal vesicles (ILVs) at the endosomal membrane and 
form multivesicular bodies (MVBs). Then, MVBs fuse with 
lysosomes for degradation [139]. The sorting of maternal 
PM proteins to the lysosomal pathway is a selective pro-
cess and maternal SNB-1 is targeted to the PM upon exo-
cytosis but does not undergo lysosomal degradation [140]. 
Ubiquitination has been found to modulate the endocytosis, 
monoubiquitination, or K63-linked polyubiquitination of the 
cargo proteins required for sorting into the MVB pathway 
and internalization from the PM [141–143]. In C. elegans, 
K63-linked polyubiquitination is strongly induced on the 
endosomes of one-cell-stage embryos, which is regulated by 
UBC-13 and UEV-1 and induced by fertilization. In ubc-13 
and uev-1 mutants, K63-linked polyubiquitylation is reduced 
and PM proteins are internalized from the PM, but they are 
inefficiently sorted to the MVB and targeted to lysosomes 
for degradation [144]. Therefore, UBC-13 and UEV-1-me-
diated K63-linked polyubiquitylation is required for efficient 
MVB sorting of maternal PM proteins and further lysosome 
degradation.

Post‑translational regulation of ZGA

After the elimination of a subset of maternal mRNAs and 
proteins, zygotic genome transcription is initiated, com-
monly referred to as ZGA, and early embryonic develop-
mental control passes to the zygotic genome [1, 145, 146]. 
ZGA is regulated in a precisely timed manner. Three broad 
classes of activation models have been proposed to explain 
ZGA timing: (1) the nucleocytoplasmic (N/C) ratio model 
in which a threshold ratio of nuclear components to cyto-
plasmic volume alleviates transcriptional repression [147], 
(2) the maternal clock model in which maternally depos-
ited activating or derepressing transcription factors may 
determine the timing of gene expression [148], and (3) 
the de novo establishment of chromatin states permitting 
zygotic genome transcription [145, 146]. Post-translational 
regulation is essential for ZGA and recent findings have 
identified in N/C ratio-related regulation, transcriptional 
repression and activation, regulation of chromatin state 
remodeling, and histone modification [1, 145, 146].
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Nucleocytoplasmic ratio‑related regulation

In most species, complete or nearly complete cytokinesis 
follows every cleavage [2]. The enormous cell volumes 
are decreased two fold with each division cycle, caus-
ing the nuclear-to-cytoplasmic ratio to double, and ZGA 
repressors in the cytoplasm may be titrated [147], such 
as histones [149], replication factors [150], DNA methyl-
transferase xDnmt1 [151], and Tramtrack (TTK) [152]. An 
increased N/C ratio is achieved by rapid early embryonic 
cell cycles in frogs and other aquatic organisms, which are 
simplified versions of the cell cycles of somatic cells [147, 
153, 154]. These rapid cell cycles differ from the canonical 
cell cycle, including a lack of gap phases (G1 and G2) and 
cytoplasmic volume growth, which is entirely controlled 
by maternally provided mRNA and protein in an autono-
mous manner [154]. The phosphorylation-related kinase, 
CDK, has been identified to participate in this process.

CDK activity is essential for cell cycle regulation. Com-
pared with somatic cell cycles, embryonic cell cycles only 
contain CDK2-Cyclins A/E, which mediate DNA replica-
tion and centrosome duplication, and CDK1-Cyclins A/B, 
which mediate mitotic progression [155–157]. In Xenopus, 
CDK1 and CDK2 are inhibited via Wee1 kinase-mediated 
phosphorylation at relatively low levels and Cdc25 phos-
phatases eliminate this inhibitory phosphorylation dur-
ing the cleavage stages, maintaining CDK1 in a primed 
state for activation upon cyclin binding and mitotic entry 
[157–160]. The activity of CDK in early stage embryos is 
also predominately regulated by cyclin protein synthesis 
and degradation [157]. The translation of cyclin protein 
requires polyadenylation mediated by the phosphoryla-
tion of CPEB by Aurora [127, 128]. The degradation of 
cyclin protein depends on APC/C ligase [92]. CDK1 also 
regulates Cyclin B protein levels through a CDK1-APC/C 
negative feedback loop, decreasing the burden of Cyclin 
B degradation at anaphase and supporting the rapid cyclin 
oscillations in embryonic cell cycles [161].

Regulation of transcriptional activators

Transcriptional activators are required for transcription 
regulation, which should be central components of ZGA 
timing modulation [1, 145], including the TFIID complex 
[162] and TATA-binding protein (TBP) [163–167], which 
bind the promoter of zygotic genes to activate transcrip-
tion. Among them, many pioneer transcriptional factors 
have been identified as essential in the activation of zygotic 
genomic transcription, including Zelda in D. melanogaster 
[168], Nanog, Pou5f1, and Sox19b in zebrafish [169, 

170], DUX in mouse, and DUX4 in humans [171–173]. 
Similar to the functional roles of transcriptional factors 
in somatic cells, the regulation of ZGA-related transcrip-
tional factors includes import into the nucleus, remodeling 
of nucleosomes, and recruitment and elongation of RNA 
polymerase (RNAP) [145]. Recently, phosphorylation and 
ubiquitination have been found to regulate the import of 
ZGA-related transcriptional factors into the nucleus.

In C. elegans, TATA-binding protein-associated factor 4 
(TAF-4) is an essential factor for TFIID formation and func-
tion [174]. During the first two cleavages cycles, OMA-1 
and OMA-2 phosphorylated by the kinase MBK-2 bind to 
TAF-4 and sequester it in the cytoplasm, subsequently pre-
venting TFIID formation into a stable DNA-bound complex 
[162]. At the four-cell stage, phosphorylated OMA-1/2 are 
normally degraded and then TAF-4 returns to the nucleus 
to form TFIID and promotes the transcriptional activation 
of the zygotic genome [162].  CRL1LIN-23,  CRL1FBXB-3, and 
 CRL2ZYG-11 have been found to be related to the degradation 
of OMA-1 [175], but the precise mechanisms require further 
investigation. In mouse, Yap1, the Hippo pathway transcrip-
tional regulator, has been reported to control zygotic genome 
transcription. Maternal deletion of Yap1 results in the down-
regulation of approximately 3000 ZGA transcripts [145]. 
The import of YAP into the nucleus is also regulated by its 
phosphorylation and dephosphorylation. YAP is phosphoryl-
ated at serine 112 by protein kinase A and excluded from the 
nucleus, whereas dephosphorylated YAP can be transported 
to the nucleus [176].

Chromatin remodeling allows ZGA

Chromatin consists of DNA wound around nucleosomes, 
which are octamers of the histones H2A, H2B, H3, and H4, 
and is joined together by histone linker protein H1. Chro-
matin conformation is necessary for transcriptional activ-
ity [177]. In Xenopus, although the zygotic genome is not 
activated after fertilization, plasmids microinjected into 
Xenopus fertilized eggs could be transcripted within 10 min 
[178], indicating that the chromatin state is essential for 
ZGA. A genome-wide map of accessible chromatin in mouse 
preimplantation embryos using ATAC-seq revealed that 
many gene loci show large open chromatin domains over 
entire transcribed units in late one-cell and early two-cell 
embryos. Along with gene expression during ZGA, sharp 
open chromatin peaks are gradually limited around promoter 
regions from the two-cell stage to the inner cell masses 
(ICM) blastocyst stage, indicating a unique spatiotemporal 
chromatin conformation during minor ZGA [179]. Recently, 
the three-dimensional structure of chromatin during the 
early mammalian development has been analyzed by an 
optimized Hi-C (genome-wide chromosome conformation 
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capture) approach. Mature oocytes lack detectable topolog-
ically associating domains (TADs), which play important 
roles in regulating transcription and DNA replication [180]. 
After fertilization, the higher order structure of chromatin is 
significantly diminished, and then, chromatin organization 
is gradually re-established as slow TAD consolidation and 
chromatin compartment segregation. The establishment of 
the TAD structure requires DNA replication, but not zygotic 
genome activation. Therefore, during the early mammalian 
development, chromatin may exist in a markedly relaxed 
state after fertilization, followed by progressive maturation 
of higher order chromatin conformation (Fig. 4) [181, 182].

Chromatin conformation is highly regulated by histone 
variants and histone post-transcriptional modifications, such 
as methylation, acetylation, and ubiquitination [1, 183, 184]. 
The exchange of histone variants may stimulate promoter 
nucleosome changes to regulate the chromatin conforma-
tion [145].

In Xenopus, the H1 linker variant, H1M, persists in the 
chromatin until its somatic variants are synthesized at the 
MZT. The embryonic linker histone H1M is required for 
proper chromosome architecture and transcription initiation 
by potentially generating a less stable chromatin structure as 
H1M lacks multiple CDK1 phosphorylation sites and can-
not bind to nuclear import receptors RanBP7 and importin 
β, which are necessary for H1 to condense chromatin during 
interphase [185]. The repressive H2A variant, macroH2A, 
is present in developing and mature mouse oocytes, but it is 
removed from the maternal genome after fertilization. The 
maternal macroH2A appears to contribute to its transcrip-
tional silence and macroH2A is progressively lost as the 
embryo becomes transcriptionally active [186]. MacroH2A 
variants have a major function in maintaining nuclear organ-
ization and heterochromatin architecture [187].

In mammals, maternal and paternal genomes har-
bor distinct chromatin modifications and each parental 

genome contributes differently to the establishment of 
the chromatin conformation in the zygote, which is essen-
tial for zygotic gene expression [145, 188]. In maternal 
chromosomes, pericentric heterochromatin is marked by 
H3K9me3 and H4K20me3, which is established by the 
Suv39h and Suv4–20h histone methyltransferases (HMTs) 
in oocytes and by HP1 beta loaded onto chromatin upon 
gamete fusion [189]. Maternal chromosomes also provide 
polycomb repressive complex 1 (PRC1) components to 
paternal heterochromatin independent of the PRC2 com-
plex, which mediates transcription repression by inhibiting 
chromatin remodeling or mediating chromatin compaction 
[190]. Nonetheless, it is accompanied by H3K27me3 of 
the paternal genome. This process is dependent on the 
RNF2 component of the PRC1 complex and is functionally 
critical for the regulation of transcription [189], indicating 
that H2Aub may also participate in this process. Therefore, 
the MZT is accompanied by nucleus-wide remodeling of 
chromatin of the paternal genome by maternally inherited 
components. In paternal chromosomes, protamines are 
replaced by maternally supplied histones after fertiliza-
tion [191], but species-dependent amounts of histone and 
histone modification still exist in paternal chromosomes 
[145, 192] and paternal histone modification at particular 
genes may also influence zygotic gene expression [145]. 
For example, H3K27me3 and H3K4me3 in sperm may 
have roles in the establishment of a poised chromatin state 
in the embryo prior to ZGA in zebrafish [193]. In Dros-
ophila, the oocytes also could transmit the repressive his-
tone mark H3K27me3 to their offspring that promotes the 
aberrant accumulation of the active histone mark H3K27ac 
at regulatory regions and precocious activation of lineage-
specific genes at zygotic genome activation, suggesting 
that maternally inherited H3K27me3 is essential for the 
activation of enhancers and lineage-specific genes during 
development [194].

Fig. 4  Chromatin states and 
histone modification during 
ZGA. The global chromatin is 
more accessible during the early 
stages of embryogenesis, gradu-
ally changing to a more compact 
conformation. Local chromatin 
accessibility and transcription-
related histone modifications 
appear during ZGA



1717Post-translational regulation of the maternal-to-zygotic transition  

1 3

Histone modification during ZGA

Histone modification is essential for the regulation of 
gene expression and many types of histone modifica-
tion have been identified during ZGA (Fig. 4) [177, 195, 
196]. Histones H3K4me3 and H3K27me3 are two impor-
tant histone modifiers associated with transcription acti-
vation and repression, respectively [197]. H3K36me3 
marks regions of transcriptional elongation [177]. In 
zebrafish, H3K4me3, H3K27me3, and H3K36me3 are not 
detected before the MZT [198]. After ZGA, H3K4me3, 
H3K27me3, and H3K36me3 emerge and approximately 
80% of genes are marked by H3K4me3, including both 
zygotically expressed genes and inactive genes [198]. 
These gene loci exhibiting both H3K4me3 (transcription 
activation-associated marker) and H3K27me3 (transcrip-
tion repression-associated marker) are similar to the “biva-
lent” chromatin domains in pluripotent mouse embryonic 
stem cells [199], which are presumed to poise genes for 
activation while keeping them repressed [198]. In addi-
tion, many inactive genes are associated with H3K4me3 
but not H3K27me3, and H3K4me3 markers can form 
in the absence of both sequence-specific transcriptional 
activators and the stable association of RNA polymerase 
II, indicating that these monovalent domains may also 
poise genes for activation by creating a platform for the 
transcriptional machinery [198]. In mouse, some nonca-
nonical H3K4me3 markers, which exist as broad peaks at 
promoters and in a large number of distal loci with low 
fold enrichment, are widely observed in full-grown and 
mature oocytes and are reduced in the two-cell stage. The 
re-establishment of canonical H3K4me3 occurs at the late 
two-cell stage. The removal of noncanonical H3K4me3 
requires zygotic genome transcription, and the downregu-
lation of noncanonical H3K4me3 by the overexpression 
of the H3K4me3 demethylases KDM5A and KDM5B is 
required for normal zygotic genome activation [199–202]. 
Two other transcription activation and repression histone 
modifiers, H3K27ac and H3K9me3, which are similar to 
H3K4me3 and H3K27me3, are also detectable in two-and 
eight-cell stage embryos [201].

Future perspectives on post‑translational 
regulation of the MZT

The maternal-to-zygotic transition is a complex and highly 
coordinated development process that includes both mate-
rial decay and generation. The temporal and spatial regu-
lation mechanisms during the MZT are necessary for 

successful embryogenesis. Because there was no tran-
scription, the post-translational regulation during MZT 
might play key roles to regulate both material decay and 
zygotic generation. While this mechanism has not been 
thoroughly investigated during MZT, less systematic work 
was performed to analyze the proteomics of phosphoryla-
tion, ubiquitination, acetylation, or other post-translational 
modifications during MZT. Except the above-mentioned 
modifications, the other post-translational modifications 
are even more poorly investigated during MZT, such as 
the SUMOylation, amidation, sulfation, N-myristoylation, 
and S-nitrosylation. Recently, the O-glycosylation of some 
mitochondrial TCA cycle enzymes has been reported to 
be essential for ZGA by regulating their localization, and 
protein palmitoylation has been found to induce the clear-
ance of the maternal mRNA by activating miR-430 expres-
sion [203, 204]. However, the precise mechanisms are still 
largely unknown. Therefore, the identification of novel 
post-translational modifications and the investigation of 
their functional roles in MZT are necessary for further 
understanding the mechanisms underlying MZT. Although 
many researchers work on histone modifications during 
ZGA, most of their works are descriptive and correlative; 
detailed functional mechanism studies are required for 
further investigation. As many post-translational modifi-
cations could work with each other, the crosstalk between 
different types of post-translational modifications may 
also be essential for the temporal and spatial regulation 
of MZT. With the rapid development of proteomics, high-
throughput sequencing, and gene editing tools, many open 
questions in the field may be addressed in the near future:

1. What initiates the MZT, degradation, or creation?
2. How is degradation linked with creation, particularly in 

terms of transcription?
3. How can an old network be renovated to build a new 

regulatory network?
4. What is the relationship between the autophagy–lyso-

some system and the ubiquitin–proteasome system dur-
ing MZT?

5. What is the mechanism underlying substrate selection 
by the two degradation systems?

6. Are there new post-translational regulations during the 
MZT?

7. What are the key regulators of the epigenetic regulations 
during the MZT?

The answers to the above questions would certainly 
expand our knowledge regarding the MZT, deepen our 
understanding of the initiation of life, and help us to 
determine new strategies to treat infertility or other related 
diseases.
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