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Abstract

Two-step approaches, in which summary candidates are generated-then-reranked to return a single 

summary, can improve ROUGE scores over the standard single-step approach. Yet, standard 

decoding methods (i.e., beam search, nucleus sampling, and diverse beam search) produce 

candidates with redundant, and often low quality, content. In this paper, we design a novel method 

to generate candidates for re-ranking that addresses these issues. We ground each candidate 

abstract on its own unique content plan and generate distinct plan-guided abstracts using a model’s 

top beam. More concretely, a standard language model (a BART LM) auto-regressively generates 

elemental discourse unit (EDU) content plans with an extractive copy mechanism. The top K
beams from the content plan generator are then used to guide a separate LM, which produces 

a single abstractive candidate for each distinct plan. We apply an existing re-ranker (BRIO) to 

abstractive candidates generated from our method, as well as baseline decoding methods. We show 

large relevance improvements over previously published methods on widely used single document 

news article corpora, with ROUGE-2 F1 gains of 0.88, 2.01, and 0.38 on CNN / Dailymail, NYT, 

and Xsum, respectively. A human evaluation on CNN / DM validates these results. Similarly, on 

1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms 

sampling-based methods by 1.05 ROUGE-2 F1 points. Code to generate and realize plans is 

available at https://github.com/griff4692/edu-sum.

1 Introduction

Generating diverse abstracts and then re-ranking can lead to large performance gains (in 

ROUGE) (Liu et al., 2022b; Ravaut et al., 2022a) over the standard approach of generating 

a single summary. Typically, diversity is controlled for at the token-level by modifying beam 

search to introduce sampling (top-K (Fan et al., 2018), nucleus (Holtzman et al., 2020)) or 

directly penalize repetition (Vijayakumar et al., 2016).

Yet, there is a tradeoff, as these methods tend to achieve diversity at the expense of quality 

(Holtzman et al., 2020). To avoid content de-generation while still achieving diversity1, 

griffin.adams@columbia.edu . 
1While highly important, in this work, we focus on content selection, not on the faithfulness of model-generated summaries.
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diversity can be introduced during a planning stage, as in Narayan et al. (2022), who 

generate entity chain plans with diverse beam search before realizing a summary with 

regular beam search.

In this paper, we also explore achieving diverse summaries through diverse plans, yet we 

focus on grounded extractive plans, which promote diversity by encouraging a model to 

focus on specific, unique parts of the source text. We define a content plan as a set of 

non-overlapping text spans from the source document. Specifically, we choose elemental 

discourse units (EDUs) as the appropriate granularity for content planning (Mann and 

Thompson, 1988). EDUs represent sub-sentential independent clauses and allow for more 

fine-grained control than sentence-level extraction. EDUs are more self-contained and less 

fragmented than other potential sub-sentence content units, e.g. entities or noun phrases. 

Extractive EDUs are contiguous and are atomic, whereas entities do not cover all content 

and can appear in multiple contexts.

At a high-level, we employ two encoder-decoder models. Given a document, the first model 

generates K unique content plans with beam search. Then, each content plan is used as 

a guide to a second model, which realizes an abstract given the plan and the document. 

Specifically, a BART-based (Lewis et al., 2020) hierarchical encoder-decoder learns to 

generate extracts from left-to-right by copying EDUs until a special end of extract token 

is copied. These extractive plans are used to decorate the input document and serve as a 

guide for the Plan-Guided Abstractor (PGA). The top K beams are returned from the content 

planner, while only the top beam is returned for plan realization to avoid de-generation. An 

example of the training procedure from the CNN/DailyMail news dataset is shown in Figure 

1.

We compare our PGA candidate generation method to other decoding baselines (beam 

search, diverse beam, search, and nucleus sampling) at both the candidate level (across 

beams), as well as after applying a re-ranker (BRIO (Liu et al., 2022b)) to obtain a single, 

re-ranked summary. We also benchmark the performance of re-ranked summaries from our 

PGA method against publicly reported results from other summary re-ranking papers. We 

note consistently higher ROUGE and BERTScores against both our internal baselines and 

public benchmarks, which we link to improved content selection across candidate beams. 

We also conduct a human evaluation and find that annotators assess top ranked summaries 

from PGA candidates as containing more relevant content than candidates produced by 

baseline decoding methods. By separately optimizing the plan and plan-guided abstracts, we 

can easily combine generated plans with a Large Language Model (LLM). In §7, we prompt 

GPT-3.5 to generate diverse, focused summaries and apply a re-ranker. We compare with a 

series of unfocused prompts and find that ROUGE scores improve across the board. More 

generally, prompting with diverse plans, and then re-ranking, is a convenient alternative to 

RLHF alignment when using closed models.

Our primary contributions are: (1). We propose a novel two-stage model for generating 

high-quality, diverse candidate summaries for downstream re-ranking. Our plan generation 

approach adapts a pre-trained LM to perform span-level copying to produce EDU-level 

plans. (2). Our plan-guided abstraction model leads to large improvements in top-ranked 
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summaries vis-a-vis previously published results (0.88, 2.01, and 0.38 ROUGE-2 F1 

percentage point gains on CNN/DM, NYT, and Xsum, respectively), and outperforms on 

summary relevance according to human evaluation. (3) We perform extensive analysis 

of candidate generation methods, according to the diversity of derived content plans and 

factors, such as source length. (4) We show that we can improve the reference-based 

performance of few-shot LLMs by prompting for diverse summaries based on extractive 

EDU plans.

2 Related Work

Two-Step Summarization.

Re-ranking candidate summaries can address the “exposure bias” problem (Ranzato et al., 

2016) from standard maximum likelihood teacher forcing by allowing an external model to 

coordinate system outputs with evaluation metrics. Re-ranking diverse candidates can lead 

to improved faithfulness (Zhao et al., 2020; Chen et al., 2021) or relevance (as measured 

by ROUGE) (Liu and Liu, 2021; Ravaut et al., 2022a; Liu et al., 2022b; Zhao et al., 2022). 

Ranking can also be incorporated into training by adding a contrastive loss to the standard 

MLE loss for a multi-task objective (Nan et al., 2021b; Liu et al., 2022b). This work is 

related to, yet distinct from, our work, as we focus on the impact of candidate generation 

methods on explicit re-ranking.

Diverse Decoding.

Diverse candidates are typically generated by a pre-trained model by modifying standard 

beam search to introduce sampling (top-k (Fan et al., 2018) or a dynamic nucleus (Holtzman 

et al., 2020)) or penalizing repeated tokens across distinct beam groups (Vijayakumar et 

al., 2018). While increasing diversity, these methods introduce a quality-diversity tradeoff 

(Ippolito et al., 2019).

Our approach to generating diverse abstracts has similarities to Compositional Sampling, 

introduced by Narayan et al. (2022). They use diverse beam search to predict an entity 

chain–based on the authors’ FROST model (Narayan et al., 2021), before continuing to 

decode with regular beam search. Sampling at the plan level encourages diversity without 

having to use degenerative token-level sampling. Our approach is different in that, rather 

than use entity chains, we explicitly control the content focus to specific sentence fragments 

(EDUs). The goal of their work is high quality diverse summaries, while the goal of our 

work is to leverage diversity to achieve a single high quality summary.

More concretely, we differentiate our approach along three dimensions. (1) Uniqueness. 
Composition Sampling uses diverse beam search (DBS) to construct an entity chain and a 

summary. DBS penalizes repetition across beam groups at the same position, which allows 

for nearly identical plans with shifted word order. FROST does not localize each entity, 

which may be problematic for documents with co-referent entities. Our approach performs 

beam search over discrete plans. As such, it enforces that each plan is unique and localized. 

(2) Completeness. Entities–a subset of noun phrases–do not cover all the information in 

a document. Our method considers contiguous spans with no gaps. (3) Complementarity. 
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The top beam from the FROST model represents the highest joint likelihood of plan and 

summary. Given the length mismatch of summaries vs plans, the top beam may not return an 

optimal plan. Our EDU generator serves as a standalone planner, which makes it more easily 

integrated with an LLM, as we explore in §7.

Extract-Then-Abstract

Methods that decouple content selection from surface realization have proven effective, 

especially for long-document corpora with high compression ratios (Pilault et al., 2020). 

While typically a two-step, coarse-to-fine framework (Liu et al., 2018; Zhang et al., 2022), 

end-to-end systems are possible by bridging the gap with latent extraction (Mao et al., 2022) 

or using reinforcement learning: optimizing ROUGE-based rewards with policy gradients 

(Chen and Bansal, 2018) (Actor Critic), or multi-armed bandits (Song et al., 2022) (Self-

Critical).

For shorter tasks, two-step approaches have also proven effective (Mendes et al., 2019). Yet, 

given that input compression is less of a concern, extractive guidance can also be added 
as an auxiliary input in a dual-encoder setup (Dou et al., 2021). Guidance can either be 

provided as input (encoder-side (He et al., 2022)) or generated as part of a decoder prompted

content planning step (Narayan et al., 2021).

Our work is based on a two-step extract-then-abstract framework, yet the goal is very 

different. We use extraction, not just as a guide, but as a tool to control the diversity of 

downstream abstracts.

3 Motivation & Analysis

Elemental Discourse Units.

Prior work has shown that reference summary sentences usually combine information from 

multiple document sentences, while removing non-essential descriptive details (Lebanoff et 

al., 2019; Liu and Chen, 2019; Li et al., 2020). As such, an ideal extractive plan would 

select only the relevant subsentential units to incorporate into the final summary. To achieve 

this, we rely on discourse level segmentation from Rhetorical Structure Theory (Mann 

and Thompson, 1988) to segment document sentences into Elementary Discourse Units 

(EDUs), which are contiguous spans of tokens representing independent clauses. EDUs are 

a good approximation (Li et al., 2016) of Summary Content Units (SCUs) written by human 

annotators for the Pyramid evaluation method (Nenkova and Passonneau, 2004).

To extract EDUs, We use the neural parser (Liu et al., 2020, 2021), fine-tuned from xlm-

roberta-base (Conneau et al., 2020) on RST treebanks from 6 languages, to segment 

sentences into non-overlapping, contiguous EDU fragments. Their model merges short 

EDUs (< 5 tokens) to prevent fragmentation. As such, these EDU fragments are closer 

to proposition-level extraction than other possible units of extraction, e.g., entities.

Table 1 displays statistics for EDU versus sentence segmentation. There are less than 2 

EDUs per sentence (51.6/29.2) and less than 2 times as many EDUs in oracle extracts (5.3) as 
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with sentences. Extractive oracles are computed the same way for both sentences and EDUs: 

by greedily selecting extractive units to maximize the average ROUGE-1 and ROUGE-2 

F1 of partially built extracts against the reference summary, as in Nallapati et al. (2017). 

We compute the ROUGE-1 F1 overlap against the reference of oracles formed from EDUs 

versus sentences. EDUs outperform sentences (61.7 versus 57.8), which confirms similar 

oracle analysis on CNN/DM from Liu and Chen (2019).

Content Selection Shortcomings of Existing Methods.

We first propose two simple preferred properties of candidate sets for re-ranking. The first is 

a Salience Property: all candidates should focus on relevant content. The rationale is trivial: 

a re-ranker will not always select the best candidate2, so it is important that, on average, 

candidates be relevant. The second is a Uniqueness Property: candidates should focus on 

different parts of the source. Without content diversity, there is limited upside to re-ranking 

over just taking the top beam. Because summaries are typically evaluated against a single 

reference, a tradeoff exists. High Salience favors candidates clustered around the reference, 

while Uniqueness favors exploration.

To quantify these properties, we introduce the notion of a Derived Content Plan (DCP). 

First, we align each summary to a set of extractive fragments from the source text (EDUs). 

We use a greedy approach, which maximizes the relative average ROUGE-1/ROUGE-2 F1 

gain of adding each additional EDU from the source text to the plan. This procedure is 

identical to the widely-used oracle sentence labeling defined by Nallapati et al. (2017), 

except that EDUs are extracted, not sentences. The unordered set of EDUs aligned to a 

summary form its DCP. Roughly speaking, DCPs map the content of each summary, which 

may exhibit some lexical variation, onto a shared space (the input document).

For this analysis, we then define Salience as the ROUGE-1 F1 overlap between a summary’s 

DCP and the gold-standard reference. Uniqueness, on the hand, we define at the candidate 

set level. Specifically, it is the number of unique DCPs among a set of candidate summaries. 

Lower scores signal more content redundancy. Figure 2 reveals a near monotonic decline 

in DCP Salience at each successive beam for beam search (BS) and diverse beam search 

(DBS). Nucleus sampling is constant given that each candidate is sampled independently. 

Figure 3 shows an Idealized scenario in which y = x and each candidate has a unique 

DCP. All baseline methods fall below the Idealized line and exhibit DCP redundancy.

Looking at Figures 2 and 3 together, a tradeoff is easily visible. DBS has the most 

pronounced decline in Salience yet most closely satisfies the Uniqueness property (closest 

to Idealized). We hypothesize that an optimal decoding method should achieve a high 

degree of Uniqueness while exhibiting minimal Salience degradation across beams.

4 Plan-Guided Abstraction (PGA)

At a high-level, we ensure3 Uniqueness by conditioning each candidate on its own unique 

content plan, and minimize quality degradation by only using the top beam from the 

2In fact, Liu et al. (2022b) note that even well-tuned re-rankers have a fairly low correlation with ROUGE scores.
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abstractive decoder. More specifically, we transform a BART LM into a hierarchical 

encoder, single-decoder model, which learns to copy extractive content plans at the EDU-

level (§4.1). Another encoder-decoder model (BART for CNN/DM and NYT, PEGASUS 

for Xsum) learns to generate the reference given special markers to indicate the content 

plan (§4.2). Figure 4 depicts the training procedure for Extract Generation (Step 1, §4.1) 

and Plan-Guided Abstraction (Step 2, §4.2), as well as the end-to-end candidate generation 

method (Step 3).

4.1 Generating EDU-Level Plans

tl;dr.—Inspired by the AREDSUM-SEQ model (Bi et al., 2021), which itself is based 

off the hierarchical encoder from BertSumExt (Liu and Lapata, 2019), we adapt a BART 

conditional language model such that it is able to generate extractive EDU fragments left-to-

right, in the order in which they appear. The decoder uses a copy mechanism for EDUs and a 

special end of extract token. The special token enables EDU extractive plans to have variable 

length.

Notation.—A document D can be expressed as a list of K non-overlapping EDU segments: 

D = s1, s2, …sK . A content plan S is a subset of the EDUs in the document: S ⊂ D. Let 

St
* represent an ordered partial extract ending in st. The probability of adding EDU si to St

* is 

modeled as:

p si D, St
* i ∈ K, i > t

0 i ∈ K, i ≤ t

We note that adding EDUs to an extractive plan in the order in which they appear in the 

document is non-standard. Most extractive models build summaries in a confidence-first 

fashion, as in Zhou et al. (2018). We experimented with both in-order and confidence-first 

and found that the former slightly outperformed.

To encode EDUs, we bracket each EDU with start <e> and </e> tokens. We pass the 

full document: EDU markers and tokens through a pre-trained BART encoder, and extract 

hidden states for each EDU with mean pooling over each token within the EDU (including 

the start and stop tokens): ℎs1, …, ℎs1 . Then, the EDU representations are modeled by a 

newly initialized EDU-level BART encoder:

ℎ′s1, …, ℎ′sK, ℎ′eoe = ENCsent ℎs1, …, ℎsK, E eoe

E eoe  represents a learned embedding for the end of extract token. Positional embeddings 

are added to each EDU representation (ℎsi) to indicate its position in the document, before 

being passed through the stacked transformer layers in the encoder. At decoder timestep k
with hidden state ℎk

* and partial extract St
*, each valid next output (si ∈ S, i > t and eoe) is 

scored by a single layer MLP, which can be represented as4:

3This presupposes an abstractive LM with perfect plan adherence. We record adherence but do not require perfection.
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W o ℎ′i; ℎk
* + bo si ∈ S, i > t

W o ℎ′eoe; ℎk
* + bo eoe

Plan Objective.—Given the above probability distribution, we treat the plan generator as 

a standard LM and train it with maximum likelihood estimation (MLE) of the oracle plan 

given the source document.

Oracle Labels.—As discussed in §3, We use the greedy search algorithm proposed by 

Nallapati et al. (2017) to generate oracle EDU extractive plans.

Inference.—As a functional LM, we generate distinct EDU extractive plans with beam 

search.

4.2 Learning to Abstract from EDU Plans

tl;dr.—We fine-tune a separate token-level LM, which learns to generate the reference given 

an oracle plan, while discouraging it from generating the same reference given a random 

plan. An MLE loss is added as regularization. During inference, the model receives EDU 

plans from §4.1 and generates one abstract per plan with standard beam search.

Decorating inputs.—We implement a simple parameter-efficient method for 

incorporating an extractive plan. We simply demarcate the EDUs in the plan with special 

start and end tokens <e> and </e>, whose embeddings are learned during fine-tuning. This 

is similar yet different from the extractive plan generator. When learning to generate plans, 

all EDUs are tagged, yet when generating the abstract, only the in-plan EDUs are tagged. 

Decorating the input is a more flexible approach to incorporating extractive guidance than 

modifying encoder-decoder attention (Saito et al., 2020) and is more parameter-efficient 

than separately modeling the set of extracted text units (Dou et al., 2021).

Guided-Abstraction Objective.—We use a likelihood objective for plan-guided 

abstraction, and to improve plan adherence, add an unlikelihood term (Welleck et al., 2020), 

which discourages the model from generating the reference given a random plan:

ℒGA = λlog p R D, Soracle + λlog 1 − p R D, Srandom ) + βlog p R D

(1)

Soracle represents the oracle plan for the reference R and Srandom is a randomly sampled plan 

of the same length from the set of non-oracle source EDUs. The first two terms encourage 

the model to rely on the plan when generating an abstract, while the final term is the 

standard MLE objective (without plan) and acts as a regularization term. λ and β are scalars 

controlling the relative weight of the plan adherence versus regularization components on 

the ℒGA loss.

4Based on Bi et al. (2021), we experimented with redundancy features, yet it did not improve downstream abstract performance.
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Inference.—The guided-abstractor is trained on oracle extractive plans yet, at inference 

time, realizes extractive content plans produced by the extract generator from §4.1. Standard 

beam search is used to decode a single abstract for each unique plan.

5 Experimental Setup

Datasets.

We use the same datasets as in BRIO Liu et al. (2022b), which are CNN / Dailymail 

(Hermann et al., 2015; See et al., 2017), the New York Times annotated corpus (Sandhaus, 

2008), and Xsum (Narayan et al., 2018). The first two are more extractive while Xsum is 

more abstractive and contains highly noisy references (Nan et al., 2021b). We use code from 

Kedzie et al. (2018) for data pre-processing and splitting of the corpus, and treat the archival 

abstract as the ground-truth reference.

Metrics.

We compare summaries to references with ROUGE 1/2/L F1 (Lin, 2004) and BERTScore 

F1 (Zhang et al., 2020b). We use the standard PERL ROUGE script for ROUGE scoring 

with PTB tokenization and lowercasing, as in Liu et al. (2022b). For BERTScore, we use the 

default model (roberta-large) and settings from the widely-used bert-score Python 

package5.

Baselines.

We generate 16 candidates with different decoding methods: beam search, diverse beam 

search, and nucleus sampling. We use google/pegasus-xsum for Xsum, facebook/

bart-large-cnn for CNN, and fine-tune a BART-Large model on the NYT corpus. For 

NYT, we fine-tune using a standard MLE loss for up to 10 epochs, choosing the best model 

based on validation ROUGE score. These are also the checkpoints used to initialize our 

plan extractor token-level encoder and guided abstractor. We also compare our method to 

previous work on summary re-ranking. SimCLS (Liu and Liu, 2021) and BRIO-Ctr (Liu et 

al., 2022b) both generate 16 candidates via diverse beam search using the same pre-trained 

weights as in our work6. The major difference between the papers is that a RoBERTa 

(Liu et al., 2019) classifier is used for re-ranking SimCLS, while in BRIO, the model 

likelihoods are calibrated to ROUGE rankings. SummaReranker (Ravaut et al., 2022a) 

trains a RoBERTa-based mixture of experts classifier on up to 60 candidates ensembled 

from multiple decoding methods (beam search, diverse beam search, nucleus sampling, and 

top-k sampling). We report their best ensemble configuration for CNN and NYT, which 

uses dataset-specific fine-tuned PEGASUS (Zhang et al., 2020a) checkpoints from the 

HuggingFace Transformers library (Wolf et al., 2020). SummaFusion (Ravaut et al., 2022b) 

fuses candidate summaries into a single summary. Candidates are generated with diverse 

beam search from the same PEGASUS checkpoint for Xsum (google/pegasus-xsum).

5roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.6.1)
6Given that we use the same re-ranker and evaluation script, our diverse beam search baseline aims to replicate Brio-CTR.
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Training Details.

For the EDU plan generator, we initialize the token-level encoder from fine-tuned 

summarization checkpoints for each dataset (listed above in Baselines paragraph). The 

EDU-level BART encoder and decoder are randomly initialized to have two layers (using 

a BART-Large configuration to determine parameter dimensions). For both EDU-Extract 

and Guided abstract training, we fine-tune with Pytorch Lightning (Falcon, 2019) for a 

maximum of 150,000 steps with 200 warmup steps, a learning rate of 1e-5, batch size of 16, 

and weight decay of 5e−5. For Xsum, we fine-tune plan-guided abstraction from google/

pegasus-xsum and use a learning rate of 1e−4 and a batch size of 64.

For the EDU generator, we select the checkpoint that maximizes the ROUGE score on the 

validation set. For the Plan-Guided Abstractor, we select the checkpoint that maximizes 

the oracle-guided abstract ROUGE score. We grid-searched λ and β from Equation 1 over 

[0,0.1,1,10] and selected based on top-ranked validation set summaries. For NYT, we set 

λ = 1 and β = 0 from Equation 1. No regularization is needed. For CNN and Xsum, we 

use more regularization: λ = 1 and β = 10. For Xsum, we enforce the last plan beam to be 

the null-plan (no EDU guidance)7.

Decoding Parameters.

For EDU plan generation, we set the min-max plan lengths to 2–20 and use a length penalty 

of 1.0 for CNN and NYT, while 2.0 for Xsum. For plan-guided abstraction, we set a beam 

size of 4 for CNN and NYT, while 8 for Xsum. The baselines and plan-guided models use 

the same min-max summary lengths and length penalties: 56–142 and 2.0 for CNN, 56–256 

and 2.0 for NYT, and 11–62 and 0.6 for Xsum. For nucleus sampling, we set p = 0.92. For 

diverse beam search, we set the diversity penalty to 1 and set the number of beams and beam 

groups equal to the number of candidates (16), as in Liu et al. (2022b).

Re-Rankers.

We obtain top ranked summaries from pre-trained re-rankers supplied from BRIO (Liu et 

al., 2022b). Their CTR model coordinates likelihoods with ROUGE-defined rankings by 

optimizing the following pairwise margin ranking loss:

max 0, f D, yj − f D, yi + j − i * λ ∀i, j ∈ Y , i < j

(2)

where Y = y1, …, yn  represents an ordered list of summaries: 

ROUGE y i, y ≥ ROUGE y j, y , ∀i, j ∈ Y , i < j. f represents the length normalized log 

likelihood of generating the summary. We use BRIO configurations and default hyper-

parameters.

7Given regularization (β > 0), the model retains its ability to generate without extractive guidance (<e>, </e>) decorators.
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6 Results

Please refer to Appendix A for an analysis of the beam consistency of PGA candidates 

versus baselines.

Re-Ranked Performance.

Table 2 shows that the top-ranked summaries of PGA candidate sets consistently 

outperform. Compared to the best internal baseline method (beam search, diverse beam, 

nucleus sampling), we see ROUGE-2 F1 percentage advantages of .75 (23.81 versus 23.06), 

1.94 (38.55 versus 36.61), and .01 (25.51 versus 25.50) on CNN/DM, NYT, and Xsum, 

respectively. Our PGA method also outperforms the best published results for re-ranked 

summaries. In particular, across datasets, we see ROUGE-2 F1 percentage advantages of 

.88 (23.81 versus 22.93), 2.01 (38.55 versus 36.54), and .38 (25.51 versus 25.13). The 

performance gains against our internal baselines († in Table) 2 are significant for CNN/DM 

and NYT (p<0.05), but not for Xsum. Extractive planning may be less useful when reference 

summaries are shorter and noisier. Xsum references have been shown to contain entity-based 

“hallucinations”–content that is unsupported by the input document (Narayan et al., 2021; 

Nan et al., 2021a).

Analyzing Content Plans.

We compare the explicit plans from our EDU-plan generator with Derived Content Plans 

(DCPs) from our baseline decoding methods, as defined in §3, to assess whether or not a 

dedicated content selector is a better content selector than a derived one. Table 3 reveals 

that explicit content plans (ECPs) outperform all DCPs (43.1 R1 versus 41.8 / 41.5 / 42.0), 

except when the DCP is derived from an ECP-guided summary (43.6 R1). Using simpler 

terms, a dedicated content selector chooses more relevant content than the content implied 

by token-level abstractors, and this performance gain is only overturned when generating an 

abstract conditioned on these high quality content plans.

Fusion Analysis.

One of the potential benefits to EDU-based content planning is fusion. Prior work has 

argued that fusion is desirable for its impact on conciseness, while noting that existing 

models perform very little fusion (Lebanoff et al., 2020). We measure fusion at the candidate 

level across decoding methods (including PGA), as well as the summary references, 

by computing the EDU-level Derived Content Plan (DCP) for each summary, and then 

recording how many unique source sentences contain the EDUs in this implied plan. To 

normalize, we then divide it by the number of predicted summary sentences to provide 

an approximate fusion ratio. Table 4 shows that, while PGA has a higher fusion ratio 

on average than the baselines (1.05 versus 1.03,1.02,1.03), model-generated summaries 

fuse content from fewer sources sentences than human-generated summaries (the Reference 

fusion ratio is the highest at 1.17).

Impact of Length.

Previous work has shown that content selection is more difficult as inputs scale (Ladhak 

et al., 2020). This would suggest that our approach, which relies on explicit content plans, 
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might scale well to long inputs. To get a sense of the relative impact of the PGA method by 

length, we bin the CNN test set into quartiles based on the number of EDUs in the source 

document. In Table 5, we report average ROUGE-1 F1 scores of top-ranked summaries 

for the baseline methods and PGA, as well as an average of the baselines (Baseline Avg). 

The final row (Avg % Gain) shows the percentage gain for each quartile of moving from 

Baseline Avg to PGA. The gain is the largest for the fourth quartile (3.19%), yet the increase 

is not monotonic. The second largest benefit comes from the shortest quartile 3.09%. While 

not conclusive, this analysis suggests that our PGA method could benefit even further from 

application to long-document and/or multi-document corpora, on which re-ranking methods 

are largely untested.

Plan Adherence.

Adherence to the plan is critical to the diversity of PGA outputs given that each candidate 

is produced from the top beam of the abstractor. If it ignores the provided content plan, 

all the candidates will be the same. We measure plan adherence by comparing the overlap 

of DCPs (the implied plan realized by the abstractor) versus ECPs (the plan provided to 
the abstractor). In particular, we measure the recall, precision, and F1-overlap metrics. 

Additionally, we train a PGA model without the unlikelihood objective in Equation 1 to 

determine its importance to plan adherence and the ROUGE scores of downstream re-ranked 

candidates. Table 6 shows the ablated model’s performance vis-a-vis the PGA model trained 

with the unlikelihood loss. The top ranked ROUGE-1 is hurt by removing the loss (47.59 

versus 47.43 R1), and the abstractor also adheres less to the ECP (81.5 versus 80.3). While 

the differences are minor, control could be important for human-in-the-loop use cases, in 

which a user highlights an extractive plan and expects a summary which focuses on these 

highlights.

Human Evaluation.

To verify the ability of our approach to better capture salient information found in reference 

summaries, we perform a human evaluation study using the Atomic Content Unit (ACU) 

protocol introduced in Liu et al. (2022a). In this protocol, atomic facts are extracted from 

reference summaries and matched with system summaries; the average number of matched 

units constitutes the recall-focused ACU score, and a length normalized ACU score (nACU) 

is also reported. We apply this protocol on MTurk and filter workers from the US/UK with 

98% HIT approval and provide a pay-rate of $12/hour. We use the provided reference ACUs 

from a 100-example subset from Liu et al. (2022a) and achieve a Krippendorf alpha of 

0.70 over three annotators. We compare against our Diverse Beam Search baseline in 

addition to the four systems from the ACU paper: BART, BRIO-Mul, T0, and GPT-3. As 

shown in Table 7, PGA top-ranked summaries outperform summaries from the state of the 

art supervised8 model (BRIO-Mul) with respect to un-normalized and length-normalized 

(ACU / nACU) matching of ACUs between reference and system summaries: 0.4421 / 0.3650
for PGA versus 0.4290 / 0.3565 for BRIO-Mul.

8While included, it is not fair to compare PGA to zero-shot results from GPT-3 or T0. The ACU evaluation framework is 
reference-based, which strongly favors supervised models.
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7 Guiding GPT with EDU Plans

Background.

To date, GPT models (Brown et al., 2020; Ouyang et al., 2022) have only been evaluated 

as summarizers in the conventional single candidate setup (Zhang et al., 2023). In zero and 

few-shot settings, GPT summaries have been shown to under-perform fine-tuned models 

with regards to reference-based metrics, yet over-perform according to human judgments 

(Goyal et al., 2022; Liu et al., 2022a).

Diverse Prompt-Then-Rank as Alternative to ICL.

To better align closed-source LLMs, such as GPT, to labeled data, in-context learning (ICL) 

Brown et al. (2020); Min et al. (2022) has been shown to help. Yet, closed source LLMs 

can also be adapted to a task by eliciting diverse outputs and then applying a task-specific, 

smaller re-ranker (e.g., BRIO). ICL and diverse prompt-then-rank can be complementary.

Experimental Setup.

We sample a set of 1,000 summaries at random from the CNN/DailyMail test set and 

prompt GPT-3.5 (Ouyang et al., 2022) to generate summaries. Similarly to Top Beam in 

Table 2, we include a single candidate baseline (Single) with the instruction from Goyal 

et al. (2022); Zhang et al. (2023): Summarize the article in three sentences. 

For re-ranking baselines, we generate 16 diverse candidates by separately increasing 

the temperature 0.3→0.7 (Temperature Sampling), and sampling from a 0.8 nucleus 

(Nucleus Sampling). To implement PGA, we decorate the source article with EDU tags 

<e> … </e> and instruct GPT to summarize only the text within the tags. Specifically, 

we instruct it to Summarize the content in between the HTML tags <e> and 

</e> in one to three sentences. As with Single, we set the temperature to 0.3. 

In all cases, we randomly sample 3 examples from the training set to be used as in-context 

exemplars. We compute a different random sample for each test case to encourage diversity, 

as in Adams et al. (2023). For PGA ICL, we decorate articles with the oracle plan.

Results.

As shown in Table 8, PGA outperforms all single and diverse candidate methods: 43.56 

ROUGE-1 F1 versus 40.84/42.51/42.43 for the baselines. Please refer to Appendix B for 

a depiction of the prompt and sample plan-guided output. We publicly release all GPT-3.5 

candidates to support RLHF (Stiennon et al., 2020) or calibration (Zhao et al., 2023)9.

8 Conclusion

In this paper, we demonstrate that offloading content selection to a dedicated extractor, 

rather than relying on the decoder to perform both content selection and surface realization, 

can lead to better and more diverse content selection across beams, which ultimately leads 

to increased ROUGE scores for top-ranked summaries after applying a re-ranker. EDU 

9Available for download on the HuggingFace Datasets Hub under the name: griffin/cnn-diverse-gpt-3.5-summaries.
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plan-guided abstraction exhibits other encouraging traits, such as an increased level of fusion 

and scalability to longer inputs.

9 Limitations

Our findings are primarily based on ROUGE score, which is a noisy, unstable metric with 

well-studied limitations (Schluter, 2017). To address this, however, we conduct a human 

evaluation to support our findings. In both automatic and human annotation settings, we 

base our evaluations on naturally occurring references, which have been shown to be silver-

standard (Gehrmann et al., 2022; Wan and Bansal, 2022; Adams et al., 2022). We hope 

that our work on PGA–a method to generate high-quality diverse candidates–can be applied 

to new domains (e.g., (Gliwa et al., 2019; Adams et al., 2021; DeYoung et al., 2021)) 

and reference-free learning objectives (e.g., RLHF and calibration). Also, our candidate 

generation method requires two models, which is less elegant and computationally efficient 

than an end to end solution combining planning and surface realization.

Lastly, PGA treats all content plans as equally likely (each plan is given one abstractive 

beam). Yet, there is an unexplored trade-off between exploration and exploitation. Should 

higher-confidence content plans receive more candidates? Future work should explore a 

generating diverse abstracts from a dynamic nucleus of extracts, which would allow for 

the generation of many abstracts from only a few extracts when confident (e.g. short 

documents), while exploring more diverse content when the extractive generator is less 

confident. We sketch out such a potential system in Figure 5 with a made-up nucleus 

probability of 0.9.

Appendix

A. Beam Consistency

Consistency across beams.

A primary benefit to PGA is that each candidate is selected from the top beam. To see 

whether this leads to more consistency across candidates, we analyze average ROUGE-1 F1 

scores by beam, as well as average lengths on the CNN / Dailymail test set. Figure 6 shows 

that, on the CNN / Dailymail test set, our PGA candidates obtain higher average ROUGE 

scores across beams than all other methods. In fact, the last beam PGA has a higher average 

ROUGE-1 score than the top beam of all baseline methods. Figure 7 shows that nucleus 

and PGA candidates are more stable length-wise than beam search (regular and diverse). 

For nucleus, the stability comes from the fact that each candidate is produced by the same 

sampling procedure. For beam search, the sharp drop-off suggests that length variability may 

be driving diversity, rather than content selection (as evidenced by DCP redundancy from 

Table 3).
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B. Prompting GPT-3.5 with PGA

Figure 8 (below) shows the prompt instruction, an in-context example, and an example 

output from the CNN/DM test set. For the results in §8, three in-context examples are 

sampled from the test set.
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Figure 1: 
EDU Plan-Guided Abstraction (PGA). EDU spans form the oracle content plan, while EDU 

spans form a random distractor plan. A model is trained to generate the reference only 

when given the oracle plan, not the random one. EDU-level plans afford more fine-grained 

control than sentence-level as irrelevant content is cut out: “but the calendar is only allowed 

to turn 39”.
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Figure 2: 
The average Salience of Derived Content Plans (DCPs) at different beams for BS (beam 

search), DBS (diverse beam search), and nucleus, or Top-P, sampling. Results shown are on 

the full CNN/DailyMail test set.
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Figure 3: 
The Uniqueness score as a function of the beam size. Results shown are on the full CNN/

DailyMail test set.
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Figure 4: 
Plan-Guided Abstraction (PGA). In the first step, a token-level encoder processes a 

document decorated with special EDU boundary markers. EDU-level hidden states are 

formed with mean-pooling and serve as the inputs to a shallow EDU-level Encoder-Decoder, 

which learns to auto-regressively copy oracle EDU plans. In the second stage, a Plan-Guided 

Abstractor learns to generate abstractive reference summaries from inputs decorated with 

EDU boundary markers to indicate the oracle plan, as well as a random distractor plan 

for unlikelihood training. During inference, the PGA generates a single summary for each 

unique content plan returned by the top K beams of the EDU generator.
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Figure 5: 
Future work could involve generating plan-guided abstracts from a dynamic nucleus of 

extracts.

Adams et al. Page 24

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2024 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Average ROUGE-1 F1 by beam for the CNN test set.
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Figure 7: 
Average length by beam for the CNN test set.
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Figure 8: 
GPT-3.5 Prompt. The instruction is to summarize the content within the <e>…</e> tags. 

In-Context examples are constructed using oracle EDU plans. Then, GPT-3.5 is given a test 

case and generates its own Focused Summary, which is highlighted in yellow. GPT-3.5 

generates 16 focused summaries based on 16 unique plans.
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Table 1:

Comparing oracles formed from source sentences versus EDU spans on the CNN / Dailymail validation set.

Text Unit # in Doc # in Oracle Rouge-1 F1

Sentences 29.2 3.3 57.8

EDU 51.6 5.3 61.7
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Table 3:

Analyzing set statistics for Explicit Content Plans (ECP) versus Derived (DCP). We compare the ROUGE 

scores of plans vis-a-vis reference, as well as the number of unique content plans (ECP or DCP) from sets of 

16. Results shown for CNN / Dailymail test set.

Method R1 R2 RL # CPs

DCP

BS 41.8 19.2 35.3 6.3

DBS 41.5 18.9 34.9 12.7

Nucleus 42.0 19.4 35.3 9.9

PGA (Ours) 43.6 20.8 36.9 13.0

ECP EDU Plan 43.1 20.5 36.8 16

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2024 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Adams et al. Page 31

Table 4:

Fusion ratios: # of unique source sentences which contain the EDUs in the implied plan (# DCP Sent), divided 

by the number of sentences in the summary.

Method DCP Sent Summary Sents Fusion Ratio

Beam 3.22 3.17 1.03

Diverse Beam 3.85 3.86 1.02

Nucleus 3.75 3.69 1.03

PGA (ours) 3.81 3.69 1.05

Reference 4.25 3.76 1.17
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Table 5:

ROUGE-1 F1 for top-ranked summaries on the CNN/DM test set binned into quartiles by summary length.

Method Q1 Q2 Q3 Q4 Avg

Beam 47.8 46.2 44.5 42.6 45.3

Diverse Beam 49.2 48.0 46.0 44.7 47.0

Nucleus 48.7 47.5 45.7 44.3 46.6

Baseline Avg 48.6 47.2 45.5 43.9 46.3

PGA (ours) 50.1 48.5 46.5 45.3 47.6

Avg % Gain 3.09 2.75 2.20 3.19 2.81
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Table 6:

Impact of removing the unlikelihood objective from Equation 1 on the top-ranked summary ROUGE scores 

and on average adherence to the content plan.

Top Ranked Plan Adherence

Method R1 R2 RL R P F1

PGA (ours) 47.59 23.81 44.33 87.1 78.6 81.5

w/o Unlike 47.43 23.48 44.16 87.2 76.5 80.3
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Table 7:

Human evaluation using the ACU protocol Liu et al. (2022a); the first four rows are copied from their Table 7. 

Diverse Beam represents our best re-ranking baseline according to ROUGE. PGA (ours) represents a state of 

the art improvement in reference-based human assessment.

Method ACU nACU

BART (Lewis et al., 2020) 0.3671 0.2980

BRIO-Mul (Liu et al., 2022b) 0.4290 0.3565

T0 (Sanh et al., 2022) 0.2947 0.2520

GPT-3 (Brown et al., 2020) 0.2690 0.2143

Diverse Beam Search 0.3683 0.3261

PGA (ours) 0.4421 0.3650
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Table 8:

ROUGE-F1 metrics for top-ranked GPT-3.5 summaries on a random 1k subset of the CNN/DailyMail test set. 

Single represents a single candidate baseline (similarly to Top Beam in Table 2). The others produce 16 

candidates, which are then re-ranked with BRIO.

Candidate Method R1 R2 RL

Single 40.84 17.30 37.07

Temperature Sampling 42.51 19.17 38.73

Nucleus Sampling 42.43 19.06 38.65

PGA (ours) 43.56 20.11 39.95
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