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Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora 
of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, 
under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that 
eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling 
is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox sug-
gests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings 
about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in 
different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development 
but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating 
the entire body’s energy homeostasis.
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Introduction

Obesity is defined as a chronic low-grade inflammatory con-
dition contributing to many comorbidities known as meta-
bolic syndrome. The aetiology of obesity is the result of an 
imbalance between food intake and metabolic rate, resulting 
in an abnormal expansion of white adipose tissue (WAT). 
Obesity and obesity-related-disorders, such as type-2 diabe-
tes and cardiovascular diseases among others, have become 
a global epidemic, causing a serious burden to public health 
with tremendous economic and social consequences. Solely 
dietary restriction and exercise appear to fail to maintain 
reduced body weight over the time [201], and, therefore, 
there is a demand of new long-term therapeutic approaches 
to tackle obesity, with reduced side effects and improved 

clinical efficacy. Unfortunately, the current lack of any effi-
cacious therapeutic options predicts that the prevalence 
of obesity will steadily increase. One strategy is to target 
the central nervous system (CNS) to reduce appetite or to 
increase the feeling of satiety. Another strategy is to modu-
late peripheral mechanisms, such as to reduce fat storage, 
or to restore the sensitivity to weight-regulating hormones 
in adipose tissue.

In this context, the endocannabinoid (eCB) system has 
been identified, among others, as an important endogenous 
orexigenic signal. It is involved in the regulation of energy 
metabolism through activation of cannabinoid receptors 
in central and peripheral tissues. Importantly, obesity has 
been widely associated with an increase in eCB tone (for 
a review, see [133, 153]), but the cause of this increase 
has not yet been well understood, in particular, it would be 
important to elucidate whether this increased eCB tone is 
the cause or the consequence of obesity. It was reported that 
cannabinoid type 1 receptor (CB1)-deficient mice (called 
CB1–KO) showed a decreased body weight, reduced fat 
mass, hypophagia, and resistance to develop obesity [36, 
174]. Accordingly, chronic treatment with rimonabant, a 
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CB1 inverse agonist, also leads to a decrease in body weight, 
improvement in the metabolic profile, insulin sensitivity, and 
cardiovascular risk profile in obese mice [74] and humans 
[213].

Rimonabant (Acomplia, Zimulti) was approved as anti-
obesity drug in Europe in 2006. Four large clinical trials on 
rimonabant were published [42, 168, 184, 213], reporting 
a weight loss of 4–6 kg in a period of 6–12 months com-
pared to placebo [33]. Rimonabant was not only successful 
to reduce body weight and fat mass, but also numerous meta-
bolic impairments associated with obesity. However, after 
chronic treatment, in some patients, serious neuropsychiatric 
side effects, such as anxiety, depression, and even suicidal 
ideation, were reported [33, 146], raising the question about 
the benefits of the treatment as an anti-obesity drug. Finally, 
rimonabant was withdrawn from the European market in 
2008, leading also to the stop of this research line in the 
other pharmaceutical companies. In the light of the serious 
psychiatric side effects observed, it is important to under-
stand the underlying peripheral and central mechanisms of 
the eCB-mediated regulation of energy homeostasis. During 

the last 2 decades, the role of the eCB system in the regula-
tion of energy metabolism has been extensively studied. Sev-
eral reviews on this theme have recently been published [47, 
66, 160, 166, 189, 191]. In this review, we will mainly focus 
on the role of eCBs in metabolism at central versus periph-
eral tissues, as investigated by the use of cell type-specific 
mutant mice, leading to possible implications regarding new 
and improved therapeutic strategies to tackle obesity.

General features of the endocannabinoid 
system

The eCB system consists of cannabinoid receptors, 
ligands, and enzymes involved in ligand synthesis and 
degradation (Fig. 1). There are two main cannabinoid 
receptors, CB1 [137] and CB2 [151], both belonging to 
the family of G protein-coupled receptors (GPCRs). In 
addition, two major endogenous cannabinoids have been 
identified, arachidonoyl ethanolamide (anandamide, AEA) 
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Fig. 1   Pathways involved in the formation and degradation of endo-
cannabinoids (in blue) and other bioactive lipids (orange). Endocan-
nabinoids are synthesized from plasma membrane phospholipids. A 
major pathway of AEA synthesis requires N-acyltransferase (NAT) 
and NAPE-phospholipase D (NAPE-PLD). 2-AG involves phospho-
lipase C (PLC) and diacylglycerol lipase (DAGL) enzymes. The bio-
synthesis pathway of AEA is the same as for the anti-inflammatory 

palmitoylethanolamide (PEA) and the anorexigenic oleoyl ethanola-
mide (OEA). The degradation of AEA and 2-AG by fatty acid amide 
hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respec-
tively, results in arachidonic acid (AA), which can be converted by 
cyclooxygenase into eicosanoids, such as prostaglandins, prostacyc-
lins, and thromboxanes
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[43] and 2-arachidonoyl glycerol (2-AG) [142], together 
with their synthesizing and degrading enzymes.

In the neurons, the prevalent view is that eCBs are syn-
thesized on demand at the postsynaptic site after synaptic 
activation, where they are released and modulate presyn-
aptic CB1 activity to inhibit neurotransmitter release. This 
is considered as a retrograde negative feedback mecha-
nism. In non-neuronal cells, it has been described that 
eCBs can act as in a paracrine or autocrine manner, being 
synthesize in a different or in the same cell type express-
ing CB1, as for instance in the liver and in the endocrine 
pancreas [90, 120, 121, 159].

CB1 and CB2 expression

CB1 is one of the most abundant GPCRs in the CNS [81]. 
However, it is also expressed in many non-neuronal tis-
sues, including glial cells and peripheral non-neuronal 
cell types, though mostly at low to very low levels. How-
ever, the relative expression of CB1 in a cell type does 
not necessarily correlate with its functional relevance [72, 
180]. In the brain, CB1 is widely distributed in GABA 
and glutamatergic neurons [145], but also in other neu-
ronal subtypes, such as serotonergic [72], noradrenergic 
[24], and cholinergic neurons [156], as well as in glial 
cells (reviewed in [144]). Neuronal CB1 is preferentially 
expressed at presynaptic sites, although the latest findings 
have also described a postsynaptic, i.e., somatic and den-
dritic localization of CB1 [6, 122–124, 155]. Moreover, 
CB1 was also found in the inner membrane of mitochon-
dria in neurons and skeletal muscle, where it regulates 
cellular respiration and energy production [13, 70, 101, 
143]. Regarding the periphery, CB1 was found in adipose 
tissue, liver, skeletal muscle, endocrine pancreas, kidney, 
and gastrointestinal tract (reviewed in [166, 191]).

CB2 is mainly, although not exclusively, expressed in 
immune and blood cells [50, 151], but also in adipocytes, 
liver, neurons, and astrocytes [86, 108, 144, 176, 214]. Only 
a few publications reported on the role of CB2 in regulating 
energy balance [2, 216], and therefore, the role of CB2 in 
energy homeostasis is still a matter of debate, which needs, 
e.g., the genetic dissection of CB2 functions using condi-
tional mutagenesis in mice.

It is worth noting that AEA is a promiscuous ligand 
which can target other receptors than cannabinoid receptors, 
such as transient receptor potential vanilloid 1 (TRPV1), 
peroxisome proliferator-activated receptors (PPARs), and 
GPR55 [20, 45, 83]. Therefore, genetic or pharmacologi-
cal approaches targeting synthesis or degradation path-
ways, which modify AEA levels, could elucidate cellular 
responses which are not directly associated with eCB-related 
responses.

Synthesis and degradation of eCBs

eCBs are lipids synthesized from plasma membrane phos-
pholipids, which are derived from arachidonic acid (AA). 
Several pathways have been proposed to lead to AEA and 
2-AG formation (reviewed in [147]). The major pathway of 
AEA synthesis is the hydrolysis of the precursor N-arachi-
donoyl phosphatidyl ethanolamine (NAPE) by the NAPE-
selective phospholipase D (NAPE–PLD) (Fig. 1). However, 
the generation of total NAPE–PLD knockout mice revealed 
the presence of additional pathways [107]. Presently, it is 
accepted that there are at least two additional pathways dif-
ferent from NAPE–PLD. One pathway involves the serine 
hydrolase ABDH4 (α/β hydroxylase 4). Another pathway 
engages the protein tyrosine phosphatase PTPN22, and the 
latest has been characterized in macrophage RAW264.7 cells 
[115]. The 2-AG biosynthesis occurs in two steps involving 
phospholipase C (PLC) and diacylglycerol lipase (DAGL) 
(Fig. 1). A second pathway leading to 2-AG has been pro-
posed, but, since the physiological relevance of this alter-
native pathway is not clear yet, we will not include it in 
this review (reviewed in [147]. Degradation pathways of 
AEA and 2-AG are mediated by fatty acid amide hydrolase 
(FAAH) and monoacylglycerol lipase (MAGL), respectively 
(Fig. 1). It has been proposed that FAAH-2 in humans and 
N-acylethanolamide-hydrolyzing acid amidase (NAAA) 
could be alternative ways for AEA degradation, although 
their contribution to AEA hydrolysis is still on debate (see 
[147]. Finally, using a functional proteomic approach, two 
additional enzymes were identified as 2-AG hydrolases, 
ABHD6, and ABDH12 [17]. Therefore, synthesis and deg-
radation of AEA and 2-AG involve redundant pathways, as 
it will be discussed below in further details.

Bioactive lipids of eCB synthesis 
and degradation pathways

It is of note that bioactive lipids other than eCBs are also 
generated from the above-mentioned synthesis and degra-
dation pathways, contributing to the regulation of whole-
body metabolism (see Fig. 1). In particular, this crosstalk is 
important to be considered when genetic or pharmacological 
strategies are used to modulate the endogenous levels of 
eCBs, thereby complicating the interpretation of some find-
ings that we will refer below.

AEA is a member of the N-acyl ethanolamide (NAE) 
family, which also includes the anti-inflammatory palmitoy-
lethanolamide (PEA) [55] and the anorexigenic oleoyl ethan-
olamide (OEA) [177] and, therefore, share similar synthesis 
and degradation pathways (Fig. 1). Both AEA congeners 
regulate energy homeostasis through different mechanisms. 
Administration of PEA to mildly obese ovariectomized rats 
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decreased body weight, food intake, and fat mass [138]. 
OEA is an anorectic lipid that reduces food intake and body 
weight gain [177]. In addition, OEA has recently been impli-
cated in the enhancement of β-adrenergic-mediated thermo-
genesis in rats [199].

Furthermore, the degradation of AEA and 2-AG results 
in AA, which is, in turn, a pro-inflammatory molecule. AA 
is converted by cyclooxygenases, finally leading to prosta-
glandins, prostacyclins, and thromboxanes [102] (Fig. 1). 
The effect of AA, prostacyclins, prostaglandins, and throm-
boxanes in metabolism remains to be further detailed.

Cytosolic endocannabinoid binding proteins

Recent studies have identified cytosolic lipid-binding pro-
teins involved in cellular uptake and intracellular traffick-
ing of the hydrophobic eCBs, AEA, and 2-AG, as well as 
other fatty acids [82, 96, 98]. There are at least three cyto-
solic chaperone proteins that can bind to endocannabinoids: 
fatty acid-binding proteins (FABPs); sterol carrier protein 
2 (SCP-2); heat shock 70 kDa protein (HSP70) [96, 109, 
157]. These lipid carriers were reported to be involved in 
the cellular uptake of AEA [109, 126]. In addition, FABPs 
facilitates the transport of AEA and 2-AG to intracellular 
degradation pathways [96, 140]. Accordingly, FABP inhibi-
tors increased brain eCB levels and evoked analgesia [15, 
98]. Finally, FABPs also mediate the nuclear translocation 
of NAEs to activate PPARα [97].

Diet‑induced obesity (DIO), as model 
of western society feeding habits, regulates 
eCB tone

The unlimited availability of fat- and calorie-rich diets in the 
western modern society is a major contributor to the obesity 
pandemic, by promoting overfeeding due to high palatabil-
ity. The diet-induced obesity (DIO) model, where rodents 
have ad libitum access to high fat diet (HFD), mimics the 
overconsumption of calorie-enriched diets and the develop-
ment of obesity as observed in humans. In obese humans 
and DIO mice, there is a positive correlation between body 
weight and CB1 expression together with circulating eCB 
levels [18, 37, 65, 132, 133, 153, 182], as well as with circu-
lating fatty acids, such as AA and linoleic acid, being both 
precursors of AA-derived AEA and 2-AG (reviewed in [133, 
153]). It has been showed that dietary linoleic acid, which 
is present in high contents in western diets, facilitates eCB 
synthesis [4, 181]. Therefore, it is generalized that obesity is 
correlated with an overactivation of eCB system [133, 153].

Another interesting model to test the impact of dietary fat 
content without the contribution of increased energy intake 

is the pair-fed HFD model [128], where HFD-fed mice con-
sumed the same amount of calories as control mice. Using 
this model, the authors observed that there was an increase 
in body weight, no further alterations of liver function, but 
hepatic AEA, 2-AG, and CB1 protein levels were oppositely 
affected in male and female mice [128].

It is interesting to note that highly caloric palatable diet 
during progestational and gestational stages can also lead to 
alterations in eCB levels, where pups from palatable diet-
fed dams displayed lower levels of AEA and PEA in the 
hippocampus, finally leading to increased anxiety in the 
adulthood [171]. In the hypothalamus, AEA, 2-AG, and 
AA were decreased at birth. However, in the adulthood, 
mice displayed adiposity. Interestingly and surprisingly, diet 
restriction during pregnancy similarly decreased eCB levels 
and, finally, led to adiposity in adulthood [172]. This phe-
nomenon is not understood and should be studied in detail.

Sexual dimorphism of eCB system

Only a few studies have investigated sex-dependent changes 
in the eCB system. Sexual dimorphism in the peak of CB1 
expression at postnatal development in rats was reported 
(reviewed in [39]). In addition, in humans, females seem to 
be more sensitive than males to the effects of cannabinoids 
[39], which may be related to different pharmacokinetic 
responses. In rodents, female mice have higher brain AEA 
and 2-AG levels than males [126, 127], although these differ-
ences seem to be brain region-specific (reviewed in [179]). 
However, this situation is different in the liver, where there 
are lower AEA, but higher 2-AG and CB1 protein levels in 
female mice than in male mice [128]. Moreover, DIO model 
also seems to affect differently to male and female mice, so 
ad libitum HFD showed a profound impact in brain AEA 
levels in males but no in females [129]. Further characteriza-
tion of sexual differences in the eCB system concomitantly 
with a better knowledge of the endocrinological mechanism 
underlying sexual dimorphism in the eCB system is manda-
tory in the next years. Therefore, we would like to stress the 
need to include females in such studies.

Multiple mechanisms of eCB‑mediated 
regulation of energy homeostasis

The eCB system is strongly involved in energy storage pro-
moting fat accumulation and caloric intake, which has been 
evolved to conserve energy under the conditions of scarce 
food [47, 166]. Thus, paradoxically, eCBs also facilitates 
the overconsumption of high-energy enriched palatable 
foods and fat accumulation as a maladaptive process, such 
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as present in the western society or in animal models with 
ad libitum access to HFD.

It is well documented that cannabinoids increase appetite 
[12], even in a satiated state [101], and the consumption 
of highly palatable food such as sweets and fat-enriched 
food (reviewed in [161]). Indeed, Δ9-tetrahydrocannabinol 
(THC), the main active compound of Cannabis sativa, is 
prescribed as the treatment of certain diseases associated 
with a lack of appetite, such as chemotherapy-induced 
nausea and in AIDS patients (for a review, see [10]). The 
orexigenic effect of THC is dose-dependent, where low THC 
doses induce hyperphagia, whereas high doses had the oppo-
site effect, indicating a bimodal effect of eCB signalling in 
feeding behaviour [12].

Accordingly, eCBs are also involved in promoting of 
feeding behaviour and, besides, in regulating of energy 
expenditure, both by central and peripheral mechanisms. 
Here, we will first discuss the contribution of different neu-
ronal subpopulations in various brain regions, as evidenced 
by experiments using genetically modified mice.

Forebrain glutamatergic neurons

CB1 in cortical glutamatergic neurons was shown to mediate 
the orexigenic effect of eCBs when mice were in a hunger 
state [12]. Using the Cre/loxP strategy, the conditional dele-
tion of CB1 in dorsal telencephalic glutamatergic neurons 
(Glu-CB1–KO mice) was sufficient to reduce food intake 
after overnight fasting, while the deletion of CB1 in GABAe-
rgic neurons (GABA–CB1–KO mice) induced a hyperphagic 
effect in the same fasted state. Both effects were observed 
in fasting conditions, but mutant mice also showed similar 
phenotype, when they were exposed to novel palatable food 
without the previous fasting.

In wild-type mice, THC can induce a biphasic effect on 
food intake during fasting-refeeding experiments, whereby a 
hyperphagic effect at low dose (1 mg/kg) and a hypophagic 
effect at high dose (2.5 mg/kg) were observed. The THC-
induced hyperphagia was completely blunted in Glu-
CB1–KO mice. Conversely, GABA–CB1–KO mice only 
showed the hyperphagic effect of THC. Interestingly, CB1-
expressing projections to the ventral striatum, a brain area 
involved in the hedonic valence of food intake, were absent 
in GABA–CB1–KO mice. In accordance, bilateral injections 
of a CB1 antagonist into the ventral striatum were able to 
fully block THC-induced hypophagia but not THC-induced 
hyperphagia. Strikingly, both conditional CB1 mutant mice 
did not change body weight when fed ad libitum with regular 
chow.

CB1-mediated control of feeding was shown to involve 
the olfactory system [195]. CB1 in cortical glutamatergic 
neurons promotes feeding in hungry mice by increasing 
odour perception, linking the feeling of hunger to stronger 

odour processing [195]. CB1 protein in the glomerular 
cell layer (GCL) of olfactory bulb was not present in Glu-
CB1–KO mice. GCL mainly contains GABAergic neurons 
that receive glutamatergic projections from olfactory corti-
cal areas [21, 125], which would explain the lack of the 
presynaptic CB1 in GCL from these projections in the Glu-
CB1–KO mice. In addition, 24 h fasting conditions increased 
AEA levels in olfactory bulb and hypothalamus. Notably, 
the selective CB1 deletion in olfactory cortical areas was 
sufficient to induce a hypophagic response after fasting con-
ditions, similar to Glu-CB1–KO and total CB1–KO mice. 
To link olfactory processes to the regulation of food intake, 
investigators measured odour sensitivity in 24 h fasted mice. 
In wild-type mice, a low dose of THC (1 mg/kg) increased 
odour sensitivity, and this effect was also correlated with 
enhanced food intake. Importantly, the same dose of THC 
did not have any effect on odour sensitivity in Glu-CB1–KO 
mice. These experiments can explain the role of CB1 in the 
regulation of food intake in fasted mice, which is mediated 
by CB1 expression in glutamatergic neurons of the olfactory 
cortex, controlling the odour detection of food.

Apart from orexigenic function of the eCB system, there 
are many evidences of the involvement of the central eCB 
system in the regulation of whole-body metabolism. The 
deletion of CB1 receptor in forebrain principle projecting 
(CaMKII-positive) neurons and sympathetic neurons (called 
CaMKII–CB1–KO mice) revealed the control of energy 
balance through the regulation of thermogenesis in brown 
adipose tissue (BAT) [169]. CaMKII–CB1–KO mice were 
leaner than control littermates, and they did not respond to 
rimonabant-induced effects on body weight and on basal 
metabolic rate. In the DIO model, mutant mice were resist-
ant to DIO, which was linked to enhanced lipid oxidation 
and BAT thermogenesis via an increased sympathetic tone 
[169], indicating that CB1 located in CaMKII-positive 
neurons play a critical role in the regulation of peripheral 
sympathetic activity. According to these results, chemical 
or surgical sympathetic denervation blunted the increased 
BAT thermogenesis in the mutant mice. Interestingly, the 
deletion of CB1 receptor in CaMKII-positive neurons did 
not alter the food intake, similar to the Glu–CB1–KO mice 
when they have ad libitum access to food.

As it has been discussed above, mice in the DIO model 
showed an increased eCB tone by enhanced eCB production. 
Thus, the impact of reduced 2-AG levels was investigated in 
mice with overexpressed MAGL in CaMKII-positive neu-
rons (CaMKII–MAGL–Tg mice) [95]. Both MAGL protein 
expression and activity were increased in cortical areas, hip-
pocampus, and hypothalamus of the transgenic mice, with-
out further alterations in the gene expression of the other 
components of eCB system. In consequence, 2-AG levels in 
forebrain regions were reduced by 50% in the mutant mice, 
without changes in the levels of AEA or other eCB-related 
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lipids. Similar to CaMKII–CB1–KO mice, MAGL trans-
genic mice on regular chow showed a lean phenotype linked 
to a reduced fat mass. Surprisingly, decreased 2-AG lev-
els in forebrain neurons induced a hyperphagic phenotype, 
which may be a compensatory mechanism against reduced 
body weight. CaMKII–MAGL–Tg mice were also resist-
ant to DIO, which correlated with a hypersensitivity to 
β3-adrenergic stimulated thermogenesis and enhanced mito-
chondrial density in isolated BAT. In the DIO model, both 
wild-type and CaMKII-MAGL-Tg mice consumed equal 
amount of food, although the decreased 2-AG levels reduced 
feed efficiency in the transgenic mice. Thus, central 2-AG 
regulates energy balance by controlling heat dissipation.

In summary, eCB signalling in glutamatergic neurons of 
forebrain regions is centrally involved in the regulation of 
energy balance through the modulation of sympathetic activ-
ity and, in extension, the regulation of BAT thermogenesis 
without affecting feeding behaviour. In contrast, the CB1 
expression in glutamatergic neurons in the olfactory cortex 
plays a critical role in the orexigenic properties of the eCB 
system through the modulation of odour processing, but 
only in the conditions of immediate energy needs. There-
fore, CB1 expression in particular neuronal subpopulations 
will elicit different metabolic responses, depending on the 
physiological role of the projecting areas that are affected by 
the eCB signalling, and these different circuits will be acti-
vated to cope with the internal state of the body. However, 
the exact involvement of eCBs and CB1 in these regulatory 
circuits is far from being understood, and circuit-specific 
genetic manipulations are required.

Hypothalamus

The hypothalamus is a hub for homeostatic feeding regula-
tion and energy balance. It comprises several nuclei that 
regulate many physiological responses, such as food intake, 
lactation, sexual behaviour, and others. Several evidences 
have pointed to the role of the hypothalamic eCB system in 
obesity as well as in the regulation of appetitive behaviour. 
For example, obese rats with genetic deficiency of leptin 
signalling (ob/ob and db/db) showed elevated levels of eCBs 
in the hypothalamus [44], and both ob/ob and db/db rats 
showed a hyperphagic phenotype. Furthermore, acute ano-
rexigenic leptin treatment in ob/ob or normal rats reduced 
hypothalamic AEA and 2-AG levels [44]. In the ventrome-
dial nucleus of the hypothalamus (VMH), a local injection 
of AEA induced a significant increase in caloric intake in 
presatiated rats; this response was completely blocked by 
rimonabant, indicating that the hyperphagic effect of AEA 
in the VMH was CB1-dependent [87]. Likewise, local 
administration of THC into the paraventricular nucleus of 
the hypothalamus (PVN) stimulated food intake in satiated 
rats in a CB1-dependent manner, while local rimonabant 

administration alone did not affect feeding [215]. Accord-
ing to these data, CB1 is directly involved in the regulation 
of feeding behaviour in different hypothalamic subregions.

The partial CB1 deletion (about 58%) in the hypothala-
mus, using an adeno-associated viral (AAV) approach, 
revealed a reduced body weight linked to an increase in 
energy expenditure, but no changes in food intake in stand-
ard diet-fed mice [25]. The authors reasoned that the lack 
of cell-type specificity of the viral approach could explain 
the absence of changes in feeding behaviour; however, the 
above-described pharmacological injections into the hypo-
thalamus are also devoid of cell-type specificity.

To gain cell-type specificity, the same group investi-
gated the physiological relevance of CB1 in VMH. VMH 
was described as the satiety centre, and ablation of VMH 
induced a voracious feeding (reviewed in [32]. Gene expres-
sion studies have identified that steroidogenic factor-1 (SF-1, 
also named NR5A1) is exclusively expressed in the VMH. 
Therefore, the conditional deletion of CB1 in the VMH, 
crossing SF1-Cre mice with CB1 floxed mice, showed the 
importance of CB1 in metabolic flexibility [26]. Metabolic 
flexibility is the ability of an animal to adjust to different 
diets. SF1–CB1–KO mice showed decreased adiposity on 
regular chow, while HFD exposure increased adiposity as 
compared to wild-type controls. [26]. The mild lean pheno-
type on regular chow was associated with increased glucose 
and insulin sensitivity, concomitantly with an increased 
lipid oxidation and lipolysis in white adipose tissue (WAT) 
mediated by increased sympathetic nervous system activity. 
In contrast, the obese phenotype of SF1–CB1–KO mice on 
HFD was linked to hyperphagia and reduced lipolysis and 
lipid oxidation in WAT. In accordance, loss-of-function of 
the 2-AG degrading enzyme ABHD6 in VMH neurons con-
firmed the importance of the eCB system in metabolic flex-
ibility [59]. Deletion of ABHD6 in VMH neurons increased 
the fasting-induced elevated 2-AG levels in this area com-
pared to wild-type mice. The enhanced 2-AG levels contrib-
uted to reduced fasting-refeeding response, suggesting that 
ABHD6 activity may be involved in the bimodal modula-
tion of feeding behaviour by eCBs. In fact, VMH-selective 
ABHD6 deficiency promoted body weight gain and reduced 
energy expenditure in a DIO model.

PVN is a primary brain region that integrates anorexi-
genic and orexigenic signals from the arcuate nucleus (ARC) 
of the hypothalamus. Cota and co-workers have elucidated 
the role of CB1 in the PVN [27]. CB1 deletion was per-
formed in single-minded 1 (Sim1)-positive neurons, which 
account for a vast number of PVN neuron, by generating 
Sim1–CB1–KO mice. Sim1–CB1–KO mice showed a 
very mild phenotype without metabolic changes on stand-
ard diet. In the DIO model, these mutants showed reduced 
body weight gain by elevating energy expenditure, with-
out affecting food intake. Gene expression studies in BAT 
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displayed enhanced thermogenic and mitochondrial activity, 
suggesting an increase in sympathetic drive. Indeed, phar-
macological sympathetic denervation reverted the decreased 
body weight in HFD-fed Sim1–CB1–KO mice. Therefore, 
genetic CB1 blockade in Sim1-positive neurons in the PVN 
did not affect feeding behaviour, but was able to modulate 
energy expenditure in a DIO model. Of note, ablation of 
Sim1-positive neurons caused obesity by increasing food 
intake and reducing energy expenditure [208], confirming 
the pathophysiological relevance of these neurons in obesity.

In the hypothalamic arcuate nucleus (ARC), agouti-
related peptide-expressing neurons promote food intake, 
whereas POMC-positive neurons promote satiety. Thus, 
ablation of POMC neurons caused severe hyperphagia and 
obesity [35]. Surprisingly, a hyperphagic dose of a CB1 ago-
nist resulted in the activation of a subset of POMC neurons, 
as assessed by the expression of c-fos protein and ex vivo 
electrophysiological recordings [101]. In addition, local 
CB1 agonist injections into the ARC resulted in enhanced 
feeding to a similar extent as intraperitoneal administration. 
The POMC gene encodes both the anorexigenic peptide 
α-melanocyte-stimulating hormone (α-MSH) and the orexi-
genic opioid peptide β-endorphin. Strikingly, CB1 stimula-
tion triggered an increase of β-endorphin secretion, but not 
of α-MSH, in PVN, a main site of POMC efferents con-
trolling food intake. As a cellular mechanism, the authors, 
furthermore, proposed that mitochondrial CB1 stimulation 
and generation of reactive oxygen species are involved in 
increased POMC neuronal activity, which then promotes 
food intake.

The hypothalamus includes several regions that regulate 
feeding behaviour; however, selective genetic deletion of 
eCB system components in some of these neurons did not 
affect caloric intake. Paradoxically, the powerful effect of 
marijuana driving palatable food consumption seems to be 
related to unusual activation of a hypothalamic brain area 
involved in feeding suppression. In summary, hypothalamic 
CB1 is involved in different metabolic responses, finally 
favouring energy storage.

Mesolimbic dopamine system

Feeding behaviour is also controlled by the reward system, 
which promotes overfeeding beyond energy homeostatic 
requirements. Overeating is a major risk to develop obesity. 
Concerning the reward system, the eCB system influences 
the positive-reinforcing hedonic effects of natural rewards, 
including palatable foods [161]. Thus, both exogenous 
2-AG and AEA increase extracellular dopamine levels 
in the nucleus accumbens (NAc), a brain area part of the 
mesocorticolimbic dopamine pathway strongly linked to the 
incentive values of the stimuli, in a CB1-dependent man-
ner [193]. Dopamine signals the sensation of pleasure in 

the brains, which can also be increased by the conditioning 
stimulus associated with the reward, promoting the motiva-
tion and drive of those behaviours that provide the palatable 
food. In addition, CB1 is expressed throughout the regions 
implicated in reward and addiction [161]. Importantly, THC 
increases the motivation to obtain food in a progressive ratio 
schedule as well as free food intake [77, 192], suggesting 
that increased food reinforcement might underlie the hyper-
phagic effect of THC. Indeed, pharmacological and genetic 
CB1 blockade resulted in a strong reduction in sweet and 
fat reinforcement and motivation in rodents [119, 192, 217]. 
Accordingly, local infusion 2-AG into the NAc shell can 
induce voracious feeding in satiated animals [100]. Similar 
data were reported using local injections of AEA in the same 
brain region [194]. Taken together, CB1 is a crucial neuronal 
substrate for positive reinforcement and motivational prop-
erties of highly palatable food. These data strongly indicate 
that central CB1 plays a key role in the regulation of the 
rewarding properties of foods, which could have a pivotal 
role in the overconsumption of tasty foods in obesity. Here, 
regarding the underlying mechanism, it would be important 
to elucidate the role of the eCB system in the conditioning 
stimulus to control rewarding behaviours, which could lead 
to loss of control of eating in obesity. Finally, the crosstalk 
between the eCB and the dopamine system should also be 
clarified in more detail.

Peripheral tissues

The peripheral eCB system has been identified in adipose 
tissue, liver, endocrine pancreas, kidney, immune cells, skel-
etal muscle, gastrointestinal tract, and oral cavity. Here, we 
will summarize important findings regarding these different 
peripheral cell types, as obtained by genetic and pharmaco-
logical approaches.

Adipocytes

There are two main types of adipose tissues (WAT and 
BAT), which exert different physiological function in the 
regulation of energy homeostasis. While WAT is involved in 
energy storage and adipokine secretion, BAT is specialized 
in thermogenesis and energy dissipation. In obesity, there 
is an abnormal increase in adiposity, which is a major risk 
factor for type-2 diabetes, hepatic steatosis, cardiovascular 
diseases, and other obesity-related comorbidities.

Several studies have confirmed the expression of CB1 
in cultured primary adipocyte as well as in the mouse 3T3 
F442A adipocyte cell line [14, 36], where activation of 
CB1 leads to increased adipogenesis and lipogenesis [11, 
36, 132]. CB1 expression is higher in mature adipocytes 
than in preadipocytes [14, 176]. The expression of CB2 was 
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also reported in adipocytes [176], although its functional 
relevance needs still to be elucidated in detail. In addition, 
adipose tissue expresses high levels of PPARγ, a master 
regulator of adipocyte differentiation [209]. AEA can also 
act as a PPARγ agonist, thereby increasing adipocyte dif-
ferentiation and lipid accumulation [20, 99].

The eCB system is largely involved in energy storage in 
adipose tissue by promoting adipogenesis and lipogenesis 
[36, 63]. Indeed, obesity is characterized by increased eCB 
levels and CB1 gene expression in adipose tissue [14, 41, 
220], although others reported opposite results [18, 197]. 
The eCB system in adipose tissue seems to be part of a 
positive feedback loop, where it is a key regulator of adi-
pogenesis and lipogenesis and, in turn, eCB signalling is 
also increased during obesity, thereby further promoting fat 
accumulation. Nisoli and co-workers showed that stimula-
tion of CB1 impaired mitochondrial biogenesis in mouse 
and human primary white adipocyte cells [205, 206], which 
was restored by pharmacological or genetic CB1 blockade 
[205, 206]. Furthermore, CB1 activation regulates adipokine 
secretion as shown in studies using cell culture models [14, 
63, 132]. Altogether, these data strongly support the role 
of the eCB system in the regulation of adipocyte function 
using in vitro studies, either in 3T3F442A cells or in primary 
adipocyte cell cultures from rodents and humans. Below, we 
will discuss these studies targeting the eCB system selec-
tively in adipocytes in genetically modified mice.

The first study analyzed the conditional deletion of 
NAPLE–PLD in adipocytes [67]. To reach cell-type 
specificity, the authors crossed NAPE–PLD floxed mice 
with Fabp4-Cre (also called aP2-Cre) mice, in which Cre 
recombinase is expressed under the control of aP2 (fatty 
acid-binding protein 4) promoter. Other studies, however, 
described that Cre recombinase activity from aP2-Cre mice 
also occurred in non-adipocyte cells [88]. Nevertheless, the 
authors reported that the reduction in NAPE–PLD expres-
sion was restricted to adipocytes [67]. Notably, AEA levels 
in adipose tissue did not change between mutant and wild-
type mice, confirming the existence of alternative synthe-
sis pathways for AEA [67, 107, 188]. In contrast, the dele-
tion of NAPE–PLD in adipocytes was able to significantly 
decrease other members of the NAE family (PEA, OEA, and 
stearoyl ethanolamide) in the mutant mice fed on standard 
diet. Interestingly, a similar reduction in these NAE levels 
was found in HFD-fed NAPE–PLD–WT mice, but not any 
further decrease in HFD-fed mutant mice. It may be possible 
that the ceiling effect in the reduction of NAE levels was 
reached by HFD treatment, and no further reduction could 
be reached after the deletion of NAPE–PLD. It is remarkable 
that both adipocyte-specific NAPE–PLD deletion and HFD 
treatment had the same effect reducing the levels of these 
bioactive lipids in adipose tissue. Accordingly, the metabolic 
characterization of adipocyte-specific NAPE–PLD–KO mice 

correlated well with HFD-fed obese mice. Thus, adipocyte-
specific NAPE–PLD knockout mice were prone to obesity 
and fat mass accumulation, glucose intolerance, and insulin 
resistance, and they showed an increase in circulating tri-
glycerides and cholesterol levels as well as decreased ther-
mogenesis. Moreover, the deficiency of NAPLE-PLD in adi-
pocytes induced an increased inflammation, which could be 
explained by decreased levels of the anti-inflammatory lipid 
PEA. Mutant mice also showed a reduced WAT browning, 
which might be associated with decreased OEA levels in 
adipose tissue. Recently, OEA was shown to be involved 
in β-adrenergic-mediated thermogenesis in rats [199]. In 
addition, a lipidomic analysis of mutant adipose tissue also 
showed alterations in other bioactive lipids, such as eicosa-
noids, and ceramides, which could be linked to metabolic 
disturbances. Finally, adipose-specific NAPE–PLD defi-
ciency also affected gut microbiota composition through an 
unknown mechanism. In summary, adipocyte NAPE–PLD 
control fat mass, glucose homeostasis, browning of WAT, 
and gut microbiota. Regarding the underlying mechanisms, 
since adipocyte-specific NAPLE–PLD deletion did not 
alter AEA levels in adipose tissue, and hence, the meta-
bolic phenotype of these mutant mice might be related to 
the alterations of other bioactive lipids, such as other NAEs, 
eicosanoids, or ceramides; thus, further studies are needed 
to clarify these points.

Our work recently demonstrated that adipocyte-specific 
deletion of CB1 in mature adipocytes (Ati–CB1–KO mice) 
was sufficient to protect mice against deleterious effects of 
diet-induced obesity [180], confirming the crucial role of 
CB1 in adipocytes in the control of energy metabolism and 
adipocyte physiology. For the generation of the mutant mice, 
we used tamoxifen-inducible AdipoqCreERT2 mice [183], 
expressing Cre recombinase under the regulatory elements 
of the adiponectin gene. The Cre recombinase expression 
of adiponectin-Cre mouse lines has been shown in several 
investigations to be highly specific to adipocytes [88, 105, 
150, 180, 183]. Ati–CB1–KO mice showed a reduced body 
weight, reduced total adiposity, improved glucose homeosta-
sis, and improved plasma metabolic profile in a diet-induced 
obesity model. Remarkable, adipocyte CB1 deficiency had 
a profound impact in adipocyte remodelling toward low-
ered energy storage capacity, in a fat depot-specific man-
ner. Thereby, we found an impaired differentiation state in 
epididymal WAT, browning of subcutaneous WAT, and an 
increase in thermogenic gene program in BAT. Accordingly, 
Ati-CB1–KO mice showed an enhanced energy expendi-
ture and increased sympathetic tone. Caloric intake was 
reduced in the mutant mice compared to control littermates, 
although the pair-feeding experiment suggested that the 
lean phenotype of Ati–CB1–KO mice was primarily due to 
feeding-independent mechanisms. Strikingly, CB1 deletion 
in adipocytes caused an increase in alternatively activated 



1349Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in…

1 3

M2 macrophages. In adipose tissue, these macrophages are 
dominant in lean mice, while obesity induces a recruitment 
and accumulation of classically activated pro-inflammatory 
M1 macrophages [116, 117]. Recent investigations have 
suggested that M2 macrophages are a local source of nor-
epinephrine which may contribute to browning of subcuta-
neous fat and adaptive thermogenesis [154, 170], although 
latest investigations have raised questions about this process 
[58, 167]. Regardless whether or not alternatively activated 
M2 macrophages are able to synthesize norepinephrine, the 
M2 macrophage polarization in adipose tissue is thought to 
cause a beneficial effect in whole-body metabolism [84, 173, 
200, 218, 219]. Importantly, both adipocyte remodelling 
and M2 macrophage polarization precede the appearance 
of body weight differences, i.e., obesity. Finally, the tamox-
ifen-inducible mouse model allowed evaluating the effect 
of the deletion in a preexisting obese condition. CB1 dele-
tion selectively in adipocytes in obese mice was sufficient to 
induce body weight loss, to improve metabolic deleterious 
effects of obesity, and to reduce obesity-related behavioural 
alterations. In conclusion, above findings revealed a key role 
of adipocyte CB1 function in energy balance. The selective 
deletion of CB1 in adipocytes promotes a profound remod-
elling not only in adipocytes but also in adipocyte resident 
cells, including alternatively activated macrophages. These 
processes finally lead to increased sympathetic innervation, 
reduced energy storage capacity of adipocytes, and enhanced 
thermogenic program in subcutaneous WAT and BAT.

In summary, eCB signalling in adipocytes is a key regula-
tor of adipocyte physiology and whole-body energy homeo-
stasis, promoting a profound remodelling of adipocytes and 
resident adipose tissue cells. However, further investigations 
are needed to understand the mechanisms underlying the 
adipocyte-brain and adipocyte-immune cell crosstalk as well 
as the contribution of each cell type to the reduced body 
weight and the suppression of the metabolic syndrome.

Liver

Several studies showed the relevance of eCB signalling in 
liver functions. First, both eCB levels (AEA and 2-AG) in 
the liver are similar to those found in the brain [90, 158, 
187], and they were detected in different cell types of the 
liver, such as hepatocytes and stellate cells. Importantly, 
increased serum levels of eCBs correlated to non-alcoholic 
fatty liver disease (NAFLD) in humans, independently of 
obesity [223]. Second, HFD increased selectively AEA 
levels, but not 2-AG levels, in the liver, which was caused 
by a decrease in hepatic FAAH activity [158]. Third, total 
CB1–KO mice were protected against diet-induced hepatic 
lipogenesis and steatosis [158]. Hepatic steatosis is char-
acterized by an ectopic fat accumulation, and is a result of 
increased hepatic lipogenesis, decreased hepatic free fatty 

acid oxidation, and an increased free fatty acid uptake into 
the liver. Hepatic CB1 activation induced the expression of 
several enzymes involved in de novo lipogenesis, promot-
ing fat accumulation in the liver, which can lead to hepatic 
steatosis [158]. The role of CB1 in hepatic lipogenesis was 
also shown by the strong reduction in hepatic steatosis in 
obese Zucker rat after pharmacological blockade of CB1 
[64]. Indeed, the selective deletion of CB1 in hepatocytes 
was sufficient to protect against diet-induced liver steatosis, 
hepatic fatty acid oxidation, insulin and leptin resistance, as 
well as dyslipidemia [159]. However, hepatocyte-specific 
CB1 knockout mice developed obesity and adiposity to a 
similar extent as wild-type mice when maintained on HFD 
[159].

FABP1 is the major cytosolic-binding protein for AEA 
and 2-AG in mouse and human liver [82, 140]. FABP1 helps 
trafficking eCBs to degrading enzymes for hydrolysis [82, 
140, 141]. Thus, FABP1 ablation markedly increased hepatic 
and brain AEA and 2-AG levels in male mice, but not in 
females [82, 126–128]. Indeed, hepatic FABP1 expression 
is sexual dimorphic, showing lower expression levels in 
females compared to males [127], which suggests that other 
cytosolic lipid-binding proteins could be involved in traf-
ficking of eCBs in female mice. These FABP1 trafficking 
proteins chaperone not only eCBs but also other fatty acids. 
The increased brain eCB levels correlated with elevated free 
and total arachidonic acid (AA) levels in brain and serum 
of mutant mice [126]. Therefore, it is plausible that brain 
eCB levels were enhanced by local synthesis in the liver, 
thereby increasing plasma availability of their precursor AA, 
because FABP1 also contributes to hepatic AA clearance. 
Finally, FABP1 ablation alters hepatic eCB responses to 
pair-fed HFD treatment [128].

Similar to HFD treatment, chronic alcohol consumption 
can also lead to fatty liver by increasing hepatic lipogenesis 
and reducing hepatic lipolysis. The eCB system was also 
shown to be a master regulator of alcoholic fatty liver [90]. 
In contrast to diet-induced hepatic steatosis, chronic ethanol 
intake resulted in a selective increase in 2-AG levels and 
DAGLβ gene expression in hepatic stellate cells [90]. Impor-
tantly, hepatocyte-specific CB1 knockout mice were resist-
ant to alcohol-induced hepatic steatosis, hepatic lipogenesis, 
and decreased hepatic fatty acid oxidation [90]. The authors 
concluded that paracrine activation of hepatic CB1 by 2-AG 
synthesis in stellate cells is responsible for alcoholic fatty 
liver, by increasing lipogenesis and reducing fatty acid oxi-
dation in hepatocytes.

Glucocorticoids are stress hormones that are relevant 
players in obesity. Hypercortisolemia shares many charac-
teristics with the metabolic syndrome. One hypothesis is that 
glucocorticoid-related obesity and metabolic syndrome are 
mediated by an increase in eCB signalling. Chronic exposure 
to excess of corticosterone (CORT, 100 µg/ml in drinking 
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water) in mice induced obesity, adiposity, hormonal dys-
regulation, and hepatic steatosis [22]. Chronic CORT expo-
sure leads to twofold increased hepatic AEA levels, while 
hepatic 2-AG levels were significantly reduced [22]. Similar 
to DIO, hepatocyte-specific CB1-KO mice were protected 
from CORT effects in dyslipidemia and hepatic steatosis, 
although they still developed CORT-induced obesity [22].

Furthermore, a liver regeneration model by partial hepa-
tectomy showed that FAAH works in a reversal manner and 
drives AEA synthesis instead of hydrolysis [86, 149]. The 
reactions require high concentrations of AA and ethanola-
mine, which also require concomitantly an overactivation 
of phospholipase A2 and phospholipase D to provide high 
concentration of both precursors of AEA synthesis. Phos-
pholipase D activity is increased during liver regeneration, 
and it might be dependent on CB1 stimulation [149]. Finally, 
CB2 expression levels are only detectable in the liver under 
pathophysiological conditions (steatosis, cirrhosis, and 
NAFLD). In summary, partial hepatectomy promotes AEA 
synthesis by reversal FAAH activity, and AEA production 
concomitantly with CB1 and CB2 activation is, in turn, 
involved in liver regeneration.

Above findings are compelling evidence about the criti-
cal role of hepatic CB1 in the regulation of hepatic lipid 
metabolism, insulin resistance, and pathogenesis of hepatic 
steatosis; otherwise, it has a minor contribution to increased 
body weight and fat mass in diet-induced or cortisolinemia-
related obesity. The selective expression of the eCB chap-
erone FABP1 is attractive for targeting the eCB hepatic 
system, although the fact that FABP1 also binds other fatty 
acids must be kept in mind as off-target side effects. Finally, 
there are still open questions regarding the contradictory role 
of the eCB system in liver regeneration and the contribution 
of CB2 in liver pathophysiological conditions.

Endocrine pancreas

The endocrine pancreas is involved in the regulation of glu-
cose homeostasis by producing and releasing pancreatic hor-
mones. It is composed by five different cell types (α-cells, 
β-cells, γ-cells, δ-cells, and ε-cells), and every cell type pro-
duces and releases different hormones (glucagon, insulin, 
somatostatin, pancreatic polypeptide, and ghrelin), which 
all regulate glucose levels by independent mechanisms. For 
example, insulin is secreted by pancreatic β-cells to regu-
late glucose uptake in skeletal muscle and adipocytes, and 
to suppress lipolysis in adipocytes, thereby promoting fat 
accumulation. Insulin secretion can be regulated via differ-
ent mechanisms acting in central and peripheral tissues [30, 
207]. Below, we will summarize the evidences of the physi-
ological role of the eCB system in the regulation of insulin 
secretion.

The presence of the eCB system was described in endo-
crine pancreas [16, 132, 197, 120, 121]. Expression analyses 
confirmed the presence of enzymes involved in eCB synthe-
sis and degradation, together with CB1, CB2 and TRPV1 
receptors, in isolated pancreatic islets of mice [120, 121, 
197], of humans [16], in rat insulinoma RIN-m5F pancre-
atic β-cells [132], and in rat β-cell-derived INS-1E cells 
[120]. Double immunofluorescence experiments showed 
CB1 expression mostly restricted to insulin-positive β-cells 
in foetal and adult endocrine pancreas [120, 121], although 
other studies found opposite findings with more abundant 
expression in glucagon-positive α-cells [16, 197]. In con-
trast, TRPV1 and DAGLα are present in both α- and β-cells 
[120, 121], while MAGL and ABHD6 were found mainly 
in non-β-cells, indicating that both autocrine and paracrine 
2-AG signals exert CB1-stimulated insulin release in β-cells 
[120]. Regarding CB2, the expression is quite low in the 
endocrine pancreas, and it seems to be restricted to the exo-
crine pancreas [16, 120, 132].

Agonist-induced CB1 activation stimulated basal (low 
glucose) and glucose-dependent insulin secretion in pan-
creatic β-cell lines as well as in pancreatic islets isolated 
from mouse and human [120, 132]. In rat insulinoma cells, 
both insulin responses were blocked by CB1 antagonists, 
but not by TRPV1 or CB2 antagonist [120, 132]. Impor-
tantly, confirming the latter data, genetic ablation of CB1 
suppressed the CB1 agonist-stimulated insulin secretion 
from isolated pancreatic islets [120]. These observations 
strongly suggest that, despite the expression of other non-
CB1 cannabinoid receptors in the endocrine pancreas, CB1 
signalling is involved in eCB-stimulated insulin secretion in 
β-cells. These findings, together with high glucose-induced 
AEA and 2-AG synthesis in insulinoma pancreatic β-cells 
[120, 132], indicate a positive feedback mechanism between 
glucose and eCBs.

Insulin is released from β-cells in two phases. In the first 
step, insulin is released from rapid fusion of insulin granules 
to the plasma membrane, and this requires calcium stimu-
lation. In the second phase, the released vesicles need to 
be replenished from reserve insulin granules that move to 
the plasma membrane. The replenishment depends on focal 
adhesion kinases that induce a cytoskeletal remodelling to 
facilitate the insulin secretion. As mechanistic insight, in 
rat INS-1E cells, AEA treatment increased focal adhesion 
plaque formation enabling trafficking and release of insu-
lin granules [120]. The authors concluded that CB1 signal-
ling in pancreatic β-cells plays a critical role in dynamic 
cytoskeletal remodelling, suggesting a physiological func-
tion of eCBs in the glucose-stimulated insulin release.

Finally, eCBs regulate α- and β-cell organization dur-
ing the development of pancreatic islet formation [121]. 
Importantly, colocalization immunofluorescence experi-
ments detected the expression of CB1, TRPV1, and 2-AG 
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metabolic enzymatic pathway in fetal endocrine pancreas 
(embryonic day 16.5), showing a similar cellular expres-
sion pattern as in adulthood, only DAGLα was preferentially 
expressed in α-cells during the embryonic stage. Thus, 2-AG 
signalling works in a paracrine manner at prenatal stage, 
being α-cells the source and β-cells the sensors of 2-AG 
responses. In addition, morphological analysis of pancreatic 
islets in adult mice from total MAGL- and CB1-deficient 
mice suggests that 2-AG signalling impairs cell segregation. 
Therefore, paracrine 2-AG signalling determines cell segre-
gation in fetal mouse pancreas via CB1 [121].

Overall, the above studies support that chronic CB1 acti-
vation in pancreatic β-cells may be involved in the develop-
ment of insulin resistance in the metabolic syndrome. Nev-
ertheless, conditional deletion of CB1 or 2-AG metabolism 
targeting endocrine pancreatic cells will be needed to shed 
light on the functional relevance of the eCB system in insu-
lin and glucagon secretion in physiological and pathological 
conditions, such as obesity and type-2 diabetes.

Kidney

The eCB system was also shown to regulate renal functions 
during pathological conditions, such as obesity and type-2 
diabetes [78, 92, 211]. Obesity induces several renal dys-
functions even at the early stage, whereas diabetic nephropa-
thy is a serious complication associated to type-1 and type-2 
diabetes. In both metabolic disorders, upregulation of CB1 
expression was found in kidney [92, 211].

CB1 is expressed in several cell types in the kidney; for 
example, in glomerular podocytes [7, 92, 152], mesangial 
cells [111], and in renal proximal tubular cells [89, 92, 
110, 211]. Importantly, peripheral CB1 blockade improved 
albuminuria, renal inflammation, and alteration of the 
renin–angiotensin system in prediabetic Zucker diabetic fatty 
(ZDF) rats (6 weeks old), preventing diabetic nephropathy 
[92]. However, peripheral CB1 antagonist only reversed 
fully developed diabetic nephropathy without affecting 
hyperglycemia in diabetic ZDF rats (15 weeks old) [92]. 
Thus, CB1 blockade was able to prevent and reverse diabetic 
nephropathy.

Regarding cell-type  specific function of CB1, the 
selective CB1 deletion in renal proximal tubular cells 
(RPTC–CB1–KO mice) was sufficient to alleviate obesity-
induced lipid accumulation, oxidative stress, inflammation, 
and fibrosis in the kidney as well as obesity-related renal 
damage [211]. However, RPTC–CB1–KO mice developed 
obesity and metabolic syndrome on HFD treatment [211]. A 
follow-up study showed that deletion of CB1 in these renal 
cells decreased glucose transporter 2 (GLUT2) expression, 
which reduced glucose reabsorption in the kidney, protect-
ing from diabetic nephropathy after streptozotocin-induced 
diabetes [78]. One hypothesis is that hyperglycemia affects 

renal function and induces diabetic nephropathy via increas-
ing GLUT2 expression in RPTC [104, 135]. Nevertheless, 
the role of CB1 in other renal cells in metabolic-induced 
kidney damage cannot be excluded.

Taken together, these results indicate an important role 
of CB1 signalling in renal homeostasis and function, in par-
ticular, during metabolic pathological conditions. Similar to 
the situation in the liver, renal CB1 signalling does not affect 
the whole-body energy homeostasis.

Immune cells

A plethora of studies have demonstrated the importance of 
immune cells in the regulation of whole-body energy home-
ostasis (reviewed in [23, 80]. First strong evidence of a link 
between obesity and immune cells came from the obser-
vation that macrophages secrete inflammatory cytokines, 
thereby inducing insulin resistance in adipose tissue [162].

In this scenario, CB1 signalling was reported to induce 
pancreatic β-cell failure by promoting M1 macrophages 
infiltration in pancreatic islets in ZDF rats [91]. The acti-
vation of CB1 in macrophages leads to the activation of 
Nlrp3-ASC inflammasome, a protein complex involved in 
β-cell loss in type-2 diabetes [91]. First, they observed that 
peripheral CB1 blockade reduced macrophage infiltration 
and promoted M2 macrophage polarization in isolated ZDF 
pancreatic islets. Furthermore, the authors demonstrated that 
pharmacologically induced macrophage depletion delayed 
the onset of insulin resistance in ZDF rats, and decreased 
AEA content and CB1 mRNA levels in isolated pancreatic 
islets [91], indicating that macrophages are the main source 
of eCBs and CB1 expression in pancreatic islets. Impor-
tantly, selective knockdown of macrophage CB1 by CB1 
siRNA delivery using β-1,3-d-glucagon particles (i.p., for 
10 days) normalized the blood glucose and plasma insulin 
levels, decreased macrophage infiltration and inflamma-
tion into the islets, similar to the pharmacological mac-
rophage depletion treatment. In addition, AEA incubation 
of RAW264.7 macrophages and human macrophages, but 
not of MIN6 insulinoma cells, increased the secretion of pro-
inflammatory cytokines, such as IL-1β, TNFα, and MCP-1 
[91].

In a follow-up study [93], the same group generated 
ZDF rats with global deletion of CB1 (ZDF–CB1–KO 
rats). These rats showed a reduction in β-cell failure, hyper-
glycemia, and diabetic-derived nephropathy compared to 
ZDF rats [93]. They also displayed a reduced food intake, 
delayed body weight gain, reduced plasma lipid profile, and 
improved hypoadiponectinemia compared to control ZDF 
rats. ZDF rats also developed extreme hyperglycemia due 
to β-cell loss, but ZDF–CB1–KO rats were euglycemic for 
more than 6 months, which was reflected in an improved 
glucose homeostasis [93]. Thus, ZDF-CB1-KO rats were 
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protected against β-cell failure, which was associated with a 
reduced CD68+ macrophage infiltration. Importantly, using 
an irradiation bone marrow transplantation approach, bone 
marrow from ZDF–CB1–KO donors to ZDF rats induced a 
normalization of blood glucose levels and pancreatic islet 
function, but no changes in body weight, food intake, or 
plasma lipid profile were observed.

The above findings demonstrate that macrophage CB1 
play a prominent role in the progressive loss of β-cell func-
tion in ZDF rats through the activation of Nlrp3 inflam-
masome. However, it is unknown whether macrophage 
CB1 also play a similar role in other tissues. Liver resident 
macrophages, called Kupffer cells, are the major source 
of pro-inflammatory cytokines and play a critical role in 
hepatic inflammatory responses to different insults as, 
for example, in NAFLD. Indeed, using GeRP (β-1,3-d-
glucagon-encapsulated siRNA particles) technology of intra-
venous CB1 siRNA delivery, treated mice showed a selec-
tive knockdown of CB1 gene expression in Kupffer cells 
[94]. In DIO mice, CB1 knockdown in liver macrophages 
improved in vivo glucose tolerance and insulin sensitiv-
ity, and decreased hepatic inflammation [94]. Importantly, 
in isolated CB1 siRNA treated Kupffer cells, there was a 
shift from pro-inflammatory M1 to anti-inflammatory M2 
macrophages together with a decreased gene expression of 
pro-inflammatory markers, such as TNFα, CCL2, IL-6, and 
l-1β [94]. Remarkably, hepatocytes incubated with condi-
tioned media (CM) from LPS-stimulated wild-type Kupffer 
cells showed a significantly reduced insulin signalling com-
pared to hepatocytes incubated with CM from CB1-deficient 
Kupffer cells, indicating that cytokines from Kupffer cells 
inhibit hepatic insulin responses [94]. Thus, CB1 signal-
ling in liver macrophages is important in hepatic insulin 
resistance.

Significant advances in understanding the role of immune 
cells in obesity have been achieved during the last years. The 
metabolic syndrome is defined as a low chronic inflamma-
tory disease where M1 macrophages regulate the expres-
sion and release of different pro-inflammatory cytokines. 
CB1 in pancreatic and hepatic macrophages is an important 
regulator of insulin sensitivity in the metabolic syndrome, 
suggesting macrophage CB1 as a potential therapeutic target 
for type-2 diabetes. It is needed to extent the knowledge of 
the role of CB1 macrophages in other metabolically relevant 
tissues, for example, in adipose tissues.

Skeletal muscle

Skeletal muscle is a major player of total resting energy 
expenditure and insulin-induced glucose uptake, thereby 
being an important player in whole-body energy metabolism 
and insulin sensitivity. Expression of CB1, CB2, TPRV1, 
and other components of the eCB system was reported in 

skeletal muscle [28, 52, 54]. Strikingly, the majority of CB1 
in skeletal and myocardial muscle is present in the mito-
chondria [143].

The eCB system seems to regulate different cellular 
responses in skeletal muscle. CB1 activation decreased insu-
lin-mediated glucose uptake in primary human skeletal mus-
cle cells [52]. Consistently, pharmacological CB1 blockade 
increased glucose uptake in L6 myotubes [54] and in rat iso-
lated soleus muscle [112, 114]. CB1 knockdown by siRNA 
in cultured skeletal muscle cells revealed similar effect in 
glucose uptake as CB1 antagonists [54]. However, it was 
also reported that AEA increased 2-deoxy-d-glucose uptake 
in human skeletal muscle [52], although this opposed effect 
could also be mediated via non-CB1 cannabinoid receptors. 
AEA is a promiscuous ligand binding to different receptors, 
such as CB1, CB2, PPAR, and TRPV. CB1 agonist treat-
ment also inhibits mitochondrial biogenesis and mitochon-
drial respiration in cultured primary skeletal muscle cells 
[29, 143, 206]. It was also reported that high dose of AEA 
increased PGC1-α expression possibly through TRPV1 acti-
vation [118]. Finally, in in vitro models, a negative effect of 
CB1 signalling on muscle oxidative pathways was described 
[29], which correlated with the increased whole-body oxy-
gen consumption associated with CB1 antagonism [1, 75, 
114].

Overall, CB1 signalling in skeletal muscle negatively 
affects insulin-dependent glucose uptake, mitochondrial 
biogenesis and respiration, as well as fatty acid oxidation 
pathways. Therefore, it is tentative to speculate about the 
role of eCBs in skeletal muscle in the context of obesity and 
exercise. As mentioned above, obesity is associated with 
a hyperactive eCB system, while voluntary running also 
increased plasma AEA levels, but not 2-AG levels [62, 76, 
196]. Strikingly, dietary fat intake reduced CB1 expression 
levels in skeletal muscle in humans [53] and rats [40], possi-
bly as a compensatory mechanism of increased tissue levels 
of eCBs. Further studies should shed light on the detailed 
physiological role of the eCB system in skeletal muscle 
in the context of DIO as well as in the potential beneficial 
effects of aerobic exercise in metabolic disorders.

Gastrointestinal tract

eCB activity also regulates functions in the gut, such as gas-
tric emptying, gastrointestinal (GI) motility, and gastric acid 
secretion. The eCB-mediated reduction of gastrointestinal 
motility seems to depend on the inhibition of smooth mus-
cle contraction through the modulation of vagal (parasym-
pathetic) outflow (reviewed in [164]. Compelling evidence 
showed that enteric CB1 inhibits acetylcholine release from 
cholinergic neurons at the enteric synapses to coordinate 
the gastrointestinal transit [38, 79]. Importantly, the inhibi-
tory effect of THC on gastric emptying can be abolished 
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by bilateral vagotomy at the midcervical level [103]. How-
ever, the role of eCBs on gastric acid secretion needs further 
investigation.

CB1 are mainly involved in the eCB regulation of the 
gastrointestinal motility, whereas the role of CB2 remains to 
be further detailed. CB1 is expressed in enteric neurons and 
nerve fibers in the ileum and colon [8, 198]. Accordingly, 
CB1 inverse agonist increased electrically induced contrac-
tions in mouse ileum, concomitantly with whole gut transit 
under physiological conditions [165, 198]. Consequently, 
total CB1–KO mice showed an accelerated gastrointestinal 
transit compared to control animals during in vivo transit 
experiments using charcoal feeding [222].

FAAH is also expressed in the enteric nervous system 
[8]. Thus, pharmacological FAAH blockade (with AM3506) 
caused a reduction in electrically evoked contractions in the 
ileum of LPS-treated mice [8]. In vivo, LPS was able to 
increase upper gastrointestinal transit in wild-type but not in 
FAAH-deficient mice [8]. Furthermore, Izzo and colleagues 
[85] studied the impact of the DIO model in intestinal motil-
ity and eCB levels in the small intestine. They proposed that 
DIO-induced AEA reduction in the small intestine might 
correlate to enhanced gastrointestinal transit in obese rats 
[85].

In line with the above findings, AEA acutely decreased 
blood glucose levels during an oral glucose tolerance test 
(GTT) [210]. However, AEA promoted glucose intolerance 
during an intraperitoneal GTT, when this route of glucose 
application excluded an involvement of the GI tract [210]. 
Consequently, glucose levels were lower after AEA treat-
ment during a duodenal GTT, when glucose was directly 
loaded into the duodenum, in wild-type mice but not in 
total CB1-KO mice [210]. In addition, AEA treatment also 
delayed gastrointestinal motility during a charcoal meal test. 
Therefore, authors concluded that AEA was able to reduce 
small intestinal motility and gastric emptying, and to delay 
glucose absorption via CB1 signalling in the gastrointestinal 
tract.

Piomelli and colleagues proposed a role of the eCB 
system in the gut in the regulation of fat intake [46, 48]. 
They extensively studied the function of the eCB system in 
cephalic reflexes in the upper gut. Cephalic phase responses 
are anticipatory responses that enable the animal to respond 
efficiently to feeding behaviour. Importantly, these responses 
have a significant effect on meal size. Cephalic responses 
can be studied using sham feeding experiments, where 
animals can ingest foods, but the foods are not digested or 
absorbed. In sham fed rats, fat intake increased the levels of 
AEA and 2-AG in the small intestine, whereas sham sugar 
and protein intake did not [46, 48]. Importantly, sham fat 
intake did not modify the eCB levels in other peripheral and 
central tissues, including other parts of the GI tract [46]. In 
addition, the intraduodenal administration of a fat emulsion 

did not induce any significant effect on jejunal 2-AG lev-
els [48]. The elevated eCB tone in jejunum, after sham fat 
feeding, was blocked by rimonabant as well as vagotomy, 
suggesting the engagement of CB1 in the vagal nerves [46]. 
Notably, local rimonabant administration into the duodenum 
caused a decrease in fat sham intake, suggesting a positive 
feedback mechanism to control food intake [46, 48]. There-
fore, these data indicate that the presence of fat in the oral 
cavity induces the cephalic responses in the small intestine 
via the vagal nerve, resulting in the increased eCB tone in 
the small intestine that controls in turn fat intake.

Furthermore, 24-h food deprivation was also able to 
increase 2-AG levels in the rat small intestine and serum, 
but not in other peripheral tissues [49]. Refeeding quickly 
normalized 2-AG levels. Similar to the cephalic reflex of fat 
intake, the response was blunted after surgical denervation 
of vagal nerve, suggesting the role of cholinergic synap-
tic transmission. To further confirm the involvement of the 
cholinergic pathway, intraduodenal administration of M3 
muscarinic antagonist decreased jejunal 2-AG levels con-
comitantly with food deprivation induced refeeding.

Another study also reported that starvation induced a 
significant AEA increase selectively in the small intestine 
but not in the brain or stomach [69]. Refeeding was able 
to reverse intestinal AEA levels. Interestingly, capsaicin-
induced sensory denervation abolished the hyperphagic 
effect of CB1 agonists [69], which supports the positive 
feedback mechanism of gut CB1 signalling controlling feed-
ing behaviour proposed by Piomelli’s findings.

To sum up, these findings suggest that eCB signalling via 
CB1 in the small intestine facilitates energy absorption via 
several mechanisms, such as a potent hunger signal promot-
ing food intake as well as by reducing gut motility via inhibi-
tion of cholinergic transmission. Acetylcholine release from 
efferent vagal nerves is directly involved in 2-AG synthesis 
in the gut through the activation of M3 muscarinic receptors 
expressed in the jejunum mucosa. Intestinal AEA levels are 
also able to regulate the gastrointestinal transit as well as 
feeding behaviour.

Microbiota

During the last years, evidence has supported that the gut 
microbiota is a contributing factor to obesity development 
[5, 31, 56]. Microbial composition regulates host metabo-
lism, affecting adipocyte and liver functions [5, 31]. Micro-
biota plays a critical role to process dietary polysaccha-
rides. Thus, the composition of gut microbiome, which is in 
turn affected by diet, regulates gut permeability promoting 
plasma intestinal-generated LPS levels (termed metabolic 
endotoxemia) [5, 56], which have been associated with 
inflammation and metabolic dysfunction in obesity.
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Several studies support that gut microbiota regulates 
intestinal eCB tone [31, 56, 148, 178]. Cani and colleagues 
studied the potential link between the eCB system and gut 
microbiota in the control of whole-body metabolism. First, 
they found that changes in gut microbiota composition con-
trol CB1 mRNA expression in the colon, but not in the small 
intestine [148]. Thus, prebiotic treatment decreased selec-
tively AEA levels and CB1 gene expression in the colon 
of ob/ob mice, which correlated with a decreased plasma 
LPS levels [148], suggesting that intestinal eCB system 
might regulate gut-barrier function. Accordingly, intraperi-
toneal pharmacological treatments targeting the eCB system 
changed gut permeability and the distribution of tight junc-
tion proteins in cell cultures of colonic epithelial monolayer 
cells [148]. Interestingly, prebiotics reduced significantly fat 
mass by blocking CB1 signalling in adipose tissue [148]. In 
cultured adipose tissue explants, LPS treatment completely 
abolished cannabinoid-mediated adipogenesis. A potential 
underlying mechanism might be that LPS modulates eCB 
metabolism in immune cells [113, 224]. Therefore, these 
findings propose that microbiota modulates the intestinal 
eCB system by controlling gut-barrier function via CB1, 
which affects adipocyte physiology through LPS-eCB regu-
latory loop [148].

However, other findings suggest a protective role of 2-AG 
in the regulation of gut-barrier function [3, 56] The abun-
dance of a particular gut bacteria (Akkermansia muciniphila) 
inversely correlates with body weight in rodents and humans 
[56]. A. muciniphila treatment counteracted obesity-related 
metabolic dysfunctions, including increased fat mass, meta-
bolic endotoxemia, and adipose tissue inflammation [56]. 
Strikingly, A. muciniphila colonization enhanced intestinal 
eCB levels (2-AG, 2-oleoylglycerol, and 2-palmitoylglyc-
erol) and restored gut-barrier dysfunction during obesity. In 
addition, in a mouse model of colitis, elevated 2-AG levels 
by a selective MAGL inhibitor (JZL184, via i.p.) improved 
morphological changes in the colon associated with the dis-
ease, reduced endotoxemia, as well as peripheral and central 
inflammation [3]. Both CB1 and CB2 antagonists abolished 
the beneficial effects of MAGL inhibition [3].

Supporting the relevance of microbiota-induced intes-
tinal eCB tone in obesity, engineered NAPE-producing 
E. coli administration in drinking water had beneficial 
effects in a DIO model [31]. A strain of E. coli was gen-
erated to express N-acyltransferase that catalyzes NAPE 
formation, which is the immediate precursor of NAEs 
(Fig. 1). Treatment with NAPE-producing E. coli for a 
week induced a selective twofold increase in NAPE lev-
els in the colon, which restored obesity-induced increased 
body weight, food intake, glucose intolerance, and hepatic 
steatosis for at least 4 weeks after the treatment [31]. Feed-
ing increased the abundance of NAPE in the small intes-
tine, concomitantly with an elevated NAPE–PLD activity 

and expression [60, 61, 68]. Therefore, it is tentative to 
speculate about the conversion of NAPE by NAPE–PLD 
in the small intestine, for example, into the anorectic OEA 
or others members of NAE family, which could regulate 
feeding behaviour, among other physiological responses.

Strikingly, changes in eCB tone in adipose tissue are 
also able to regulate gut microbiota composition promot-
ing obesity, suggesting an intriguing positive feedback 
mechanism. Thus, the adipocyte-specific NAPE–PLD 
deletion induced changes in the gut microbiota [67] 
through an unknown mechanism. Interestingly, the micro-
biota transplantation from mutant mice to germ-free mice 
induced an obese phenotype, recapitulating the phenotype 
observed in the adipocyte-specific NAPE–PLD–KO mice, 
indicating a main contribution of changes in the gut micro-
biota composition as responsible for the obese phenotype 
of these adipocyte-specific NAPE–PLD–KO mice.

Overall, based on the above evidence, AEA disrupts the 
gut-barrier function, while 2-AG has a protective role in 
gut-barrier dysfunction associated with certain pathologi-
cal conditions. In addition, gut microbiota can influence 
the intestinal eCB tone that controls gut-barrier function 
via CB1 and CB2 [3, 56, 148], although further studies 
will have to elucidate the underlying mechanism of micro-
biota-regulated eCB activity in the gut permeability and 
their contribution to the development of obesity, as well as 
to decipher the microbiota-adipocyte crosstalk described 
in these studies, where eCB system plays a key regulatory 
function.

Oral cavity

Remarkably, elevated eCB levels were found in the saliva 
in obese subjects [134], which may be an attractive bio-
marker. Thus, it is tentative to speculate about the role of 
eCBs in the oral cavity in obesity, because some authors 
reported that CB1 in the mouse tongue are able to enhance 
sweet taste responses [221]. In the tongue, CB1 is coex-
pressed with sweet-umami T1r3 receptors in about 70% of 
taste cells [221]. Intraperitoneal administration of 2-AG 
(1 mg/kg) enhanced gustatory nerve responses to sweeten-
ers, but not to the other four basic tastes (salty, bitter, sour, 
and umami) [221]. In addition, intraperitoneal injection of 
AEA and 2-AG selectively increased behavioural responses 
to a sweet–bitter mixture in wild-type mice, but not in total 
CB1–KO mice [221]. Therefore, eCBs can modulate the 
orosensory information and taste perception of sweet foods 
in the oral cavity, and these responses may be altered by 
the obesity-related overactive eCB system. This mechanism 
might fuel the proposal that the tongue is an attractive target 
to reduce overconsumption of high caloric food through a 
peripheral mechanism [221].
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Peripheral restricted CB1 antagonist

In this review, compelling evidence supporting peripheral 
CB1 blockade as potential new therapeutic target to tackle 
obesity epidemic were described (Fig. 2). After the with-
drawal of rimonabant from the market, the design and char-
acterization of different peripheral CB1 blockers has been 
further intensified [34, 186, 202, 203]. These peripheral CB1 
antagonists are designed to contain limited penetrance to 
cross the blood-brain barrier (BBB), thereby strongly reduc-
ing CNS-mediated side effects as seen with rimonabant.

The effects of two peripheral CB1 blockers (AM6545 and 
JD5037) in the context of obesity have been studied in par-
ticular [34, 202–204]. AM6545 is a CB1 neutral antagonist, 
while JD5037 is a CB1 inverse agonist as demonstrated in 
GTPγS-binding assays [202, 203]. Both compounds showed 
low brain penetrance, high affinity, and selectivity for CB1, 
oral bioavailability, and no central effects in behavioural 
tests. AM6545 was able to significantly reduce the body 
weight in diet-induced obese mice, but it was not as effec-
tive as rimonabant [34, 202]. In contrast, JD5037 had similar 
efficiency as a central CB1 inverse agonist (SLV319) in alle-
viating diet-induced metabolic impairments [203]. JD5037 
decreased body weight, food intake, fat mass, dyslipidaemia, 

glucose intolerance, insulin resistance, hepatic steatosis, and 
increased total energy expenditure in DIO mice. Importantly, 
JD5037 did not have any effect in body weight and food 
intake in total CB1–KO mice, indicating the involvement 
of CB1 in these responses [203]. The treatment of JD5037 
was also ineffective in ob/ob and db/db mice, which strongly 
pointed out to the role of leptin resensitization as the benefi-
cial effect of this treatment. Indeed, DIO mice were leptin 
resistant, and JD5037 treatment restored leptin sensitivity in 
the hypothalamus by decreasing leptin secretion in adipose 
tissue and increasing leptin clearance in the kidney [203]. 
Interestingly, JD5037 restored leptin hypothalamic signal-
ling in POMC neurons by reactivating melanocortin signal-
ling, which led to decreased food intake in JD5037-treated 
DIO mice [204]. As a result, peripheral CB1 blockade 
induced hypophagia was abolished in melanocortin MCR4-
KO mice as well as by treatment with a potent MCR4 antag-
onist [204]. In summary, peripheral CB1 antagonists allevi-
ate obesity and obesity-related complications by reversing 
leptin resistance.

Current studies have focused on a new generation of 
peripheral CB1 antagonists with low BBB penetration by 
increasing the polar surface area and lowering its rela-
tive hydrophobicity and lipophilicity [186]. In addition to 
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Fig. 2   Endocannabinoid-mediated responses in different tissues regu-
lating the body’s metabolism and energy balance. Schematic repre-
sentation of the main responses in central and peripheral tissues, and 
microbiota-regulated effects in the gut. Overall, the endocannabinoid 

system promotes energy storage and increases vulnerability to the 
development of metabolic disorders. Direction of arrows indicates 
simulation and inhibition, respectively, after the activation of endo-
cannabinoid signalling
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peripheral CB1 blocker, other potential alternatives might 
be CB1 partial agonists, drugs targeting eCB synthesis or 
degradation, or negative CB1 allosteric modulators. Endog-
enous molecules can also inhibit CB1 activation, acting as 
negative allosteric modulators [51, 73, 212]. In fact, the 
neurosteroid pregnenolone blocked THC-promoted feeding 
behaviour both in sated Wistar rats as well as in 24-h fasting 
mice, although pregnenolone did not have any effect when 
it was administrated alone [212]. In addition, hemopressin 
is a small eCB-like peptide, called pepcans, and it has been 
demonstrated to reduce food intake in rats [51, 57, 106, 175]. 
Further experiments are required to determine the effects 
of such negative CB1 allosteric modulators in the context 
of obesity and their use as potential anti-obesity treatment.

As mentioned above, the eCB system is involved in gas-
trointestinal motility and secretion. Cannabinoid agonists 
slowed gastrointestinal transit, and peripheral CB1 blockers 
(AM6545 and JD5037) significantly reversed CB1-induced 
decrease in gastrointestinal motility [34, 202, 203]. Several 
evidences have demonstrated that the eCB system is toni-
cally active in the gut (reviewed in [131, 185]. Therefore, 
it has been suggested that overactive eCB tone may be pro-
tective against intestinal inflammation in animal models of 
colitis, human inflammatory bowel syndrome, and human 
colorectal carcinoma (reviewed in [131, 185]. In addition, 
inhibitory effect of cannabinoids in gastric acid secretion 
could prevent gastric ulcer formation (reviewed in [71, 131]. 
In line with these findings, we have seriously to consider that 
long-lasting peripheral CB1 blockade contains the possible 
risk to increase intestinal motility, to reduce intestinal per-
meability, and thereby may cause side effects, such as gastric 
ulcer and inflammatory bowel disease (IBD). IBD symptoms 
include diarrhoea, abdominal pain, fatigue, and weight loss, 
and, finally, it can lead to life-threatening complications.

Conclusion

In this review, we have exposed the complex and diverse 
roles of the eCB system in the regulation of energy metab-
olism, by discussing studies using genetically modified 
mutant mice and pharmacological approaches (Fig. 2). Con-
sidering the clinical translation of these findings to humans, 
eCB levels can easily be assessed in the saliva and blood/
plasma, suggesting attractive biomarkers for diagnosis and 
prevention of metabolic diseases or eating disorders. In 
addition, genetic studies could be useful to identify those 
obese patients who can be benefit from treatments targeting 
the eCB system. Genetic studies reported several mutations 
and polymorphisms in the eCB system associated with obe-
sity [9, 19, 136, 190]. In this scenario, human subjects with 
FABP1 T94A variant showed a higher risk of NAFLD [163] 

as well as hepatic lipid accumulation and altered hepatic 
eCB levels [139, 130].

To summarize, a plethora of data showed that the eCB 
system is a key player in the regulation of energy home-
ostasis by promoting energy intake and storage, whereby 
both central and peripheral tissues are involved in. In addi-
tion, the eCB system participates in rewarding properties of 
highly palatable food. Therefore, an overactivation of the 
eCB system promotes obesity and metabolic syndrome. In 
consequence, eCB blockade will also increase resilience to 
eating disorders associated with unlimited access to calorie-
enriched food in modern societies, although CNS effects 
have to be taken into consideration. Finally, the peripheral 
eCB system seems to be an attractive pharmacological tar-
get to treat obesity and obesity-related disorders, indicating 
the therapeutic usefulness of peripherally restricted CB1 
blockers.
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