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Abstract
Maintenance of genome stability is a crucial cellular function for normal mammalian development and physiology. However, 
despite the general relevance of this process, genome stability alteration due to genetic or non-genetic conditions has a par-
ticularly profound impact on the developing cerebral cortex. In this review, we will analyze the main pathways involved in 
maintenance of genome stability, the consequences of their alterations with regard to central nervous system development, 
as well as the possible molecular and cellular basis of this specificity.
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Introduction

Maintenance of genome stability is a complex cellular task, 
handled by several interrelated mechanisms that ensure 
faithful duplication and segregation of genetic material 
during cell cycle, as well as its repair in proliferating or 
post-mitotic cells. Alterations of these mechanisms, due 
to genetic or non-genetic conditions, have severe conse-
quences, such as cancerous transformation or altered embry-
onic development. Among the different tissues, developing 
human neocortex appears to be particularly vulnerable to 
alterations of genome stability, as one of the most common 
clinical manifestations of these disorders is microcephaly, 
which is the result of brain volume reduction. Microceph-
aly is a common clinical condition that may be evident at 
birth (primary or congenital microcephaly) or postnatally 
(secondary or progressive microcephaly). In the hereditary 
forms, microcephaly may be the only defect observed (non-
syndromic microcephaly or MCPH) or be associated with 
other malformations (syndromic microcephaly) [1]. Dissect-
ing the molecular and cellular mechanisms implicated in 

genetic primary microcephaly could also be critical to better 
understand non-genetic forms, such as intrauterine insults, 
viral infections [2, 3], or alcohol/drug abuse during preg-
nancy [4]. In theory, any condition that alters neural progeni-
tor expansion or their survival may induce microcephaly. 
However, independently of the specific alteration of brain 
development that characterize microcephaly syndromes, 
the identification of causal mutations has revealed that they 
mostly occur in ubiquitously expressed genes, whose prod-
ucts are tightly involved in cell proliferation and mainte-
nance of genomic stability. Understanding the reasons of this 
specificity is in most cases an open issue. In this review, we 
will summarize the main cellular events in the development 
of the cerebral cortex, with particular emphasis on those that 
may distinguish cortical progenitors from other developing 
cell types. We will also underscore the evidence of specific 
sensitivity of neural progenitors to genome integrity. Then, 
we will analyze the genetic causes of microcephaly, group-
ing the different syndromes on the basis of the main molecu-
lar process involved. Finally, we will try to highlight how the 
interaction between different mechanisms may represent a 
common framework at the basis of the selective vulnerability 
of neural progenitors.
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Milestone events in cortical development

In vertebrates, the earliest stages of brain development 
require the segmentation of neural tube along a head-to-
tail (anteroposterior) and back-to-front (dorsoventral) axes 
[5]. The first population of neural progenitors consists of 
neuroepithelial cells (NECs), which expand their pool by 
undergoing a series of symmetric proliferative divisions 
[6]. Then, NECs become more fate-restricted radial glial 
cells (RGCs). RGCs are bipolar cells that retain an api-
cal–basal orientation and express astroglial markers [7, 
8]. RGCs contact the pial surface and the ventricular sur-
face trough their basal and apical process, respectively. 
The onset of neurogenesis is determined by asymmetric 
division of RGCs cells, i.e., divisions that generate two 
different daughter cells. RGC asymmetric divisions can 
be directly neurogenic when they produce an RGC and a 
neuron or may generate an RGC and a more fate-restricted, 
Basal Progenitor (BP). BPs undergo one or few rounds 
of symmetric divisions before giving rise to post-mitotic 
neuroblasts and are one of the major sources of cortical 
neurons [9]. RGCs may also divide symmetrically to gen-
erate two BPs or two neurons [10]. Different daughter cells 
are spatially segregated: RGCs cell bodies are restricted 
to the more apical part of the cortical wall, correspond-
ing to the ventricular zone (VZ); BPs bodies form a more 
basal layer known as the subventricular zone (SVZ). 
Importantly, additional progenitor populations have been 
described, such as the basal RG-like cells [11], which are 
located abventricularly and are found abundantly in brains 
of gyrencephalic species, such as human, monkey, and fer-
ret. Newborn cortical neurons migrate along the interme-
diate zone (IZ) to reach the cortical plate (CP), where they 
accumulate below the basal lamina. Later-born neurons 
arriving in the CP migrate past earlier born neurons in an 
inside-out fashion, thus generating multi-layered neocor-
tex [11] (Fig. 1).

General impact of genomic stability on brain 
development and function

Genomic instability (GIN) is defined by an increased 
mutation rate, due to inactivation of DNA repair path-
ways or to increase of genotoxic stress from cellular pro-
cesses that overcome high-fidelity DNA repair. Chromo-
somal instability (CIN) is a subset of GIN, characterized 
by altered stability of chromosomes, leading to amplifi-
cation, deletion, or rearrangement of long chromosomal 
fragments [12, 13]. GIN may result from abnormalities 
in different steps of cell cycle, including DNA replication 

[14], abnormal chromosome segregation [15], or abortive 
cytokinesis [16]. CIN and GIN are especially harmful 
to cells that continue to proliferate, as they are able to 
deregulate cell division and prompt senescence, cell death, 
or uncontrolled proliferation. However, CIN and GIN can 
also be detrimental in long-lived post-mitotic cells, since 
they may alter gene expression programs and lead to the 
production of abnormal proteins [17]. On this basis, it is 
not surprising that genetic and non-genetic alterations 
leading to CIN and GIN have profound consequences on 
CNS development, which is characterized by explosive 
waves of cell proliferation and generates cells with the 
longest lifespan in the body. Indeed, CNS is consistently 
affected in most conditions resulting in CIN and GIN. 
Interestingly, although these conditions should generically 
affect all proliferating cells in the body, in many cases, 
the severity of CNS alterations is disproportionate if com-
pared to other tissues, indicating that CNS development 
and function have specific vulnerability factors. In par-
ticular, neural progenitors show strong sensitivity to DNA 
damage [18], which may change at different developmental 
stages [19] (Fig. 2).

One of the most dramatic evidences of this sensitivity has 
been provided by follow-up studies of atomic bomb survi-
vors in Hiroshima and Nagasaki, showing that the frequency 
of microcephaly in newborns exposed to radiations in utero 
increased ten times more than the incidence of radiation-
induced tumors [20]. In addition, a huge array of human 
syndromes characterized by neurodevelopmental defects, 
neurodegeneration, or brain tumors displays defects in DNA-
damage signaling [21].

This peculiar sensitivity has been correlated with the rela-
tively low capability of different neural progenitors to cope 
with DNA damage. It has been shown that neuronal progeni-
tors process IR-induced DNA damage more slowly than neu-
rons and, as a consequence, are also more susceptible to IR-
induced apoptosis [22, 23]. A second factor that may justify 
the specific susceptibility of different neural progenitors to 
genotoxic insults is the different durations of their cell-cycle 
phases. G1-phase lengthening is associated with differenti-
ating progenitors [24]: neural progenitors undergoing rapid 
expansion have longer S phase, compared with progenitors 
committed to the neurogenic lineage [25]. Longer replica-
tive phase during early progenitor expansion may facilitate 
accurate DNA repair through homologous recombination 
(HRR), which requires more time to be completed than non-
homologous end joining (NHEJ) [26], thus avoiding trans-
mission of genetic errors to a large population of brain cells. 
On the other hand, differentiating progenitors rely more on 
NHEJ to repair DSBs [27], which can be more effective for 
coping with the high replicative stress associated with rapid 
proliferation of late neural progenitors [28–30]. Most knock 
out mouse models of DNA repair genes, such as Polb and 
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Rev7 mutants [31, 32], show lethal phenotypes and neuronal 
defects associated with apoptosis of neuronal precursors.

Differential usage of DNA repair pathways at different 
developmental stages, associated with a different apoptotic 
threshold, may justify most of the specific effects of GIN. 
For instance, mice defective for NHEJ because of DNA 
ligase IV (Lig4) inactivation show DNA-damage-induced 
apoptosis in post-mitotic differentiating immature neurons, 
while HRR-deficient Xrcc2 knockout mice show apoptosis 
only in neural precursors cells, thus suggesting that dur-
ing early development, DSB are repaired mainly using 
HRR [27]. Another example of differential requirement of 
DNA-damage response (DDR) factors during development 

is the conditional ablation of Topbp1, which is an activator 
of ATR during DDR and an important factor to maintain 
DNA integrity during replication. Deletion of Topbp1 in 
early cortical progenitors, using an Emx1-Cre driver, leads 
to microcephaly and strong apoptosis during development. 
In contrast, deletion at later stages using Nes-Cre results in 
similar levels of DNA damage, but attenuated apoptosis. In 
addition to the temporally restricted dependence on different 
DNA repair pathways, these data suggest that neural pro-
genitors have different thresholds for apoptosis at different 
developmental stages and support the idea that apoptosis in 
early progenitors might be a crucial mechanism to ensure 
genome integrity in CNS [28, 29, 33].
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Fig. 1   Multiple kinds of genome lesions can impact the nervous 
system at all stages of development and maturity. Replication stress 
primarily affects proliferating neural progenitors that may require 
DNA DSB repair, which involves either HR or NHEJ. HR is depend-
ent on using replicated sister chromatids as an error-free repair tem-
plates and is not active in non-replicating or differentiated cells. In 
this phase, ATR exerts a prominent role in protecting cells from 
DNA damage arising during S phase in consequence of DNA stress-
ors. Replicating cells may also experience other types of damage, 

including inter-strand crosslinks or strand breaks from other sources, 
including oxidative lesions and transcription-associated damage. 
ATM and DNA-PK are activated by DNA DSBs and exert a pivotal 
function in DSB recognition. In non-cycling cells, NHEJ repairs 
DNA DSBs, whereas other types of DNA damage require the BER/
single-stranded break repair (SSBR) pathway or NER. Oxidative 
damage can also impact immature cells, but will be an ongoing threat 
to the mature nervous system
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Neurons display high sensitivity to GIN even after the end 
of development. The high levels of oxidative metabolism 
that characterize brain produce a high burden of reactive 
oxygen species, which are the main cause of SSB. Transcrip-
tion-associated breaks [34] and neurotransmission-associ-
ated stress are additional SSB sources [35]. Accordingly, 
most patients bearing mutations in gene responsible to sense 
or repair SSB display neurological syndromes [33].

DNA‑damage‑sensing pathways and cortical 
development

In all tissues, DNA damage is sensed by genome surveil-
lance pathways that may prevent cell-cycle progression, or 
initiate apoptosis, thus allowing DNA repair or preventing 
the potential danger posed by damaged cells [36]. Genome 
surveillance is ensured by three PI3K-like protein kinases: 
ATM (ataxia–telangiectasia, mutated), ATR (ATM and 
Rad3-related), and PRKDC (the catalytic subunit of the 
DNA-dependent protein kinase) [23]. The relative impor-
tance of individual kinases in CNS development is depend-
ent on the type of DNA lesion and cells [37]. ATR exerts a 
prominent role in protecting cells from DNA damage aris-
ing during S phase in consequence of DNA stressors like 

ultraviolet radiation, DNA polymerase inhibitors, nucleo-
tide depletion, or DNA crosslinkers, leading to DNA poly-
merase slowing or stalling [23]. These agents converge on 
formation of single-stranded DNA (ssDNA) stretches at 
the replication fork, which may produce replication inter-
mediates leading to high risks of mutation and/or genomic 
rearrangements. Canonical ATR pathway activation is trig-
gered when the replication protein A complex (RPA) binds 
to ssDNA, generating a recruitment platform for different 
proteins, including ATR-interacting protein (ATRIP), which 
in turn recruits ATR. In addition to ATR–ATRIP complex 
formation, full ATR activation requires the simultane-
ous presence on ssDNA of the heterotrimeric ring-shaped 
complex RAD9–RAD1–HUS1 [38]. This complex locally 
recruits TOPBP1 that binds to and activates ATR, leading 
to phosphorylation of checkpoint kinase-1 (CHK1) and 
other downstream ATR effectors, which slow origin firing, 
arrest cell cycle, stabilize, and restart stalled replication 
forks [39]. In contrast, ATM and PRKDC are activated by 
DNA double-strand breaks (DSBs) and exert a pivotal func-
tion in DSB recognition [23]. When DSB are recognized 
by the MRN complex (MRE11–RAD50–NBS1), ATM is 
recruited at DNA-damage sites, leading to phosphoryla-
tion of H2AX histone variant at S139 (γH2Ax) in prox-
imity of the break. γH2Ax binds to MDC1, which further 
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Fig. 2   Cellular defects that impair the fidelity of mitosis promote 
chromosome mis-segregation (chromosome instability, CIN) and ane-
uploidy. Increasing evidence reveals that errors in mitosis can also 
promote the direct and/or indirect acquisition of DNA damage and 
chromosome breaks. Unrepaired DNA damage is also deemed a con-
tributor to aneuploidy, which might be especially relevant in the cen-
tral nervous system (CNS) due to evidence for a low repair capacity 
of neuronal precursors and differentiated neurons. The induction of 

DNA damage may lead to apoptosis, which occurs in the majority of 
conditions described in this review. In contrast, some MCPH, Seckel 
syndrome and FA are characterized by cell-cycle arrest due to mitotic 
alterations. Color-coded bars indicate the relative contribution to the 
cortical phenotype from cell-cycle arrest (green) and apoptosis (blue). 
MCPH1: all the genes mutated in MCPH that show mitotic altera-
tions. MCPH2: MCPH1, ASPM, and CITK
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amplifies the signal by recruiting more MRN molecules 
and TP53BP1 [40]. ATM activation is crucial in prevent-
ing DNA-damaged cells from entering S phase. ATM also 
activates TP53, which in turn induces cell-cycle blocker 
CDKN1A (p21CIP1) as well as apoptosis-initiating genes. 
Most DSB occurring outside S phase are repaired by NHEJ 
independently of ATM, but a minority of DSBs located in 
heterochromatic regions or with blocked ends require pro-
cessing in an ATM-dependent fashion. PRKDC is engaged 
to DSBs by the heterodimer complex KU70/80 to form the 
DNA-PK holoenzyme and facilitate DNA repair via NHEJ 
[41]. However, NHEJ core components’ inactivation leads 
to extensive neural apoptosis and embryonic lethality, while 
mice-lacking PRKDC are viable [42, 43]. How these three 
kinases collectively organize the responses to DNA dam-
age has been elegantly demonstrated by Enriquez-Rios and 
colleagues: mice-bearing single or combined mutations of 
Atm, Atr, or Prkdc showed differential cellular sensitivity in 
response to IR [37]. Authors confirmed that ATM transduces 
pro-apoptotic signals in non-cycling cells, while it turned 
out to be less important in replicating progenitors in VZ. In 
contrast, ATR deletion did not affect the increased apoptosis 
induced by IR in the presence of PRKDC loss. Interestingly, 
apoptosis levels were increased by PRKDC loss even when 
both ATM and ATR were deleted (triple knockout mice), 
implying the existence of an additional, non-defined path-
way converging on TP53 activation. In humans, PRKDC 
mutations have been associated to a rare syndrome charac-
terized by immune deficiency and microcephaly [44, 45]. 
ATM loss is responsible for the neurodegenerative syndrome 
ataxia–telangiectasia, while hypomorphic ATR​ mutations 
are associated with one of the complementation groups of 
Seckel syndrome (SCKS) [29, 46] (see below).

In summary, the DNA-damage sensors ATR and PRKDC 
appear to be crucial for coping with endogenous and exog-
enous replication-related stress arising during embryonic 
development. Neural tissue could be affected more than 
other districts because of the stress imposed by the explosive 
proliferation of neural progenitors that especially character-
ize late-born neurons [47]. On the other hand, ATM is much 
more important for post-mitotic neurons, but the reasons for 
this specificity remain undefined.

DNA repair pathways in cortical 
development

In human gestation, cortical neurogenesis lasts for a long 
period, spanning from 7th until 28th week [48]. Neural 
progenitors, committed progenitors and differentiated cells 
are continually under threat by lesions from endogenous 
or exogenous sources. Base modifications, similar to those 
induced by ultraviolet radiation, may distort the helical 

structure of the DNA and are repaired by the nucleotide 
excision repair pathway (NER), while DNA base modifica-
tions caused by alkylation, deamination, or oxidation, such 
as those induced by reactive oxygen species (ROS), are 
mainly repaired by the base excision repair pathway (BER). 
DNA double-strand breaks (DSB) are the most harmful type 
of DNA lesion, which may lead to apoptosis or mutagenic 
rearrangements, such as translocations if left unrepaired or 
not correctly repaired [36]. DSBs may be generated exog-
enously, by Ionizing Radiations (IR) or different chemical 
agents (such as chemotherapeutic drugs), or endogenously, 
by prolonged replication fork stalling or ROS [49]. DSBs 
can be managed by cells through two different core path-
ways: HRR and NHEJ [50].

Base excision repair

The most common DNA lesion, DNA single-strand break 
(SSB), may be produced by ROS reaction with the deoxy-
ribose sugar of DNA, as normal enzymatic intermediate of 
Base Excision Repair (BER) pathway, from catalytic inter-
mediates generated by topoisomerase 1 (TOP1) to resolve 
supercoiled structures during replication, transcription, or 
other events. Given the different sources of SSBs, chemical 
composition of SSB ends can be highly heterogeneous and 
a wide variety of sub-pathways of SSB repair have evolved. 
Persistent SSBs may lead to replication fork collapse dur-
ing chromosome duplication with consequent formation of 
DSBs, as well as transcription block in non-proliferating 
cells [33]. To deal with oxidation, deamination and sponta-
neous hydrolysis of bases, specific subtypes of BER operate 
during all stages of the cell cycle and exert a key function 
in both dividing and non-dividing cells. The sequence of 
BER is started by a lesion-specific DNA glycosylase, which 
recognizes and hydrolyzes the N–glycosidic bond of a sub-
strate base, generating an apurinic/apyrimidinic site inter-
mediate. This alterations, which can be frequently formed 
by spontaneous or damage-induced hydrolysis of the N–gly-
cosidic bond, are cut by an endonuclease, APEX1. This 
protein works in coordination with PNKP to generate 5′-P 
and 3′-OH priming group, for repair synthesis and ligation. 
BER then engages Pol β, to replace the missing nucleotide 
(short patch repair) or Pol δ/ε in collaboration with PCNA, 
to perform displacing synthesis during S phase or when 
ATP concentrations are low (long patch repair). Finally, 
the repair factor complex XRCC1 and XRCC1 and DNA 
ligases LIG1 or LIG3 seal the remaining nick [51]. Muta-
tions in genes encoding for BER components such as APTX, 
TDP1, or PNKP may produce different CNS phenotypes. 
TDP1 mutations cause a neurodegenerative disorder, Spi-
nocerebellar ataxia with axonal neuropathy (SCAN1) [52], 
while mutations in APTX are responsible for Ataxia–ocular 



3968	 F. T. Bianchi et al.

1 3

motor apraxia 1 (AOA1) [53]. PNKP mutations may result 
in neurodegeneration (AOA4) [54], but may also cause a 
neurodevelopmental disorder, Microcephaly with Seizures 
(MCSZ) [55]. This heterogeneity could be explained by the 
dual role played by PNKP, which is a key factor in BER, 
but is also involved in NHEJ through its interaction with 
XRCC4. PNKP is thus involved in repair of both SSBR and 
DSBR [33, 56], but it is likely to play a role only in a frac-
tion of breaks repaired by NHEJ after IR damage [57].

Nucleotide excision repair

Nucleotide excision repair (NER) is a repair system capable 
of removing a wide variety of DNA helix-distorting lesions, 
such as base modifications or UV-induced photolesions and 
DNA adducts induced by chemicals like N-acetoxy-2-acet-
ylaminofluorene or aflatoxin B1. Patients bearing congenital 
defects in NER components are peculiarly sensitive to sun-
light, and suffer for cancer predisposition and/or premature 
aging [58].

NER pathway is very important during neural progenitor 
proliferation, as NER can cope with stalled RNA polymerase 
or abortive transcripts, monitor DNA integrity, and activate 
DNA-damage signaling. In this repair system, a central role 
is exerted by components of the basal TFIIH transcription 
and repair complex, required for RNA pol II function. This 
system is responsible for transcription-coupled repair (TCR), 
as well as for transcription-independent global genomic 
repair (GGR). It is worth noticing that mutations involv-
ing TCR lead to neuropathology, while those affecting 
GGR have much milder neurological implications. The two 
pathways share a high number of repair factors but differ 
during the DNA-damage recognition phase [49]. In TCR, 
DNA lesions affect a transcribed gene and are sensed in 
consequence of RNA Pol II stalling. In this case, the repair 
process is initiated by ERCC6 that, in turn, recruits ERCC8. 
Instead, the proteins required to recognize DNA damage in 
GGR are XPC and XPE. For both pathways, DNA-damage 
verification and unwinding is carried out by TFIIH, a DNA-
dependent ATPase and helicase activity that, in complex 
with ERCC3 or ERCC2, opens up the DNA helix around 
the lesion. Finally, the DNA strand that contain the lesion 
is cut at the single-to-double-strand DNA transitions by 
the structure-specific endonucleases ERCC5 and ERCC1, 
gap filling is carried out by DNA Pol δ/ε using undamaged 
strand as a template, and the nick is sealed by DNA ligase 
I or III [59]. Mutations in several components of the NER 
pathway can lead to the human syndromes Xeroderma Pig-
mentosum (XP), Cockayne Syndrome (CS), and Trichothi-
odystrophy (TTD). Defects in NER components may lead 
to a complex relationship between genetic alterations and 
clinical phenotype [60]. While mutations in different genes, 

grouped in eight XP complementation groups, lead to very 
similar phenotypes, different mutations in just one gene 
(ERCC2) may lead to six different clinical disorders: XP, 
XP with neurological disease, TTD, XP/CS complex, XP/
TTD complex, or cerebro-oculo-facio-skeletal syndrome. 
XP is rare disease affecting the skin and leading to neurode-
generation (that results in brain atrophy). Exposure of these 
patients to sunlight results in a high incidence of skin and 
mucous membrane cancer, squamous and basal cell carci-
nomas and melanomas [61]. However, mutations in ERCC8 
or ERCC6, lead to CS. CS is a developmental and neuro-
logical disorder, associated with reduced lifespan without an 
increased incidence of cancer. In this case, neuropathology 
is profoundly different from that associated with XP, as CS 
is characterized by microcephaly with intellectual disability. 
Microcephaly in CS is likely due to combination of defec-
tive cortical development and progressive brain atrophy. In 
addition, vasculopathy and calcification of the basal ganglia 
may also be observed. To complicate even further the situ-
ation, CS may be caused by mutations in ERCC2, ERCC3, 
or ERCC5 [62]. TTD is a rare autosomal recessive disorder 
characterized by sulphur deficient brittle hair, sometimes 
accompanied by facial dysmorphism and intellectual disabil-
ity. TTD arises from mutations in the gene-encoding ERCC2 
helicase or, less frequently, ERCC3 or GTF2H5 proteins. 
The neurological abnormalities observed in TTD include 
developmental microcephaly associated with intellectual 
disability, deafness, and ataxia [63].

Similar to CS, TTD may further affect cortical develop-
ment by altering myelin formation. Moreover, neurological 
defects observed in TTD patients may be due to the deregu-
lation of thyroid hormone target genes in the brain [64].

Homologous recombination repair 
and Fanconi anemia pathways

In cycling neural progenitors, genomic fidelity during rep-
lication is ensured by HRR. HRR is considered an error-
free mechanism, occurring during S or G2 phase of the cell 
cycle. During the initial stages of HRR, ATM and ATR 
kinases recognize double-strand DNA break and phospho-
rylate downstream targets such as H2AX, BRCA1, CHEK2, 
and TP53. BRCA1, along with BARD1 and BRIP1, acts 
as a scaffold that coordinates proteins at the damage site 
[65]. HRR requires a sister chromatid as a template to 
repair DNA and is initiated by the MRE11-RAD50-NBS1 
complex, in collaboration with RBBP8, which generates 3′ 
ssDNA overhang for strand exchange [66]. MRN complex 
participates in both HR and NHEJ (see below); in contrast 
RBBP facilitates HR while suppressing NHEJ [67] [68]. 
RAD51 is recruited to 3′ ssDNA overhangs through a com-
plex mechanism involving the RPA, BRCA2, BRCA1, and 
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XRCC2 proteins, to form RAD51 nucleoprotein filaments, 
which are essential for strand invasion of the intact homolo-
gous DNA region used as a template for repair. Studies in 
knockout mouse models have shown that HRR genes are 
fundamental for brain development [69–71]. In humans, 
mutations in these genes have been associated with hetero-
geneous clinical manifestations, which may (BRCA1) [72, 
73] or may not (BRCA2) include microcephaly [74, 75]. 
One of the peculiar phenotypes that may derive from HRR 
pathway mutations is Fanconi anemia (FA), a clinically and 
genetically heterogeneous disorder mainly characterized by 
bone-marrow failure and cancer predisposition. However, 
some patients also display microcephaly and dwarfism fea-
tures, reminiscent of Seckel syndrome [76]. To date, at least 
eighteen FANC genes are associated with patient mutations. 
The FA nuclear complex, composed of FANCA, FANCC, 
FANCG, and FANCF proteins, is essential for protection 
against chromosome breakage. The core complex of the FA 
pathway is necessary to monoubiquitylate a specific site in 
each protein of the FANCI/FANCD2 (ID2) heterodimer. 
Monoubiquitination of ID2 triggers nucleases SLX4 and 
ERCC4, as well as downstream repair factors that include 
BRIP, BRCA2, PALB2, and RAD51C [77]. The latter two 
genes are in common with the HRR pathway. FA proteins 
have a prominent role in promoting the repair of DNA inter-
strand crosslinks (ICLs) [78]. Unrepaired ICLs are very 
harmful, especially in dividing cells, as they prevent strand 
separation, thereby stalling DNA replication and leading to 
chromosomal instability [79]. FA pathway is closely depend-
ent on ATR and CHEK1 function. Indeed, ATR deficient 
cells are hypersensitive to ICLs, and many FA proteins, such 
as FANCD2, FANCA, FANCI, and FANCE, are direct sub-
strates of ATR or CHEK1 [80].

Non‑homologous end joining

NHEJ, which works in both non-replicating and replicat-
ing cells, is the predominant DSB repair system in higher 
eukaryotes. NHEJ involves ligation of two broken DNA 
ends without needing a repair template. NHEJ core factors, 
including XRCC4, LIG4, and NHEJ1, associated with DSB 
after PRKDC recruits Ku proteins to the broken ends, which 
are subsequently closely aligned and ligated. The repair of 
some DSBs by NHEJ may require additional accessory 
proteins, such as DNA polymerases and nucleases. One of 
such factors is DCLRE1C, an endonuclease interacting with 
PRKDC to promote repair of a subset of DSBs [81–83]. 
Indeed, PRKDC recruits DCLRE1C to promote DNA-end 
processing [84, 85].

Although NHEJ is often described as an error prone and 
mutagenic process, it is more efficient and accurate than pre-
viously thought [86]. Only when classical NHEJ (cNHEJ) 

fails, cells use an alternative end-joining pathway mediated 
by DNA polymerase theta, the so-called theta-mediated end-
joining (TMEJ), which can easily introduce mutations [87, 
88]. The study of mice mutated for genes important in NHEJ 
[89] showed elevated apoptosis and enhanced IR sensitivity 
in cortical progenitors. NHEJ is the main repair pathway in 
differentiating and post-mitotic neurons [27]. NHEJ is also 
required during immune system development for V(D)J and 
Class Switch Recombination mechanisms [90]. For these 
reasons, congenital defects in NHEJ pathway components 
such PRKDC [45], LIG4 [91] and gene-encoding XRCC4 
and NHEJ1 [75, 92] are associated with developmental 
delay, malignancy, variable degree of immunodeficiency 
and microcephaly.

The MCPH–SCKS spectrum: many roads 
leading from genomic instability to primary 
microcephaly

Severe congenital microcephalies are characterized by 
reduced head circumference at birth, to at least three stand-
ard deviations below the mean [1, 93]. The two main clini-
cal phenotypes are referred to as primary hereditary micro-
cephaly (MCPH) and Seckel syndrome (SCKS) [1, 93]. In 
MCPH, brain size reduction is the main clinical feature, 
associated with conserved brain architecture and mild-to-
moderate intellectual disability. MCPH is a genetically 
heterogeneous condition, with at least 18 complementation 
groups. Most of the genetic defects identified in MCPH 
involve genes that play fundamental roles in various pro-
cesses that collectively enable cells to faithfully segregate 
chromosomes and allow correct progression of mitotic 
division [94]. These defects may range from abnormal 
microtubule formation, stabilization, and polymerization, 
to alteration of spindle structure, defective centrosome 
function, along with impaired cell-cycle checkpoint func-
tion. Although these disfunctions may all indirectly lead to 
CIN and GIN (see below), some of MCPH genes have a 
more direct involvement in DNA repair and chromosome 
stability. Under this point of view, the case of MCPH1 is 
particularly striking, because this multifunctional gene may 
affect diverse aspects of cell-cycle regulation and integrity. 
MCPH1 [95, 96] encodes for a centrosomal protein con-
taining three BRCT (BRCA1 C-terminal) domains. Various 
studies demonstrated that MCPH1 plays an important role 
in G1/S and G2/M checkpoint regulation and in maintain-
ing telomere integrity [97]. MCPH1-deficient cells exhibit 
mitotic defects, such as a prophase-like state and premature 
chromosome condensation [98] [99]. MCPH1 plays a crucial 
role in different aspects of DNA-damage response down-
stream of both ATM and ATR pathways. Indeed, MCPH1 
is concentrated at DNA-damage foci in response to UV or 
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IR treatment, colocalizing with γH2AX, TP53BP1, pATM, 
ATR, and RPA. In MCPH1-deficient cells, the IR-induced 
formation of TP53BP1 and pATM foci or RPA recruit-
ment to ssDNA is impaired. ATR signaling amplification 
under replication stress requires MCPH1 to recruit TOPBP1 
[100]. Moreover, during HRR, MCPH1 binds to BRCA2 and 
regulates the localization of BRCA2 and RAD51 at DNA-
damage sites [101]. In addition, MCPH1 transcriptionally 
regulates CHK1 and BRCA1 expression, by interacting with 
E2F1 on their promoters [102]. Finally, MCPH1 directly 
acts on chromatin structure, facilitating the access of repair 
proteins to DNA-damage sites, by interacting with the chro-
matin-remodeling complex SWI/SNF in an ATR-dependent 
manner [103]. Chromatin remodeling is also regulated by 
PHC1, a human homologue of the Drosophila Polyhomeotic 
gene, which takes part to the Polycomb Repressive Complex 
1 and is mutated in MCPH11. Cells defective for PHC1 show 
enhanced levels of the DNA replication inhibitor GMNN, 
accumulate DNA damage and are defective in DNA repair 
and proliferation after IR treatment [104]. A direct involve-
ment in GIN has recently been proposed for ASPM, the most 
frequently mutated MCPH gene [105]. ASPM-dependent 
microcephaly (MCPH5) is commonly believed to result from 
abnormal spindle function and positioning, leading to the 
alteration of symmetric to asymmetric cell division [106]. 
However, ASPM levels are influenced by IR and ASPM 
affects efficient DSB repair and reduces DNA damage dur-
ing cerebellar granule neuron progenitors cell proliferation 
[107] [108]. Another multifunctional gene causing MCPH 
is Citron Rho-Interacting Kinase (CIT), encoding Citron 
kinase protein (CITK). CITK localizes at the centrosomes 
and midbody, where it plays a major role in regulating the 
stability of the microtubule cytoskeleton. Mutation of CIT 
leads to apoptosis in neural progenitors, newborn neurons 
and in male germ cells [109–111], which was initially pro-
posed to result from cytokinesis failure [112]. In addition, 
mouse Cit-mutant neural progenitors show aberrant cleavage 
plane orientation [113] and accumulate DNA double-strand 
beaks [114]. The latter phenotype correlates with defective 
RAD51 localization to DNA-damage foci and is probably 
responsible of the apoptotic phenotype through TP53 activa-
tion [114]. Altogether, these studies underscore that main-
tenance of genome stability is a critical functional aspect 
common to many of MCPH genes.

On the other hand, SCKS is characterized by intrauter-
ine growth retardation, severe proportionate short stature, 
profound microcephaly with intellectual disability and char-
acteristic craniofacial features, in the absence of visceral 
malformations.

In addition to ATR mutation, SCKS can be caused 
by mutation of RBBP8, CENPJ, CEP152, CEP63, NIN, 
DNA2, TRAIP, and NSMCE2. However, patients carrying 
mutations in some of these genes may show phenotypes 

intermediate between SCKS and MCPH, or even pure 
MCPH. These genes include RBBP8, CEP152 (involved in 
MCPH9), CENPJ (involved in MCPH6), CEP63, and PHC1 
(involved in MCPH11). Therefore, while in the past SCKS 
and MCPH were discriminated by height, the most recent 
view is that the two phenotypes define the extremes of a 
spectrum of phenotypes in which genomic stability of neural 
progenitors is mostly compromised.

Centrosomes and chromosome 
segregation at the core of genome stability 
and neurologic disease

Centrosome is the main microtubule-organizing center 
(MTOC), essential for coordinating cell-cycle progres-
sion, mitotic cell division, cilia formation, and DNA-dam-
age response [115]. Moreover, in cortical neural progenitors, 
centrosome plays a pivotal role in regulating cleavage plane 
orientation [116], cell fate decision, and neuronal migra-
tion [117]. During mitosis, an intact centrosome number is 
pivotal for correct chromosome segregation and to main-
tain genomic integrity. Alteration of centrosome number 
and function can impact on genome stability in different 
ways. Increased centrosome number may lead to multipolar 
mitoses, which may result in mitotic catastrophe or undergo 
bipolar resolution [118]. Even in this case, there is a high 
frequency of abnormal microtubule to kinetochore attach-
ments, resulting in chromosome mis-segregation [118]. The 
latter event may lead to aneuploidy, DNA damage through 
micronuclei formation, or even cytokinesis failure ending up 
with polyploidy [119]. These defects can result from either 
complete loss of centrosomes, disruption of normal cen-
trosome activity, or from defects in centrosome separation 
[120]. All these events may have a profound importance on 
cortical development [121–123].

Therefore, it is not surprising that mutations in genes 
encoding structural centrosome components or centro-
some-associated proteins are the most frequent cause of 
MCPH (CEP152, CEP63, SASS6, STIL, CENPJ, CEP135, 
CDK5RAP2, CDK6, ASPM, and WDR62), and Micro-
cephalic primordial dwarfism (MPD) [1, 124, 125]. The 
importance of correct chromosome segregation is further 
suggested by the occurrence of microcephaly in the so-
called “condensinopathies”, i.e., genetic syndromes deriv-
ing from mutations in components of condensin complexes 
(NCAPD2, NCAPH or NCAPD3) [126]. Condensinopathies 
are characterized by inappropriate chromosome compaction 
and decatenation, chromosome segregation errors and micro-
nucleus formation, with consequent increased frequency of 
aneuploidy [126]. Of note, the function of Condensin II 
complex is regulated by MCPH1, explaining the premature 
chromosome condensation (PCC) defect observed in cells 
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derived from MCPH1 patients [127]. It is also emerging 
that centrosomes could be important integration points for 
DNA repair pathways and control cell-cycle progression 
after DNA damage. Indeed, some DDR players such as 
ATM, ATR, CHEK2, CHEK1, BRCA1, BRCA2 and PARPs 
may localize to the centrosome. Centrosomal localization of 
CHEK1 is important to inactivate the phosphatase CDC25, 
which is an activator of CDK1-cyclinB, the M-phase pro-
moting factor [128]. MCPH1 controls the localization 
of CHEK1 to centrosomes and its loss causes premature 
CHEK1 activation and early mitotic entry, thus uncoupling 
mitosis and the centrosome cycle [129]. Moreover, TP53, a 
common effector of the DNA-damage response implicated in 
cell-cycle progression, DNA repair and apoptosis, can local-
ize to centrosome after DNA damage, in an ATM-dependent 
manner [130]. Another important link between DDR and 
centrosome is the observation that nuclear-cytoplasmic 
trafficking of DDR proteins occurs on microtubules and is 
dependent on dynein. Interestingly, microtubule-targeting 
agents (e.g., taxanes), can alter the intracellular distribution 
of several DDR proteins (ATM, ATR, PRKDC, MRE11, 
RAD50, TP53, NBS1, TP53BP1, and TP63) [131]. Finally, 
microtubules are required to control chromatin mobility, in 
particular in case of DNA break, where an enhanced chro-
matin moving seems to be important to “expose” the damage 
and allow DDR factors to reach and repair the lesion [132]. 
An additional link between centrosome and DNA-damage 
response is represented by SCKS and FA, which display 
centrosomal disfunction and DDR impairment. SCKS may 
arise from mutations in centrosomal proteins CEP152 or 
PLK4 [133–135], leading to impaired centrosome biogen-
esis, supernumerary centrosomes and impaired cell-cycle 
progression, together with genomic instability and defective 
DDR. Loss of FA signaling can weaken the spindle assem-
bly checkpoint (SAC), which in normal conditions prevents 
separation of the duplicated chromosomes until each chro-
mosome is properly attached to the spindle apparatus. FA 
deficient cells display chromosome instability caused by 
abnormal cell-cycle progression, cytokinesis failure and 
accumulation of ultrafine bridges. Moreover, FA deficient 
cells accumulate DNA damage, since they are hypersensi-
tive to some metabolic by-products such as aldehydes [76].

Perspectives and conclusions

Knowledge of the fundamental processes underlying brain 
cortex development has grown exponentially during the 
last few years. These studies have underscored the cru-
cial relevance for brain development and physiology of 
the different pathways that have evolved to ensure faithful 
duplication, transmission and maintenance of the genomic 
information. At the same time, these studies have started 

to unravel the complex interrelation between the molecular 
details of these pathways and the phenotypic spectrum of 
CNS abnormalities produced by their alterations. Of par-
ticular relevance, the centrosome is progressively emerg-
ing as a possible integration hub for molecular events spe-
cifically important for neurogenesis. It is, therefore, easy 
to foresee that the study of genome stability maintenance 
in CNS will be a very interesting topic for future studies. 
Among the most interesting challenges, it will be impor-
tant to determine how centrosome functions and DDR are 
finely orchestrated and why neurogenesis is so sensitive 
to their alterations. Moreover, it appears very important 
to better define the role of microtubules in this context. A 
deeper knowledge of these phenomena could be critical to 
better understand why alterations of apparently different 
pathways produce similar phenotypes, as well as how dif-
ferent mutations of the same gene may result in completely 
different pathologies.
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