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Abstract
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, includ-
ing inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can 
vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each 
compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma 
membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signal-
ling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, 
Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we 
summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances 
that investigate how these specific and highly regulated structures contribute to diverse biological processes.
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ROS	� Reactive oxygen species
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Introduction

Lipids are essential components of all cells, playing impor-
tant roles that include cellular stabilization and signalling. 
Lipid composition varies across cell types, tissues, and in 
each organelle, suggesting that different lipid composi-
tions are required for different functions [1]. Increasing 
evidence demonstrates that lipids are capable of specific 
organisation in each compartment, and this organisation is 
essential for regulating lipid functions [2]. Changes in the 
composition and organisation of lipids can have profound 
effects on cellular functions, including signal transduction, 
membrane plasticity, and membrane trafficking [3].

Cholesterol is one of the most important regulators 
of lipid organisation, and tightly controlled mechanisms 
maintain cellular cholesterol levels in membranes that 
regulate cholesterol trafficking [4]. Dysregulation of this 
balance can lead to disease, such as Niemann–Pick type 
C [5] or atherosclerosis [6]. Phospholipids (glycerophos-
pholipids and sphingolipids) are another important cellular 
building block, and modification of their cellular levels 
also can lead to pathogenic processes, such as Alzheimer’s 
disease.

While studies of the organisation and function of lipids 
in the plasma membrane continue to increase in the lit-
erature, and the definition of lipid rafts is now well estab-
lished, the concept of nuclear lipid microdomains and 
mitochondrial raft-like microdomains are not as widely 
appreciated by the scientific community. This specific 
organisation of lipids in the nucleus and mitochondria 
is essential for regulating basal physiological processes, 
including mitochondrial respiration, regulation of apopto-
sis, cell proliferation, and transcriptional processes [7–10]. 
A better understanding of the function of lipids can be 
achieved by manipulating them at the cellular and subcel-
lular levels via chemical sequestration experiments (i.e., 
methyl-β-cyclodextrin) or perturbation of biosynthetic 
enzymes (i.e., statins) [11–14]. However, these methods 
are not specific to lipid localization and organisation, so 
a main future research challenge will be to regulate lipid 
levels in a spatial and temporal manner and to target them 
in specific organelles.

Initially, lipid rafts were thought to be present exclu-
sively in eukaryotes, with prokaryotes devoid of complex 
lipid-protein organisation [15]. However, recent evidence 
suggests that lipid raft-like membrane microdomains, 
called functional membrane microdomains (FMM), are 
essential elements of the prokaryotic cell membrane. 
These microdomains appear to play crucial roles in various 
cellular processes that are important for their survival [16] 
including signal transduction, membrane trafficking, and 
metabolic regulation. Moreover, homologs of Flotillin-1, 

a specific biomarker of eukaryotic lipid raft, can be found 
in bacterial membrane microdomains, which further con-
firm that lipid raft or lipid-protein microdomains are not 
exclusive properties of eukaryotic cell membranes. Rather, 
they also are essential structural and functional features 
of the prokaryotic membrane [17, 18]. In this context, 
a study using the bacteria, Borrelia burgdorferi, found 
that despite having a different composition, the process 
of forming lipid rafts is identical in both prokaryotes and 
eukaryotes [19]. Thus, the presence of lipid rafts or simi-
lar membrane microdomains in different model organisms 
reveals that the formation and functionality of these struc-
tures are evolutionarily conserved features of the cells. 
Given the comparative simplicity of bacterial cells, studies 
using bacteria as model organisms might help to clarify 
controversial aspects of the study of eukaryotic lipid rafts.

In this review, we briefly summarise the organisation of 
lipids (in terms of structure, composition, intra-cellular traf-
ficking, and sorting) in the main cellular compartments to 
highlight the importance of this organisation for basic cel-
lular processes, including apoptosis, autophagy, and intra-
cellular signalling. We then focus on the development of 
new methods for studying lipid organisation, explore the 
limitations of current techniques, and examine the future 
steps required to enhance our knowledge of these specific 
cellular microdomains. Investigating these open issues in 
lipid organisation, distribution, and trafficking will contrib-
ute to a better understanding of the molecular and cellular 
basis of lipid-associated disorders.

Organisation of lipids in the eukaryotic 
plasma membrane

Subclass of lipid rafts: caveolae and planar lipid 
rafts

Lipid rafts are highly dynamic, nanoscale (< 200 nm), 
cholesterol- and sphingolipid-enriched membrane micro-
domains that are present in all eukaryotic cells. Since the 
formulation of the lipid raft hypothesis [20], hundreds of 
studies have reported different roles for these membrane 
microdomains in the organisation of cell signalling. Lipid 
rafts can act as concentrating platforms for individual recep-
tors that are activated by ligand binding. If receptor activa-
tion takes place in a lipid raft, the signalling complex is 
protected from non-raft enzymes, such as membrane phos-
phatases, that otherwise negatively could affect the signal-
ling process.

Lipid raft proteomics is the study of all proteins that 
use the raft assemblage for proper functioning, and it has 
been conducted primarily in hematopoietic cells, such as 
B- and T-cells and in a wide range of cancer cells [21, 
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22]. The interaction between rafts and cytoplasmic pro-
teins can be seen in actin, which forms protein chains of 
cadherin–catenin–actin, or CD44–actin. This proteomic 
approach has quantified approximately 250 raft-associated 
proteins (Table 1).

One subclass of lipid rafts, discovered in the 1950s, is 
found in cell surface invaginations, called caveolae, which 
are formed by the polymerization of caveolins [23]. Cave-
olae are involved in endocytosis of different proteins, includ-
ing albumin. Caveolae also play a role in signal transduction, 
but they are not essential, because several cell types lack 
caveolin, including lymphocytes and neurons. In animal 
models, disruption or deletion of caveolin-1 (cav-1) impairs 
nitric oxide and calcium signalling in the cardiovascular 
system, which causes fibrosis and thickening of lung alve-
oli [24–28]. Biochemical evidence indicates that CAV1 is 
a tumour suppressor gene [29] and a negative regulator of 
many signalling proteins, including v-Src, H-ras, protein 
kinase A, and MAP kinase [30–34].

On the other hand, cav-1 can function as a tumour metas-
tasis-promoting molecule. Cav-1 is overexpressed in human 
prostate cancer cell lines, mouse models, and human pancre-
atic tumours, and it is associated with poor clinical outcomes 
[35]. Interestingly, within tumour types derived from the 
same cell type or tissue, cav-1 expression levels are con-
sistently upregulated or downregulated in the majority of 
cases [36–38]. Cav-1 typically is downregulated in ovarian 
[39], lung [40], and colon [41] carcinomas, whereas cav-1 
is upregulated consistently in bladder [42], esophagus [43], 
thyroid [44], and prostate [45] carcinomas. The other com-
mon type of lipid rafts is planar lipid rafts (also referred 
as non-caveolar rafts). Planar lipid rafts share many of the 
features of caveolae (cholesterol- and sphingomyelin-rich 
cytoskeletal association), but they are not invaginated [46]. 
In addition to Cav-1 being important for caveolar rafts, flo-
tillin proteins also are an indispensable prerequisite for raft 
formation in non-caveolar rafts [47]. Flotillins promote the 
co-assembly of activated and specific GPI-anchored pro-
teins on plasma membrane microdomains, and they promote 

interaction of signalling molecules, including the Src family 
kinases [48–50].

Pathophysiological function of rafts

Redox signalling

Many studies have demonstrated that lipid rafts play a cru-
cial role in the redox signalling that regulates the patho-
physiology of different degenerative diseases [51–53]. Large 
redox signalling molecules are aggregated into lipid rafts 
and can produce different types of reactive oxygen species 
(ROS). The type of lipid raft signalling capable of ROS 
production has been referred to as lipid raft redox signal-
ling platforms. NADPH oxidase (NOX) is considered the 
main source of ROS signalling under physiological condi-
tions. Lipid rafts provide an essential platform to aggregate 
and assemble the necessary subunits of NOX into an active 
enzyme complex that produces O2

·− and other ROS [54, 
55]. There are two types of NOX, known as phagocytic and 
non-phagocytic. Under physiological circumstances, non-
phagocytic NOX expression is very low, and its activity is 
maintained at a basal level [56]. Unlike ROS produced in 
phagocytes that are mainly involved in host defences, ROS 
produced in non-phagocytes primarily serve as signalling 
messengers that directly or indirectly act on downstream 
effector proteins, such as protein phosphatase, protein kinase 
and many transcription factors. Stimulation with specific 
agonists, such as angiotensin II and platelet-derived growth 
factor, induces overexpression of non-phagocytic NOX. 
Assembly of active phagocytic NOX requires translocation 
of cytosolic subunits p47phox and p67phox, as well as Rac to 
the plasma membrane, where these subunits interact with 
gp91phox and p22phox and associate with other co-factors in 
the membrane to form a functional enzyme complex. In the 
assembly and activation of NOX, lipid raft clustering repre-
sents an important mechanism that mediates activation [57, 
58]. Superoxide production following cholesterol depletion 
was severely compromised in intact cells and correlated 
with a reduced translocation of cytosolic phox subunits to 
the plasma membrane [59]. Moreover, many studies have 
shown that lipid rafts participate in signalling of cell apopto-
sis associated with oxidative stress during activation of vari-
ous death receptors, particularly lipid raft-localised Fas and 
tumour necrosis factor receptor 1 (TNFR1) [60–63]. Various 
death factors bind to their receptors in individual lipid rafts 
in endothelial cells and subsequently stimulate acid sphingo-
myelinase to produce ceramide from sphingomyelin [64, 65]. 
Furthermore, redox molecules by themselves can alter the 
formation of lipid raft platforms. For example, superoxide 
dismutase (SOD) decreases as O2

·− increases, which forms 
ceramide-enriched membrane platforms in the membrane of 
coronary arterial endothelial cells [66]. Other studies have 

Table 1   Main proteins associated with lipid rafts

Protein References

Caveolin-1 [230–232]
α-Catenin [233, 234]
β-Catenin [233, 234]
Fas/CD95 [60, 62, 63, 235]
β-Actin [230, 231, 236, 237]
Ras [238, 239]
Integrin β-1 [240–243]
CD44 [244–247]
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shown that H2O2 activates pro-survival signalling pathways, 
including activation of PI3 kinase/Akt and ERK1/2, by a 
lipid raft-dependent mechanism [67].

Host–pathogen interactions

A wide variety of pathogens targets lipid rafts to infect host 
cells. As signalling for both the innate and adaptive immune 
responses is initiated in rafts, many pathogens have devel-
oped mechanisms to subvert this signalling by co-opting 
raft-associated pathways [68, 69]. Moreover, entry via lipid 
rafts can avoid lysosomal fusion and allow pathogen sur-
vival. Lipid rafts have been involved in bacterial entry of 
adhesins, including FimH + of E. coli [70], and pore-form-
ing toxins, including proteins of the cholesterol-dependent 
cytolysins [71–73], and of intra-cellular pathogens, such as 
Mycobacterium bovis [74]. Among viruses that target lipid 
raft microdomains for entry into the cells, the best charac-
terised has been SV-40, which co-opts these lipid micro-
domains to enter host cells and becomes established in the 
ER [75]. Compartmentalization of Ebola and Marburg viral 
proteins occurs within lipid rafts during viral assembly and 
budding [76]. Similarly, HIV-1 uses lipid rafts for entry, for 
signal transduction regulation, and for trafficking of HIV-1 
proteins [77, 78]. Indeed, interest in lipid rafts as modulators 
of host–pathogen interaction has increased because of the 
discovery of high levels of sphingolipids and cholesterol in 
the HIV envelope [79]. Caveolae-like structures also have 
been reported in membranes surrounding the parasite Plas-
modium falciparum, the agent of malaria [80]. However, 
despite caveolae and other lipid microdomains being iden-
tified as the sites of microbial action, the biological conse-
quences of these interactions require further investigation.

Studying lipid rafts: evolution of techniques

Biochemical strategies

The first evidence for heterogeneity in the plasma mem-
brane came from the observation that various membrane 
lipids solubilise in different ways. Specifically, the cellular 
membrane can be separated into two fractions: a detergent-
resistant fraction that is enriched in cholesterol and sphin-
golipids and a detergent-soluble fraction that is not enriched 
[81]. However, the extraction procedure does not reflect the 
real composition of the membrane, because many detergents, 
including Triton X-100, can solubilise proteins associated 
with the membrane microdomains [82]. As a consequence, 
new sophisticated methods have been developed. For exam-
ple, detailed studies of lipid microdomains in animal mod-
els have been performed using Cav-1 null mice [25–27]. 
Mice lacking CAV-1 show no developmental abnormality 
or lethality other than an expected lack of cav-1 expression 

and plasmalemmal caveolae. In addition, cultured fibro-
blasts from Cav-1 null mouse embryos also reveal loss of 
caveolin-2 expression and a hyperproliferative phenotype 
[26]. Furthermore, lung parenchyma from Cav-1 null mice 
shows hyper-cellularity with a thickened alveolar septa and 
an increased number of vascular endothelial growth factor 
receptor-positive endothelial cells [26, 83]. The activity of 
nitric oxide synthetase (NOS) also is upregulated in Cav-1 
null animals, but this activity can be blocked partially with 
nitro-l-arginine methyl ester NOS inhibitors [84]. On the 
other hand, the lack of a spontaneous tumour formation and 
modest proliferation defects found in Cav-1 null mice are 
reminiscent of several previously described mouse models 
lacking inhibitory cell cycle proteins [26]. For example, 
mice deficient in cyclin-dependent kinase inhibitor do not 
develop tumours, and their embryonic fibroblasts only dis-
played a modest proliferative advantage over the wild type 
[85]. The availability of a viable Cav-1-deficient mouse 
model will allow further investigations that evaluate specific 
functions of CAV-1 and caveolae organelles in vivo.

One useful approach in raft research involving cell signal-
ling has been the manipulation of lipid raft constituents [46, 
86]. This leads to protein dissociation from rafts that allows 
for straightforward detection using common methods used to 
analyse raft associations, including small-angle neutron scat-
tering and Raman spectroscopy, which is a label-free tech-
nique that has been applied successfully to monitor changes 
in membrane domain composition [87, 88].

These methodologies have contributed greatly to our 
understanding of raft function in vivo and have highlighted 
the importance of lipid rafts as an entry platform for dif-
ferent types of viruses and bacteria [76, 89–92]. For exam-
ple, the most widely used drugs used to disrupt rafts are 
β-cyclodextrins and cyclic oligosaccharides that remove 
cholesterol from the plasma membrane. The previous stud-
ies using these agents have shown that membrane choles-
terol depletion induces apoptotic death in some cells [93], 
but they also can inhibit Fas-induced apoptosis, which is 
signalled through lipid rafts [62, 94]. Cholesterol is not 
the only component that can be targeted to limit bacterial 
and viral entry, as ceramide also is involved in the fusion 
of endosomes with lysosomes during the internalization 
of microbial pathogens in mammalian cells [95, 96]. An 
extensive review by Bagam and colleagues summarises the 
importance of ceramide rafts for bacterial and viral infection 
[97]. Therefore, new lipid raft-targeting agents have been 
used to systematically investigate how membrane composi-
tion affects cell signalling (Table 2).

Biophysical strategies

A variety of artificial membranes have been developed 
over the past few years, with the aim to simulate the 
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basic functions of a cell membrane, including biomimetic 
monolayers [98], suspended  and supported  lipid bilay-
ers [99–101], tethered lipid bilayer [102–104], and giant 
unilamellar vesicles [105, 106]. Each has advantages and 
disadvantages with regard to ease of formation, mem-
brane lifetime, and physiological limits of transmembrane 
proteins incorporation. These artificial membranes have 
provided important information on membrane structure/
function and the nature of membrane–protein interaction 
[107]. Domains with raft-like properties were found to co-
exist with fluid lipid regions in different model membranes, 
including planar-supported lipid layers and giant unilamel-
lar vesicles formed from equimolar mixtures of phospho-
lipid–cholesterol–sphingomyelin [108]. Even though most 
of experiments have been performed in lipid-only systems, 
the incorporation of integral membrane proteins into arti-
ficial systems recently has been developed to better mimic 
the plasma membrane. A limitation of these techniques 
is that the artificial membranes occasionally show a high 
protein/lipid ratio that does not reflect the constitution of 
actual biological membranes protein content, which can be 
as high as 25% [109]. A possible solution to this problem 
is the use of giant plasma membrane vesicles, which are 
cell-derived plasma membrane vesicles that retain lipid and 
protein diversity typical of the cellular plasma membrane but 
do not contain an actin cytoskeleton connection [110–112]. 
Thus, there is a big opportunity to expand the range of appli-
cations of artificial membranes and to further improve their 
similarity to biological membranes.

Advanced microscopy strategies

Because lipid rafts are defined as nanoscopic domains 
(< 200 nm), they cannot be studied using the traditional 
microscopy methods. Co-localization of the cholera toxin 
with lipid rafts and visualization with confocal micros-
copy has been used extensively as a method to study these 
membrane microdomains [71, 113–115]. More advanced 
optical tools have been developed recently to investigate 
the direct dynamics of membrane organisation, including 
Förster’s resonance energy transfer (FRET) microscopy. 
The FRET methodology employs the use of fluorescently 

labelled isoforms of biomolecules to detect extremely short-
range interactions between the labelled species. It is a non-
invasive methodology, because fluorescent tags necessary to 
observe FRET do not alter the function and distribution of 
the proteins associated with lipid rafts. It has been applied to 
both model membranes and live cells [116, 117]. Different 
reviews provide detailed descriptions of this technique for 
the study of lipid rafts [118, 119]. Fluorescence correlation 
spectroscopy (FCS) is another method that has been used 
extensively to characterise model and cellular membranes. 
FCS measures small fluctuations in fluorescence inten-
sity in a defined volume. It provides accurate information 
about different parameters, including diffusion coefficients, 
intra-molecular dynamics, or molecular interactions, and it 
has been used in association with many imaging methods, 
such as laser scanning confocal microscopy or two-photon 
microscopy. Detailed reviews on the use of this technique 
for lipid rafts characterization also are available [120–122]. 
Electron microscopy has the necessary resolution to perform 
studies on lipid rafts, but, because it requires cell fixation 
and staining (limiting steps in lipid visualization), it is not 
the preferred technique. Currently, fluorescence microscopy 
remains the most advanced method for visualizing lipid 
membrane microdomains, and efforts are focused on opti-
mizing fluorescent labels to further improve its precision.

Open issues and future perspectives

While the composition, regulation, and roles of lipid rafts 
have been thoroughly studies and brilliantly reviewed 
recently by Sezgin et al. [123], several aspects of raft struc-
ture and function require further clarification. For example, 
it is of primary importance to understand the exact composi-
tion of lipid rafts and how they vary in different cell types. 
Is cancer cell phenotype always characterised by a differ-
ent composition of lipid rafts? How does this composition 
affect cell signalling and the resistance of tumour cells to 
chemotherapeutic agents? Answers to these questions are 
essential to understand the dynamic organisation of lipid 
bilayers and to develop an effective strategy based on lipid 
raft-targeting agents. The question of how single lipid rafts 
are crosslinked to form clustered rafts also is important for 

Table 2   Lipid raft-targeting 
agents

Drug candidate Mechanism of action References

Methyl-β-cyclodextrin Cholesterol depletion [11, 14, 86, 94, 132]
Dynasore Cholesterol depletion/sequestration [71, 192]
Pore-forming agents Cholesterol sequestration [248, 249]
Filipin, nystatin, amphotericin Cholesterol sequestration [250–252]
Statins Inhibition of cholesterol biosynthesis [12, 13, 253, 254]
Fumonisins, myriocin, lipoxamycin Inhibitors of sphingolipid metabolism [255–258]
Sphingomyelinase Cholesterol displacement by ceramide [259–261]
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understanding how lipid microdomains affect signal trans-
duction. Real-time imaging and progress in microscopy will 
allow a better investigation of signalling complexes under 
normal conditions and after cholesterol depletion. The lack 
of specific fluorescent labels continues to limit investigations 
of membranes, because the behaviour of lipids is strictly 
dependent on their amphiphilic properties and molecular 
packing, both of which are affected by fluorophores [124]. 
Thanks to advances in microscopy, a recent study showed 
that molecules move in and out of lipid rafts at unexpect-
edly fast rates (i.e., sphingomyelins spend only 12–50 ms 
inside the lipid rafts before and after extracellular immuno-
stimulation) [125], which can explain difficulties studying 
these membrane microdomains.

Novel mass spectroscopy methods are available to ana-
lyse proteins and lipids in membranes. A study combining 
super-resolution fluorescence and high-resolution ion mass 
spectrometry allowed the sphingolipid distribution across 
the plasma membrane to be characterised. Specifically, 
reduction in cellular cholesterol was shown to decrease 
the number of sphingolipid domains in the plasma mem-
brane, whereas disruption of the cytoskeleton completely 
eliminated them [126]. Resolving controversies related to 
the organisation and dynamics of membrane microdomains 
will require the complementary use of lipidomic and prot-
eomic analysis, in silico membrane modeling, and micros-
copy methods using probes with high spatial and temporal 
resolution.

Organisation of lipids in eukaryotic 
mitochondria

Raft‑like microdomains and regulation 
of mitochondrial apoptosis

Lipid microdomains are not confined to the plasma mem-
brane. Rather, they are present in other raft-like microdo-
main compartments, including mitochondria [9], endo-
plasmic reticulum (ER) [127], and nuclei [7]. Raft-like 
microdomains appear to be involved in a series of mitochon-
drial functions, including oxidative phosphorylation, ATP 
production and membrane “scrambling”, which participate 
in cell death pathways and recruitment of proteins to the 
mitochondria. Due to recruitment of CD95/Fas and tumour 
necrosis factor family receptors to plasma membrane lipid 
rafts and recruitment of specific proapoptotic Bcl-2 family 
proteins to mitochondrial raft-like microdomains, lipid rafts 
play a key role in receptor-mediated apoptosis of T-cells 
[10].

Raft-like microdomains are analogous to lipid rafts on the 
plasma membrane, in that they represent preferential sites 
on the mitochondrial membrane where key reactions can be 

catalysed. CD95/Fas triggering recruits Bcl-2 family pro-
teins, including truncated Bid, t-Bid, and Bax. Cardiolipin 
(CL) is an activation platform for caspase-8 translocation 
to mitochondria, it is a mitochondrial receptor for Bid, and 
it regulates oligomerization of Bax and insertion into the 
mitochondrial membrane [128]. In addition, the mobili-
zation of cytochrome c, another key apoptotic protein, is 
regulated strictly by its interaction with CL. Therefore, CL 
is an essential constituent of functional domains, localised 
at contact sites between the inner and outer mitochondrial 
membranes, from which it regulates apoptosis by integrating 
signals from a variety of apoptosis-inducing proteins [128, 
129]. The importance of CL is underlined by the observation 
that some bacterial proteins involved in cell division and 
oxidative phosphorylation are bound tightly to CL. Thus, tar-
geting CL is emerging as a new antimicrobial strategy [130].

Other studies have suggested that proapoptotic members 
of the Bcl-2 family are associated with mitochondrial fis-
sion proteins during apoptosis. More specifically, after trig-
gering apoptotic stimuli, molecules involved in mitochon-
drial fission are recruited into raft-like microdomains. The 
importance of this process is related to the fact that raft-
targeting compounds, like methyl-β-cyclodextrin, reduce 
mitochondrial fission and apoptosis [131]. Treatment with 
methyl-β-cyclodextrin prevents mitochondrial depolariza-
tion and cytochrome C release and impairs mitochondrial 
bioenergetics [132]. As a consequence, the effects of regu-
lating mitochondrial homeostasis and apoptosis suggest that 
raft-like microdomains could play a role in the pathogenesis 
of diseases with mitochondrial alterations, such as amyo-
trophic lateral sclerosis or Parkinson’s disease, as well as 
cancer, where apoptotic triggering is a main therapeutic 
goal [133–135]. Of remarkable importance is the observa-
tion that during apoptosis, the cellular form of prion protein 
(PrPc) can undergo intra-cellular re-localization, via ER-
mitochondria-associated membranes and microtubular net-
works, to mitochondrial raft-like microdomains [136, 137]. 
This observation could imply that PrPc may participate in 
the prion neurodegenerative cascade through mitochondria-
mediated events and suggests a new potential therapeutic 
target based on the prevention of mitochondrial mis-locali-
zation of PrPc to protect cells from mitochondria-mediated 
apoptosis. Further studies are needed to clarify the function 
of prion protein in mitochondria and during physiologi-
cal conditions, as PrPC was found in brain mitochondria in 
6–12 week old wild-type and transgenic mice in the absence 
of any disease [138].

Mitochondrial lipids and oxidative stress

Oxidative stress and the resulting lipid peroxidation are 
involved in many pathological conditions, including 
inflammation, atherosclerosis, neurodegenerative diseases, 
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and cancer [139–141]. The term “oxidative stress” is used 
to describe imbalances in redox couples, such as those 
reduced to oxidised glutathione (GSH/GSSG) or NADPH/
NADP+ ratios. Alteration of these ratios determines over-
production of molecules that are enriched with one or more 
oxygen atoms that generally are considered to be markers 
of oxidative stress.

ROS are mainly responsible for the alteration of mac-
romolecules, which is known as oxidative stress. ROS are 
generated as intermediate products of cellular metabo-
lism primarily in the mitochondria, and include free radi-
cals, such as superoxide anion (O2

·−), perhydroxyl radical 
(HO2·), hydroxyl radical (·OH), and nitric oxide (NO). To 
prevent damage from ROS, cells possess several antioxidant 
enzymes, such as superoxide dismutases, that are located 
mainly in the mitochondria and convert superoxide into 
hydrogen peroxide. Catalase further catalyses the decom-
position of hydrogen peroxide into water and oxygen.

Reactive intermediates produced by oxidative stress can 
alter membrane bilayers and cause lipid peroxidation of pol-
yunsaturated fatty acids [142, 143]. Lipid peroxidation and 
breakage of lipids with the formation of reactive compounds 
can change permeability and fluidity of the membrane lipid 
bilayer and dramatically alter cell integrity and cell homeo-
stasis (Fig. 1). Lipid peroxidation is particularly harmful 
to mitochondria, which contain CL as a main component 

of the inner mitochondrial membrane, because this lipid is 
required for activity of cytochrome oxidase [144]. Oxidative 
stress decreases CL levels to a larger extent than other lipids, 
decreasing cytochrome oxidase activity [145]. CL has been 
shown recently to provide an essential mitochondrial activat-
ing platform for caspase-8. More specifically, the role for CL 
in ‘raft-like’ microdomains could be to anchor caspase-8 at 
contact sites between inner and outer membranes, facilitat-
ing its self-activation, Bid cleavage, and apoptosis [128].

Open issues and future perspectives

Despite a significant progress in identifying key protein 
factors that control mitochondrial morphology through 
regulation of fission and fusion, advances in signalling of 
mitochondrial lipids is the essential step to understand the 
regulation of mitochondrial homeostasis [146]. In addi-
tion to the reported role as an activator of apoptosis, CL is 
important for recruitment of fusion- and fission-promoting 
proteins to mitochondria, including α-synuclein, which is 
involved in the pathogenesis of Parkinson’s disease [147].

Another major lipid component of mitochondrial mem-
branes is phosphatidylethanolamine (PE). PE plays impor-
tant roles in mitochondrial fusion, as yeast lacking Psd1 
develop PE deficiency in mitochondrial membranes, with 
an abnormal mitochondrial morphology characterised by 
extensive fragmentation and reduced ATP synthesis [148]. 
Given the important role of mitochondrial morphology in 
many cellular and physiological processes, further research 
on the roles of lipids in fusion and fission may produce novel 
findings to help explain the pathogenesis of mitochondrial 
diseases. Special attention should be dedicated to research 
on the mechanisms by which lipids interact with mitochon-
drial surface proteins, how they regulate each other and 
factors capable of influencing fusion and fission processes. 
These advances will provide essential knowledge for future 
development of new types of therapeutics.

Organisation of lipids in the eukaryotic 
endomembrane system

Role of lipids in autophagy regulation

Autophagy is an essential cellular pathway mediating lyso-
somal degradation of defective organelles, long-lived pro-
teins, and protein aggregates [149, 150]. Autophagy involves 
a complex sequence of membrane remodelling and traffick-
ing events, including the formation of autophagosomes, 
which engulf portions of cytoplasm at specific subcellular 
locations, and their subsequent maturation into autophago-
lysosomes by fusion with the endolysosomal compartment. 

Fig. 1   ROS generation and lipid peroxidation. The main source of 
reactive oxygen species (ROS) is mitochondrial respiration: electrons 
leak from complexes I and IV and produce superoxide anion (O2

·−) 
and hydrogen peroxide (H2O2). The cellular detoxification system 
(SOD and GPx) scavenges ROS and converts them into final products 
(H2O and O2). If ROS are augmented considerably, the Fenton reac-
tion can produce hydroxyl radicals (HO·), the most damaging form of 
ROS. Hydroxyl radicals are responsible for damage to DNA and pro-
teins, as well as membrane lipid peroxidation. Cells have developed 
protective mechanisms against these cellular threats, including DNA 
repair enzymes and enzymes, such as GPx, SOD, and MT. However, 
pathologies like cancer, atherosclerosis, and neurodegenerative dis-
eases can arise when a serious imbalance between ROS production 
and ROS scavenging persists in an organism
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An emerging role for lipids and their metabolizing enzymes 
is their control of this cellular process.

Specifically, lipids control the autophagic process via key 
steps: (1) lipids regulate signalling cascades by converging 
into the mammalian TOR (mTOR) pathway, which nega-
tively regulates the initiation of autophagy; (2) lipids act as 
membrane-bound localised signals that regulate membrane 
dynamics by recruiting cytosolic protein effectors that medi-
ate membrane expansion and vesicle transport; and (3) lipids 
control membrane dynamics by influencing the physical 
properties of lipid bilayers, including curvature and fluid-
ity [151]. For example, phosphoinositides, like PI3P, are a 
group of phosphorylated derivatives of phosphatidylinosi-
tol that mediate recruitment of cytosolic proteins control-
ling autophagosome maturation [152]. Class I PI3Ks and 
their product PI(3,4,5)P3 are essential for the regulation of 
the mTORC1 pathway signalling cascade [153]. The vast 
majority of lipids involved in regulation of autophagy are 
phospholipids, and their importance is related to their capac-
ity to influence the structure of lipid bilayers and to control 
assembly of protein scaffolds responsible for important steps 
in autophagy [154].

However, other types of lipids are involved in the 
control of autophagy. Ceramide activates autophagy by 
inhibiting the class I PI3K/Akt pathway and causes Bcl-2 
to dissociate from beclin-1 through Bcl-2 phosphoryla-
tion induced by JNK [155]. Furthermore, ceramide also 
regulates death-associated protein kinase, which triggers 

autophagic cell death in different types of cancer cells 
[156, 157]. The role of ceramide in autophagy also could 
be structural, since ceramide increases negative membrane 
curvature and co-localises with autophagosomes. Sphin-
gosine-1-phosphate also induces autophagy by inhibiting 
the mTOR complex independently of Akt and causes only 
slight accumulation of beclin-1. Furthermore, cholesterol 
has a role in so-called chaperone-mediated autophagy 
(CMA) [151]. Figure 2 provides a brief overview of how 
lipids influence autophagy. Cytosolic proteins containing 
a KFERQ motif are recognised by Hsp70, which facilitate 
protein unfolding and delivery to LAMP-2A, forming a 
translocation pore in the lysosomal membrane. Locali-
zation of LAMP-2A to lipid microdomains enriched in 
cholesterol and sphingolipid in the lysosomal membrane 
seems to regulate its function in this particular type of 
autophagy [158]. Cellular cholesterol levels negatively 
correlate with CMA activity, whereas disruption of 
microdomains with cholesterol extracting agents, such as 
cyclodextrin, activates CMA [159]. Modification of cel-
lular cholesterol levels also can regulate macroautophagy: 
cholesterol depletion activates macroautophagy in several 
cell types, as determined by increased levels of lipidated 
LC3, the main marker of this type of autophagy. Although 
cholesterol depletion inactivates mTOR, hypercholester-
olemia seems to activate mTOR signalling, suggesting that 
cholesterol may regulate autophagy through the mTOR 
pathway [160, 161].

Fig. 2   mTORC1 modulates cellular response to nutrients and is the 
key suppressor of autophagy. Lipids and lipid enzymes play a major 
role in mediating mTORC1 regulation. The class I PI3K product 
PI(3,4,5)P3 activates mTORC1, as well as the class II PI3K products 
PI(3,5)P2 and PA. In the absence of nutrients (starvation), mTORC1 
signalling shuts down, and lipids, such as PI3P, PA and sphingosine-
1-phosphate act as positive modulators of autophagy. Specifically, 
sphingosine 1 phosphate (produced by sphingosine kinase 1) contrib-

utes to mTORC1 inhibition, whereas PI3P, PA, and DAG (produced 
by class III PI3K) modulate signalling and membrane remodelling to 
support autophagy activation. PI(3)P can be synthesised from PI by 
class II and class III PI3-kinases. 3-Phosphatases can convert PI(3)P 
back into PI, and PI(3)P can be converted into PI(3,4)P2 and PI(3,5)
P2 by 4-kinases and 5-kinases, respectively. S1P phosphatase can con-
vert sphingosine 1 phosphate into sphingosine
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Lipophagy: the missing link between autophagy 
and lipid metabolism

Recently, it has been proposed that the contribution of 
autophagy to cellular energy balance may not only be 
dependent on the capacity to degrade misfolded proteins 
(which are a relatively inefficient source of energy), but also 
on other components, such as free fatty acids and sugars. In 
this form of lipid metabolism, named lipophagy, triglycer-
ides and cholesterol are taken up by autophagosomes and 
delivered to lysosomes for degradation by acidic hydrolases 
[162]. Free fatty acids generated by lipophagy from the 
breakdown of triglycerides are used during mitochondrial 
β-oxidation. The amount of lipid degraded by lipophagy 
varies in response to extracellular nutrient levels. Further-
more, the ability of cells to regulate the amount of lipid for 
autophagic degradation depends on nutritional status, dem-
onstrating that this process is highly selective. Triglycerides 
and cholesterol are stored in specialised cellular organelles 
called lipid droplets (LDs). As a consequence of starvation, 
hepatocytes and other cell types including neurons display 
an increased association of the autophagy marker LC3 with 
LDs [163].

The finding that autophagy regulates lipid metabolism 
suggests an effective role for lipophagy in modulating lipid 
stores in adipocytes [164]. There are two types of differen-
tiated adipocytes: white adipose tissue and brown adipose 
tissue. White adipocytes function as a lipid storage deposit 
to prevent lipotoxicity, while brown adipocytes have reduced 
capacity for lipid storage but a high rate of lipid metabo-
lism through β-oxidation. Inhibition of autophagy inhibits 
the accumulation of triglycerides in white adipocytes and 
decreases expression of important regulators of adipogen-
esis. On the other hand, adipose-selective knockout of essen-
tial autophagy genes in mice significantly reduces adipocyte 
LD content and fat tissue mass. It is possible that autophagy 
directly regulates expression of one or more transcriptional 
regulators of adipogenesis or that autophagy may promote 
adipogenesis through cytoplasmic remodelling.

Open issues and future perspectives

Despite the demonstration that main lipid classes (sterols, 
fatty acids, phospholipids, and sphingolipids) are impli-
cated in autophagy control, the molecular basis behind 
their involvement is still poorly understood. New biologi-
cal approaches, such as lipidomics, hopefully will clarify 
the specific role of lipids in autophagy and lipophagy. New 
discoveries in the field may enable the potential use of 
autophagy modulation as a therapeutic weapon [165, 166].

Recent findings that lipids are a substrate for autophagic 
degradation, and that autophagy has an essential role in 
lipid metabolism, provide an opportunity for a complete 

understanding of diseases, such as type II diabetes and 
atherosclerosis. Key factors to clarify are how lipid 
composition of autophagic membranes could influence 
autophagic processes, how lipid signalling in autophagy 
can be controlled and modified, and the basis for the con-
nection between dietary lipid uptake, lipid breakdown 
by lipophagy and metabolic disorders [165, 167]. Even 
though lipophagy appears to be a common pathway in 
many cells, this conclusion still requires confirmation. 
Another remarkable point is that very little is known 
about genetic differences that lead to individual variation 
in autophagic efficiency, but their existence may explain 
heterogeneity in manifestations of diseases marked by 
increased LD accumulation, such as steatohepatitis. Fur-
ther investigations of lipophagy are likely to increase our 
understanding of the role of LD breakdown in cell physiol-
ogy and pathology [167].

Organisation of lipids in eukaryotic nuclei

Lipid microdomains in cell nuclei

Many studies have demonstrated that the lipid component 
is present in various subnuclear compartments, where it 
plays different roles [168]. In the nuclear membrane and 
nuclear matrix, lipids regulate fluidity, while they partici-
pate in cellular signalling in chromatin [7, 8]. Furthermore, 
lipids, such as phosphatidylcholine and sphingomyelin, are 
linked with cholesterol. Composition and localization of 
lipids change throughout the cell cycle under the action of 
different enzymes, including sphingomyelinase (SMase) and 
phospholipase C. Similar to lipid rafts in cell membranes, 
lipid microdomains in nuclei are associated with proteins 
and a small amount of DNA and double-stranded RNA to 
form an intra-nuclear complex that is not extracted with 
nuclear membrane and chromatin purification techniques 
[169]. These nuclear lipids affect cellular functions of intra-
nuclear signalling molecules and by modifying subnuclear 
structures. Activation of SMase changes sphingomyelin and 
cholesterol levels, which modifies fluidity of the nuclear 
membrane and allows nuclear-cytoplasm efflux of mRNA 
[170]. Because nuclear-cytoplasmic exchange is a basic 
cellular process of eukaryotes, these lipids are essential for 
healthy cells [171, 172]. Similar to the plasma membrane, 
where three pools of cholesterol are present (labile, sphingo-
myelin-linked cholesterol, and essential pool) [4], two pools 
of cholesterol co-exist in chromatin: a sphingomyelin-free 
cholesterol pool that does not change during cellular pro-
liferation and a sphingomyelin-linked cholesterol pool that 
can change during the S-phase of the cell cycle in relation 
to SMase activation [168].
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Nuclear lipid signalling

One of the most well-studied nuclear lipid signalling com-
plex is the polyphosphoinositol lipid complex, which, 
together with the enzymes that synthesise them, forms the 
intra-nuclear phospholipase C complex (PI-PLC) signal-
ling system that generates diacylglycerol and inositol-1,4,5-
triphosphate [173, 174]. Diacylglycerol is believed to be 
essential for recruiting protein kinase C to the nucleus to 
phosphorylate intra-nuclear proteins, while inositol triphos-
phate increases nucleoplasmic Ca2+. Phospholipase A2, PI-3 
kinase, and different PKC isoforms are involved in nuclear 
signalling, and the main metabolic product of sphingolipids, 
such as sphingomyelin, is ceramide generated by sphingo-
myelinase. Evidence suggests that the ratio of ceramide to 
diacylglycerol is a form of regulatory control that is criti-
cal for homeostatic nuclear properties [175–177]. Nuclear 
lipid signalling has an advantage over plasma membrane 
signalling in that lipids or their metabolites interact directly 
with nuclear factors, influencing transcription, and enzyme 
activities [178, 179]. For example, acidic phospholipids, 
such as CL, strongly affect the activities of different nuclear 
enzymes [170, 180]. It also should be noted that DNA and 
acidic phospholipids—in addition to many other nuclear pro-
teins, including histones and DNA/RNA polymerase—share 
a common phosphatidylinositol consensus-binding sequence 
motif, indicating that nuclear lipid and protein interactions 
are essential to basic nuclear phenomena, including tran-
scription, nuclear transport, and chromatin organisation.

Open issues and future perspectives

Lipids play both functional and structural roles in the 
nucleus and plasma membrane. Many aspects of these roles 
still need to be clarified, including specificity of nuclear sig-
nalling compared to the cell membrane, or how altered lipid 
compositions could affect nuclear signalling. Many studies 
point out that imbalances in the lipid signalling network can 
contribute to the pathogenesis of human diseases, including 
inflammation, atherosclerosis, and cancer [172]. These path-
ways are mostly studied in isolation due to their complex-
ity, but many signalling lipids and downstream targets are 
common to multiple signalling pathways, resulting in highly 
inter-connected lipid signalling networks [3]. Despite their 
complexity, signalling lipid-generating enzymes are targeted 
pharmacologically to counteract the progression of differ-
ent diseases. The limit of this therapy is based on the poor 
predictability of in vivo responses, which is related to an 
incomplete understanding of the dominant and permissive 
properties of interacting lipid signalling pathways. Further 
advances in this therapy are likely to improve time-resolved 
methods for monitoring lipid signals, including lipidomic 

studies to unveil the function of lipids in the plasma mem-
brane and mitochondria.

Intra‑cellular lipid trafficking

Studies of lipid trafficking and the recognition of its impor-
tance have been overshadowed by a predominant focus on 
protein trafficking. However, intra-cellular lipid sorting and 
translocation are significant steps in many metabolic pro-
cesses that affect the progression of various diseases [181]. 
The question of how the plasma membrane acquires its most 
important structural element, lipids, is an ongoing research 
area. There are three major possible mechanisms to transfer 
or sort lipids in the intra-cellular region: transport by vesi-
cles along with sorting proteins, translocation of lipid mono-
mers through the cytosol by lipid carrier proteins, and inter-
membrane lateral diffusion through transient interconnection 
at points of membrane contacts [182]. A specialised class of 
proteins called phospholipid transfer proteins or phospho-
lipid exchange proteins (PLEPs) is involved in subcellular 
translocation of lipids [183, 184]. PLEP-mediated transfer of 
lipids is extremely fast, with almost no lag detected between 
the synthesis and transfer of PE [185]. On the contrary, the 
lag between protein synthesis and translocation to the mem-
brane is almost an hour. Several identified sterol carrier pro-
teins (i.e., SCP-1 and SCP-2) transport cholesterol and enzy-
matically convert intermediates of cholesterol biosynthesis 
into cholesterol [186]. The major functions of such SCPs 
include participation in microsomal conversion of lanos-
terol to cholesterol, transport of cholesterol from cytoplas-
mic LDs to mitochondria, translocation of cholesterol from 
the outer to inner mitochondrial membrane, regulation of 
pregnenolone production, stimulation of hydroxycholesterol 
production, and facilitation of phosphatidylinositol exchange 
between natural and artificial membranes [186–188].

Recent evidence supports the presence of three pools of 
cholesterol in plasma membranes: a labile pool of choles-
terol that is depleted when cells are deprived of cholesterol, 
a sphingomyelin-bounded cholesterol pool that is not labile, 
and an essential pool of cholesterol that is necessary for cell 
viability [4]. Cellular cholesterol homeostasis depends on 
the balance between membrane sequestration of cholesterol 
or cholesterol metabolism and the uptake of low-density 
lipoprotein-derived cholesterol or cholesterol synthesis 
via the mevalonate pathway [189, 190]. Many studies have 
investigated the ability of different inhibitors to influence 
cholesterol concentration and trafficking among different 
compartments, although this is a continually developing 
field [86, 132, 191–193].

The ER is a major region of phospholipid and neutral 
lipid biosynthesis. Bulk transfer of lipids is executed through 
50–70 nm transition vesicles, bulging out from part-rough, 
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part-smooth transition elements of the ER. This transfer 
can be either ATP-dependent, which is specific, or ATP-
independent, which is thought to lack specificity [194–196]. 
Major lipid species found in transitional ER and transition 
vesicles are di- and triglycerides, phosphatidylcholine, and 
sterols. The Golgi apparatus—but not the ER or plasma 
membrane—functions as an acceptor, whereas only the tran-
sitional ER, but not conventional rough ER, serves as an 
efficient donor. Notably, triglycerides, which are the major 
ER lipids, do not undergo ATP-dependent transfer from the 
ER to Golgi apparatus [195].

Most lipids are synthesised in the ER, except CL and 
PE, which are synthesised at the inner membrane of mito-
chondria. Both the inner membrane and outer membrane 
of the mitochondria maintain dynamic lipid composition 
by concerted synthesis and trafficking. Several pieces of 
evidence support the hypothesis of rapid and bidirectional 
trans-bilayer movement of PC, PE, and CL across the outer 
and inner mitochondrial membranes [197].

However, a few studies have investigated nuclear trans-
location of lipids. Phospholipid transfer protein (PLTP) is 
found in several cell types, including neuron, ovary, and 
kidney cells; in addition, it is involved in transport and dis-
tribution of phospholipids and cholesterol within the nucleus 
[198, 199]. In addition, PLTP is involved in nuclear transport 
of α-tocopherol, which regulates RNA synthesis. Impor-
tantly, PLTP is a key component of one of the pathways 
that regulates cell survival in breast cancer [200]. Although 
nuclei contain many other lipids involved in signalling path-
ways (e.g., inositol lipids, diacylglycerol, and phospholipids) 
[170], little is known about their trafficking and transport 
mechanisms, so further studies are required.

Organisation of lipids in different organisms

Bacteria

Bacterial membranes consist of distinct lipid species that 
differ in molecular structures and physicochemical prop-
erties, similar to eukaryotic cellular membranes [61]. In 
addition, bacterial membranes display a phenomenon 
known as lipid ordering, in which lipid constituents coa-
lesce into microdomains [201]. Therefore, lipid ordering in 
bacterial membranes is thought to be similar to the process 
that occurs in eukaryotic cells [202]. Studies have demon-
strated that bacteria possess widely distributed lipid rafts 
and that signal transduction cascades and protein trans-
port is organised into functional membrane microdomains 
(FMMs) established by distinct lipids [17, 18, 20, 203, 
204]. In addition, polyisoprenoid lipid synthesis and co-
localization with flotillin-like proteins in membranes are 

related to assembly of FMMs that are present in bacteria. 
Among the different functions, bacteria flotillin maintains 
FMM architecture and acts as a protein scaffold to select 
proteins that are required to promote interactions among 
lipid rafts [15, 205]. This process is similar to the role 
played by eukaryotic flotillins. Bacterial membranes pre-
sent a large diversity of amphiphilic lipids [206], includ-
ing common lipids, such as phosphatidylethanolamine 
(PE), phosphatidylglycerol (PG), and cardiolipin (CL), 
and less common lipids, such as phosphatidylinositol (PI) 
and phosphatidylcholine (PC) [207]. Furthermore, studies 
suggest complexity in the proposed pathway for synthesis 
of phospholipids and phosphorus-free membrane lipids. 
Mizoguchi et al. used the effects of changes in the environ-
ment on lipid composition to show that survival of bacteria 
under unfavourable conditions is influenced by adaptation 
to environmental change [208]. Therefore, this adaptation 
will affect nutrient levels, metabolism, pH, and oxygen 
levels in membrane lipid composition. In general, bacterial 
membrane fluidity decreases with decreased temperatures 
by increasing bacterial content of unsaturated fatty acids or 
fatty acids with similar properties [209]. Relative increases 
in temperature increase fluidity and discontinuities in the 
membrane by increasing membrane content of saturated 
fatty acids. These studies provide the building blocks for 
additional research on bacterial lipid modifications.

Despite experimental evidence for the existence of 
membrane microdomains in bacteria and their similarities 
with eukaryotic lipid rafts, there are some controversies 
regarding the structure and function of FMM. Although 
it is known that co-localization of flotillin-homolog pro-
teins, FloT and FloA, and sensor protein kinase, KinC, is 
an important feature of FMM and is essential for bacte-
rial biofilm formation [210], recent studies in B. subtilis 
revealed that activation of KinC does not require FloA and 
FloT [211]. Similarly, another study has shown that FloA 
and FloT did not function as molecular scaffolds in FMM; 
rather, they formed protein microdomains of a specific 
size [212]. In contrast, evidence from another study, using 
the same experimental model, revealed that the bacterial 
membrane contained two different types of FMM: one type 
of FMM was associated with scaffold protein FloA and 
selectively participated in cellular processes, such as cell 
envelop turnover and metabolism, and the second type of 
FMM harboured both FloA and FloT and was involved in 
cellular adaptation to stationary phase [213].

Thus, despite highly similar structural organisation, 
FMM and lipid rafts possess different functional character-
istics. For instance, FMM is involved primarily in the oli-
gomerisation of different FMM-related proteins, whereas 
lipid rafts contain proteins that are associated with signal 
transduction and membrane trafficking [17].



1920	 A. L. Santos, G. Preta 

1 3

Saccharomyces cerevisiae

Phospholipids are the primary component of S. cerevi-
siae membranes, which also contain glycosphingolipids, 
ergosterol, and proteins [214]. Furthermore, a glycerol-
3-phosphate backbone with two fatty acid chains esterified 
to positions 1 and 2 defines the fundamental structure of 
these phospholipids: the amphipathic nature of molecules 
bonded to the phosphate group forms membrane bilayers. 
Nutrient transport, pH homeostasis, and cellular signalling 
are achieved by being embedded in integral and peripheral 
membrane proteins. In the yeast cell membrane bilayer, 
phospholipids are distributed to maintain membrane surface 
potential and membrane protein activity. In addition, lipid 
translocases are a class of proteins that retain the asymmetry 
of lipids and play a significant role in cell cycle progression, 
endocytosis, and cell polarity [215, 216].

PA, PC, PE, and PI, with minor amounts of cytidine 
diphosphate-diacylglycerol (CDP-DAG), are considered 
important yeast phospholipids, but palmitic acid (C16:0), 
palmitoleic acid (C16:1), stearic acid (C18:0), and oleic acid 
(C18:1) are common yeast fatty acids. An analysis of lipid 
membrane organisation was performed to determine the eth-
anol tolerance of S. cerevisiae using different approaches, 
including lipidomics [217, 218]. Ethanol-induced membrane 
perturbations have a number of potential effects, including 
a significant reduction in membrane thickness due to lipid 
inter-digitation that caused alteration to membrane-asso-
ciated protein distributions [217, 219]. These studies are 
essential for understanding how yeast cell lipid composi-
tion and function change over the course of fermentation, 
as levels of ethanol rise as yeasts convert sugar to ethanol.

Drosophila

Laurinyec et al. described a system to study the effect of 
lipid composition in Drosophila and its synthesis or remod-
elling processes [220]. Post-meiotic stages of spermatogen-
esis are sensitive to slight changes in gene products, and 
further transcriptional activity is completed by cyst entry in 
meiotic division. Lipid constituents of the cell membrane, 
such as PC and cholesterol, function according to their struc-
tural roles. However, several other lipid constituents, such 
as PE and phosphatidylserine (PS), function based on both 
structural and signalling roles. Pleiotropic effects occur due 
to mutations in metabolic lipid enzymes, as they function 
in several Drosophila organs and developmental processes 
[221, 222].

In addition, an interesting lipidomic study of Drosophila 
analysed the fatty acid composition of phospholipids, and 
showed that TRF2 and TAF9 expression varied in com-
position and size of LDs [223]. TRF2 and TAF9 affected 
transcription of a common set of genes that affected 

phospholipid fatty acid composition, including peroxisomal 
fatty acid β-oxidation-related genes. These findings suggest 
that the LD phenotype in TRF2 mutants can be restored by 
overexpression of target genes [223].

Caenorhabditis elegans

Several studies of lipid profiling in C. elegans show that the 
organisms store fats as triglycerides [224–226]. Compari-
sons of lipid profiles suggest that the spectrum of mono-, di- 
and triglycerides in C. elegans is similar to that in mammals. 
Studies also indicate that stored body fat in C. elegans is 
formed by conversion of fatty acids found in bacteria to tri-
glycerides [227–229]. Zhang et al. (2012) devised a strategy 
to diversify the worm lipidome by desaturating fatty acids, 
which provides excess signalling molecules to control organ-
ismal physiology [226]. C. elegans possesses cellular strate-
gies for spatial and temporal control over energy flow using 
subcellular compartmentalization to prevent localization of 
fats. These processes are necessary for long-term storage of 
fat in the same compartment. Furthermore, C. elegans intes-
tines synthesise, store, and mobilise lipids, and this regula-
tory mechanism balances transfer between fat storage and 
use in restricted compartments. In addition, Wahlby et al. 
derived a precise pathway for biochemical temporal control 
for the accumulation and breakdown of triglycerides in C. 
elegans [224]. Currently, several investigations have used 
genetic and biochemical approaches to control fat storage 
in worm intestines.

Conclusions

Lipid organisation in tightly regulated structures is evolu-
tionarily conserved: cells and organisms have developed 
extraordinarily sophisticated mechanisms to control lipid 
composition and organisation in each cellular compart-
ment. Although there are myriad of studies on the organi-
sation and function of lipid rafts in the plasma membrane, 
the function of nuclear lipid microdomains and mitochon-
drial raft-like microdomains has not been investigated to 
the same degree (Fig. 3). A thorough study of this specific 
organisation raises many questions, including: is it pos-
sible to target specific lipid microdomains in the plasma 
membrane to modify network signalling of cells? How do 
these changes affect basic physiological processes, such 
as metabolism, apoptosis and cell proliferation? And is it 
realistic to develop therapeutic drugs that target specific 
lipids in specific compartments? With the help of innova-
tive approaches, like lipidomics and advanced microscopy 
techniques, answering these questions becomes possible. 
Indeed, the discovery of the very short residence time of 
sphingomyelins in raft domains represents an outstanding 
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shift in the field that has allowed effective characterization 
of the mechanisms of cell membrane signalling and inva-
sion of various pathogens. These advances will pave the 
road for development of effective therapies targeting dis-
orders associated with lipid metabolism and lipid storage.
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