
Vol.:(0123456789)1 3

Cell. Mol. Life Sci. (2018) 75:965–973 
https://doi.org/10.1007/s00018-017-2666-y

REVIEW

A double dealing tale of p63: an oncogene or a tumor suppressor

Yonglong Chen1 · Yougong Peng2 · Shijie Fan1 · Yimin Li1 · Zhi‑Xiong Xiao1 · 
Chenghua Li1   

Received: 20 June 2017 / Revised: 20 September 2017 / Accepted: 25 September 2017 / Published online: 3 October 2017 
© Springer International Publishing AG 2017

p63 gene and its protein products

p63, also known as TP63 (tumor protein 63), Trp63 (trans-
formation related protein 63), or AIS (amplified in squa-
mous cell carcinoma), is a gene highly homologous to tumor 
suppressor p53. It locates on the distal long arm of human 
chromosome 3, 3q27 [1]. p63 gene possesses 2 promoters 
and 16 exons (Fig. 1a). The first promoter drives transcrip-
tion of TAp63, starting at the first exon, while the second 
promoter triggers transcription of ΔNp63 isotypes, which 
starts at exon 3′ [2].

Primary transcript of either TA or ΔN isotype p63 under-
goes alternative splicing. Consequently, p63 gene can gener-
ate at least 10 different protein isoforms, namely TAp63α/
β/γ/δ/ε and ΔNp63α/β/γ/δ/ε (Fig. 1b). TA isoforms of p63 
protein contain a longer N-terminal transactivation domain 
(TAD), while ΔNp63s possess a shorter region at the N-ter-
mini, which composed 14 amino acid residues and encoded 
by exon 3′. All isoforms share a common DNA-binding 
domain (DBD) and a common oligomerization domain (OD) 
at the middle part. α and β isoforms of p63 (p63α and p63β) 
contain an additional transactivation domain (TAD2) next 
to OD. Additionally, p63α possesses a unique sterile alpha 
motif (SAM) and a trans-inhibitory domain (TID) at the 
C-terminus, which are involved in protein–protein interac-
tion and activity modulation [2, 3].

Activities of p63 proteins: transactivators 
or trans‑inhibitors?

As transcription factors belonging to p53 family, p63 pro-
teins can recognize and bind to the canonical p53 response 
elements (p53-REs), two or more tandem repeats of 
RRRCWWGYYY, in the promoter regions of various genes. 
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Owing to the difference in the sequence of DBD, p63 and 
p53 exhibit different preferences for binding sequences 
in target promoters. Additionally, distinctions of domains 
else than DBDs between different p63 isoforms may lead 
to nuance of DNA-binding preferences [4, 5]. p63 can also 
positively regulate expression of genes such as Skp2 via 
binding to intron regions [6].

Downstream targets of p63 proteins are involved in a 
variety of essential biological processes. As mentioned 
above, p63 and other members of p53 family share some 
common downstream targets, such as p21Waf1/Cip1, Puma, 
and Bax, enabling them to orchestrate to regulate cell cycle 
[7]. Like p53, TA isoforms of p63 can undoubtedly activate 
these downstream genes and consequently lead to cell cycle 
arrest, cell senescence and cell apoptosis. On the contrary, 
ΔNp63 proteins inhibit transcription of these genes, caus-
ing enhanced proliferation and cell survival. This effect of 
ΔNp63s is due to the lack of an intact TAD, and they can 
antagonize the transactivity of other p53 family proteins by 
means of forming inhibitory complexes with them or com-
petitively binding to the p53-REs. Hence TAp63s enhance 
[3, 8–10], while ΔNp63s repress [3, 11], transcription of 
p21Waf1/Cip1, which can inhibit Cyclin E/Cdk2 to mediate cell 
senescence and to restrain cell proliferation [12]. ΔNp63, 
but not TAp63, can also negatively regulate p16Ink4a [13], 
which activates Rb via inhibition of Cyclin D/CDK4/6 [14] 
and facilitates the formation of senescence-associated het-
erochromatic foci (SAHF) to keep pro-proliferative genes in 
an inactive sate [15, 16].

It is traditionally accepted that TAp63s are trans-activa-
tors while ΔNp63s are trans-inhibitors [3]. However, mount-
ing evidence demonstrates that ΔNp63s can also stimulate 
some downstream target genes, including Caspase-1 [17], 

Perp [18], K14, BPAG1 [19], MKP3 [20], Hsp70 [21]. This 
may be because that the N-terminal fragment composed of 
14 amino acid residues functions as a TAD in the ΔNp63 
proteins. Of note, some genes, such as K14 and MKP3, are 
transactivated by only ΔNp63s, but not TAp63s [19, 20]. 
And genes such as Hsp70 are reported to be up-regulated by 
ΔNp63α but down-regulated by TAp63γ [21]. Further study 
indicates that the N-terminal 68 amino acids of TAp63s may 
function as an extra trans-inhibitory domain. So TAp63γ 
demonstrates to repress transcription of Hsp70. However, 
TAD2 in TAp63α can eliminate this repression on Hsp70 
transcription [21]. These findings suggest the roles of par-
ticular domains in different p63 isoforms in modulating their 
specific transactivation or trans-inhibition.

p63 in development: TAp63s or ΔNp63s are 
the leading actors?

Vast evidence shows that p63 gene mutation leads to ecto-
dermal defects, including ectrodactyly, ectodermal dyspla-
sia, and facial clefting syndrome (EEC), split hand/foot 
malformation syndrome (SHFM), limb–mammary syndrome 
(LMS), acro-dermato-ungual-lacrimal-tooth syndrome 
(ADULT), and ankyloblepharon-ectodermal dysplasia-cleft-
ing syndrome (AEC) [22–26]. These observations demon-
strate the importance of p63 in development, particularly in 
development of ectoderm.

Besides mutation of p63, transversion or deletion of 
human chromosome 7, band q21.3–q22.1, which contains 
SLC25A13, DSS1, DLX5 and DLX6 genes, can also lead to 
limb malformation [26–31]. Studies have shown that p63 can 
bind to a cis-acting element in this segment, thereby regulat-
ing the expression of DLX5 and DLX6 [32, 33]. And simul-
taneous deletion of DLX5 and DLX6 has also been shown to 
result in limb defects [34–36]. Therefore, it is likely that p63 
regulates limb development by controlling the transcription 
of DLX5 and DLX6.

TAp63 proteins are barely detectable in somatic cells, 
but they express at a relatively higher level in oocytes, 
where they play key roles in quality control through turn-
ing on genes responsible for cell apoptosis upon genotoxic 
stress [37–39]. It was also reported that TAp63s are the first 
isoforms expressed during mouse embryogenesis and are 
pivotal to initiation of epithelial stratification program and 
inhibition of terminal differentiation [40].

ΔNp63s are predominant isoforms encoded by p63 gene 
in tissues and organs, especially epithelial basal layer in 
embryonic ectoderm and ectoderm-derived tissues or organs 
[41–43]. During development, expression of ΔNp63s is 
stimulated by BMP2, BMP7 and FGF10 [44]. ΔNp63s can 
counteract TAp63s and promote maturation of embryonic 
epidermis [40]. Gerry Melino group found that ΔNp63s 

Fig. 1   Schematic presentation of p63 gene (a) and protein isoforms 
(b). TAD transactivation domain, TAD2 additional transactivation 
domain, DBD DNA-binding domain, OD oligomerization domain, 
SAM sterile alpha motif, TID trans-inhibitory domain. All aliases of 
each isoforms are listed following the formal terms
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transactivate genes characteristic of epidermal basal layer 
and thymus, such as K14, FGFR2 and Jag2, while TAp63s 
transcribe genes characteristic of the superbasal layer, 
including Ets-1, K1, transglutaminases, and involucrin [19, 
45, 46].

Consistent with evidence from human genetics, data from 
mouse model revealed that either pan-p63 or ΔNp63-specific 
knockout mice demonstrate dysplasia of limbs and epider-
mis. They are both deficient in ectodermal cells, leading to 
a lack of squamous epithelium and its derivatives, including 
breast, lacrimal gland and salivary glands [24, 47]. Using a 
transgenic mouse model, Rizzo et al. revealed that ΔNp63 
overexpression results in atopic dermatitis via increasing 
many cytokines and chemokines, including IL-33 and IL-31 
[48]. TAp63-specific knockout mice age prematurely and 
develop blisters, skin ulcerations, senescence of hair follicle-
associated dermal and epidermal cells, and decreased hair 
morphogenesis, likely owing to a defect in maintenance of 
adult skin stem cells [49]. The similarity between pan-p63 
knockout mice and ΔNp63-specific knockout mice indicates 
that ΔNp63s are the predominant isoforms of p63 gene regu-
lating skin development [40].

p63 in tumor formation and progression: 
an oncogene or a tumor suppressor gene?

1.	 Amplification or loss of p63 locus causes cancers?

Although p63 gene was originally cloned as a homologue 
of p53 and p73, which were both well known as tumor sup-
pressors, it is rarely mutated in tumors [3, 50]. Therefore, 
the link between p63 and tumorigenesis remained obscure 
until it was reported that p63 gene is frequently amplified in 
primary cell lines derived from some squamous cell carci-
noma (SCC): David Sidransky group employed fluorescent 
in situ hybridization (FISH) analysis and detected frequent 
amplification of p63 locus in primary lung SCC (LSCC) and 
head/neck SCC (HNSCC). Moreover, amplification of the 
p63 locus was accompanied by RNA and protein overex-
pression of its gene products ΔNp63α and ΔNp63ε, whose 
ectopic expression in Rat 1a endowed these fibroblast cells 
with characteristics of malignancies, significantly enhanc-
ing their colony growth and xenograft tumor formation. 
They also found that most LSCC with ΔNp63α overexpres-
sion simultaneously harbored p53 mutation [51]. Another 
investigation in non-small cell lung cancers demonstrated 
a similar observation: Pierre Massion et al. found that copy 
number of p63 gene and protein level of ΔNp63α were sig-
nificantly increased in 88% of squamous carcinomas, 42% 
of large cell carcinomas and adenocarcinomas of lung [1]. 
These results suggest that p63 may function as an oncogene, 

whose amplification may lead to SCC likely in combination 
with p53 dysfunction.

However, evidence from mouse model revealed that loss 
of a p63 allele increases tumor predisposition and deterio-
rates tumor phenotype under the background of p53 or p73 
heterozygosity. To investigate whether p53 family members 
genetically interact each other in tumor formation, Elsa Flo-
res et al. intercrossed mice with heterozygote of p53, p73 or 
p63. They found that, compared with p53+/− mice, p53+/−; 
p63+/− mice spontaneously developed squamous cell carci-
nomas at a strikingly higher frequency. These tumors were 
found in multiple tissues including larynx, pharynx, cer-
vix, and esophagus, and were more metastatic than those in 
p53+/− mice. On the other hand, compared to p73+/− mice, 
p73+/−; p63+/− mice demonstrated higher predisposition to 
mammary adenocarcinoma, salivary adenoma, squamous 
cell carcinoma, osteosarcoma, transitional cell carcinoma 
and rhabdomyosarcoma. Their study also revealed that 
tumors from p63+/− mice underwent loss of heterozygosity 
(LOH), which is one of the hallmarks of tumor suppressor 
gene inactivation [52]. Consistent with Elsa Flores’ data, 
analysis of tumorigenesis conducted by Alea Mills group 
indicated that heterozygosity of p63 significantly enhanced 
sarcoma development in p53-deficient mice [9]. Other inde-
pendent groups reported that loss of p63 expression is asso-
ciated with tumor progression and poor prognosis in human 
bladder carcinomas [53–55]. These investigations indicate 
that p63 gene has tumor-suppressive activities and loss of 
p63 locus may contribute to tumorigenesis.

2.	 ΔNp63s: oncoproteins or tumor suppressor proteins?

Since p63 can encode two classes of protein isoforms, 
TAp63s and ΔNp63s, which were traditionally assumed 
to possess contrary functions in transcription regulation, 
the researchers tried to identify which isoform(s) is/are the 
prime culprit(s) in SCC tumorigenesis. The aforesaid inves-
tigations carried out by two independent groups revealed 
that ΔNp63α is the predominant isoform overexpressed in 
different cancer types, particularly squamous carcinomas, 
and ectopic overexpression of ΔNp63 isoforms in cultured 
cells can increase soft agar growth and tumor size in mice 
[1, 51]. And overexpression of ΔNp63α occurs in more 
than 80% of SCCs arising from head/neck [56, 57], lung 
[1], esophagus [58], and cervix [59], as well as some cases 
of basal breast carcinoma [60, 61]. In keeping with these 
observations, we found that ΔNp63α can promote cell prolif-
eration and tumor formation [62], as well as prevent cancer 
cells from apoptosis upon genotoxic stress [63, 64]. Accord-
ing to these findings, p63 seems to exert its oncogenic func-
tions via expressing ΔNp63α and other ΔNp63 proteins.

In the cases of ΔNp63s promoting tumorigenesis, 
ΔNp63s may antagonize p53 and TAp73 transactivities, 
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consequently increasing transcription of the abovementioned 
genes involved in cell cycle arrest and apoptosis. As a result, 
cell proliferation and cell survival are enhanced, while cell 
senescence and cell apoptosis are inhibited [63, 65–67]. It 
was also documented that ΔNp63α may up-regulate tran-
scription of Hsp70, which is a stress response protein and a 
determinant of cell death and cell transformation, to prime 
HNSCC [21], as well as that ΔNp63α can target transcrip-
tion of chromatin remodeler Lsh to bypass oncogene-
induced senescence (OIS) and drive tumorigenesis in vivo 
[68]. It was also reported that ΔNp63α positively regulates 
cell matrix adhesion molecules, including integrins α6, β1 
and β4, as well as matrix protein Laminin-γ2. Ablation of 
ΔNp63α can cause a significant down-regulation of these 
proteins, resulting in cell death by anoikis, which can be 
perfectly rescued by restoring expression of ΔNp63α. This 
mechanism may interpret roles of ΔNp63α in tumorigenesis 
and tumor cell survival from another perspective [69]. On 
the other hand, Dennis McCance group found that in pri-
mary human foreskin keratinocytes expressing HPV16 E6/
E7 genes, expression of pan p63 promotes cell migration, 
extracellular matrix (ECM) remodelling and cell invasion 
via inducing Src–FAK complex expression/activation [70]. 
In one of our recent work, we found that metformin, a drug 
for type II diabetes, promoted WWP1-mediated proteaso-
mal degradation of ΔNp63α, resulting in disruption of cell 
matrix adhesion and subsequent apoptosis in human squa-
mous carcinoma cells [71]. In addition, data from our group 
and other labs revealed that ΔNp63α activates c-Myc via 
several mechanisms, likely promoting cell cycle progression 
and tumorigenesis [72, 73].

As mentioned above, loss of p63 expression or locus is 
reported to associate with tumorigenesis or progression, par-
ticularly metastasis, in a variety of cancers. Among these 
cancer types, ΔNp63s are the predominant p63 isoforms 
in some of their normal tissues, such as breast [74–76], 
urothelium [53, 77], prostate [78, 79], and cervix [80]. 
These observations indicate that ΔNp63s may possess anti-
metastasis activities. Further research using an intravenous 
injection assay proved that ectopic expression of ΔNp63α 
significantly inhibited metastasis of malignant spindle car-
cinoma D3S2 cells to the lungs [81].

During the initiation of metastasis for cancer progres-
sion, epithelial cells have to lose their cell polarity and cell 
adhesion, and gain migratory and invasive properties to 
become mesenchymal stem cells. This process is termed 
epithelial–mesenchymal transition (EMT). A reverse process 
termed mesenchymal–epithelial transition (MET) is believed 
to participate in the establishment and stabilization of distant 
metastases by allowing cancerous cells to regain epithelial 
properties and integrate into distant organs [82]. Investi-
gations on the molecular mechanism demonstrated that 
ΔNp63s inhibit cell metastasis via regulating genes involved 

in cell adhesion, motility and migration. As has been noted 
previously, positive regulation of molecules involved in cell 
matrix adhesion may contribute to tumor repressive activi-
ties of ΔNp63s [69]. Additionally, this mechanism may also 
prevent tumor cells from detaching the matrix. Cell–cell 
adhesion is another aspect of epithelial properties, in which 
the transmembrane protein Perp is an important factor to 
maintain proper desmosome structure and function. Perp is 
a direct downstream target of various p53-family proteins 
including ΔNp63s [18]. Logically, ΔNp63s may inhibit 
EMT via facilitating cell matrix and cell–cell adhesion. On 
the other hand, ablation or reduced expression of ΔNp63s 
were reported to result in up-regulation of other proteins 
involved in cell adhesion, motility and migration, such as 
N-cadherin, L1 cell adhesion molecule (L1CAM), Periostin, 
and Wnt-5a [83]. It was also documented that ΔNp63α 
inhibits cell invasion via up-regulating inhibitor of differ-
entiation-3 (Id-3), which can down-regulate expression of 
matrix metallopeptidase 2 (MMP2) to prevent from cleaving 
components of the extracellular matrix [84]. We recently 
reported that activation of oncogenic phosphatidylinositol 3 
kinase (PI3K), Ras, and Her2 signaling can down-regulate 
ΔNp63α in cancer development via activating Akt, which in 
turn phosphorates Foxo3a to prevent it from binding to p63 
promoter region. This decrease in ΔNp63α leads to down-
regulation of its downstream targets including E-cadherin, 
Desmoplakin and Par3, resulting in enhanced cell motility 
and tumor metastasis [85]. In some of our other studies, we 
identified the metastasis suppressor CD82 (cluster of dif-
ferentiation 82) and mitogen-activated protein kinase phos-
phatase 3 (MKP3) as direct ΔNp63α transcriptional targets, 
and found that ΔNp63α up-regulates CD82 or MKP3 to 
inhibit caner metastasis [20, 86]. It was also reported that 
ΔNp63s are involved in regulation of crucial players of EMT 
such as Snails and TGF-β [87–89], as well as p53-, particu-
larly mutant p53-, mediated regulation of metastasis [81, 
90, 91]. It remains unclear whether p63 is involved in MET 
process during the colonization and formation of a meta-
static nodule [92].

3.	 TAp63α: simply as a tumor suppressor?

Since a great deal of evidence demonstrates that TAp63s 
transactivate various genes to promote cell cycle arrest 
and cell apoptosis [8, 38, 93, 94], it is almost indisputably 
accepted that TAp63 isoforms have tumor-suppressive activ-
ity [95]. Using a TAp63-specific knockout mouse model, 
Alea Mills group found that TAp63 deficiency compromises 
Ras-induced senescence, enhances proliferation and pro-
motes tumorigenesis in the context of p53 deficiency. Exog-
enous expression of TAp63s, including TAp63α, TAp63β 
and TAp63γ, can induce cell senescence in cultured cells and 
inhibit tumor formation upon xenograft implantation in nude 
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mice [9]. Elsa Flores groups employed another conditional 
knockout mouse model and found that TAp63s suppress can-
cer metastasis through up-regulating miR-130b and Dicer 
[96]. TAp63s can directly bind to and transactivate the pro-
moter of endoribonuclease Dicer, which was responsible for 
processing of mcroRNAs and involved in cancer metastasis 
[97, 98]. Deficiency of TAp63s leads to down-regulation of 
Dicer and a decrease in spontaneous development of highly 
metastatic tumors. Processing of various metastasis-related 
microRNAs, including miR-10b, miR-200b, miR-200c, miR-
34a and miR-130b, is deficient in TAp63−/− mice. TAp63s 
can also directly bind to and transactivate miR-130b pro-
moter. Most importantly, restore of either Dicer or miR-130b 
partially rescues invasive phenotype in TAp63−/− MEFs, 
while simultaneous restore of both molecules perfectly 
reverses invasion induced by TAp63 deficiency [96]. In addi-
tion, TAp63s can also potently activate transcription of Perp 
to inhibit metastasis [18].

Though TA isoforms of p63 are once assumed to induce 
cell senescence, which contributes to tumor-suppressive 
activities of TAp63s [9], TAp63-specific conditional 
knockout mice employed by Elsa Flores group demonstrate 
enhanced cell senescence [49]. This is likely due to genomic 
instability and increased DNA damage resulted from TAp63 
deficiency. And this senescence induced by TAp63 defi-
ciency occurs not only in dermal precursor cells [49], but 
also in osteosarcomas and rhabdomyosarcomas in TAp63−/−; 
p53+/− mice [96]. This observation is in conflict with above-
mentioned data from Alea Mills group that TAp63s induce 
cell senescence [9].

Additionally, despite the widespread concept of TAp63s 
as tumor suppressors, Roberta Malaguarnera et al. reported 
that TAp63α protein is in a high percentage of thyroid car-
cinomas, but not in normal thyroid cells or benign thyroid 
adenomas [99]. In these thyroid cancer cells, the tumor-
suppressive activities of TAp63α are absent, because either 
endogenous or exogenous TAp63α fails to transactivate 
its downstream genes. On the contrary, TAp63α seems to 
antagonize effects of p53 on its target genes, cell viability 
and foci formation in these cells. Moreover, transactivity 
of p53 in thyroid cancer cells can be strikingly elevated by 
TAp63α silencing. These oncogenic effects of TAp63α likely 
depend on its C-terminus, which contains a unique sterile 
alpha motif (SAM) and a trans-inhibitory domain (TID), 
since neither TAp63β nor TAp63γ are still able to induce the 
target genes and to exert tumor-restraining effects in thyroid 
cancer cells [99]. Another investigation demonstrated that 
mRNA levels of TAp63s, but not ΔNp63s, are higher in 
high-grade follicular lymphomas compared to non-neoplas-
tic lymphocytes. This overexpression of p63 is independent 
of gene amplification [100]. Whether and how up-regulated 
TAp63s are involved in formation and progression of lym-
phomas in these cases requires further investigation.

Concluding remarks: a double dealer depending 
on context

p63 gene can encode two groups of proteins, namely TA 
and ΔN isoforms [2]. Increasing evidence demonstrates that 
transactivities of p63 proteins are much complicated: besides 
their trans-repressive activities [3, 11, 13], ΔNp63s also 
possess transactivities for some downstream genes [19, 21]; 
TAp63s are generally transactivators [3, 9, 96], but they may 
lose their transactivities even act as trans-inhibitors in cer-
tain scenarios [21, 99]. Evidence from human genetics and 
mouse model reveals that p63 gene is essential for organism 
development [19, 24, 40, 41, 47, 49]: TAp63s are expressed 
at a relatively high level in oocytes and during early stage 
of embryogenesis to maintain certain progenitor cells, par-
ticularly of skin stem cells; expression of ΔNp63s gathers 
along with the differentiation of ectoderm layer to promote 
its maturation and stratification of epithelium.

TA and ΔN isoforms of p63 regulate tumor formation, 
growth and metastasis via multiple mechanisms (Fig. 2). 
TAp63s are generally assumed to function as tumor sup-
pressor proteins, because they can transactivate a batch 
of genes to induce cell cycle arrest and cell apoptosis [8, 
38, 93, 94]. Evidence from mouse models also reveals 
that TAp63s repress tumorigenesis and metastasis [9, 96]. 
Tumor-suppressive activity of TAp63s seems to depend on 
genetic background or cell type: TAp63 deficiency induces 
cell senescence in normal epidermal cells and epithelium-
derived cancer cells [49, 96], but increases proliferation 
and enhances Ras-mediated oncogenesis in the context of 
p53 deficiency in vivo [9]; in some thyroid carcinomas, 
TAp63α loses its tumor-suppressive activity and even exhib-
its oncogenic effects via antagonizing p53 transactivity [99]. 
ΔNp63s also have dual effects on cancers: in various types 

Fig. 2   Roles of p63 in tumor formation, growth and metastasis. 
TAp63s mainly act as tumor suppressors by inhibiting cell prolifera-
tion, survival and tumor metastasis, and occasionally exert oncogenic 
activity via repressing p53 trans-activity. ΔNp63s promote formation 
and growth of some epithelium-derived tumors through enhanced cell 
proliferation and survival. On the other hand, ΔNp63s repress tumor 
metastasis via inhibition of EMT. A full arrow means a positive regu-
lation, while a blunt arrow represents an inhibition
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of squamous cell carcinomas, they are overexpressed as 
a consequence of p63 gene amplification and function as 
oncoproteins to initiate tumor formation [1, 51]. Oncogenic 
effects of ΔNp63s may be due to their activities on cell pro-
liferation and cell survival [63, 65–69]. On the other hand, 
ΔNp63s can also transactivate a vast body of genes involved 
in EMT [18, 20, 65, 69, 82, 84]. This may account for the 
observation that ΔNp63s can suppress metastasis during the 
progress of some cancer types [81, 85], though some evi-
dence indicates that p63, including ΔNp63 isoforms, can 
drive cell invasion under some circumstances [70].

Since ΔN and TA isoforms of p63 can, respectively, 
promote or inhibit tumor initiation, effects of p63 gene on 
tumorigenesis are delicate. In normal somatic cells, onco-
genic ΔNp63s are balanced with tumor-suppressive TAp63s, 
TAp73s and p53. Under certain scenarios, particularly in the 
absence of sufficient functional p53 or p73, either amplifi-
cation or loss of p63 gene locus may exacerbate this subtle 
imbalance, leading to predisposition to cancer.

Owing to dual roles of p63s in cancer formation and 
progression, future investigations are required to elucidate 
how p63 isoforms are regulated at either transcriptional or 
post-transcriptional levels, and how they are regulated to 
exert their oncogenic or tumor-suppressive activities in dif-
ferent cell types, as well as how they switch their different 
activities at different stage of tumor development. With these 
questions addressed, it would be possible to explore some 
small molecule drugs targeting specific p63 isoforms, their 
regulators or downstream genes for cancer therapy according 
to different scenarios.
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