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Abstract
Fibrillin microfibrils are ubiquitous elements of extracellular matrix assemblies that play crucial roles in regulating the bio-
availability of growth factors of the transforming growth factor beta superfamily. Recently, several “a disintegrin and metal-
loproteinase with thrombospondin motifs” (ADAMTS) proteins were shown to regulate fibrillin microfibril function. Among 
them, ADAMTS17 is the causative gene of Weill-Marchesani syndrome (WMS) and Weill-Marchesani-like syndrome, of 
which common symptoms are ectopia lentis and short stature. ADAMTS17 has also been linked to height variation in humans; 
however, the molecular mechanisms whereby ADAMTS17 regulates skeletal growth remain unknown. Here, we generated 
Adamts17-/- mice to examine the role of Adamts17 in skeletogenesis. Adamts17-/- mice recapitulated WMS, showing shorter 
long bones, brachydactyly, and thick skin. The hypertrophic zone of the growth plate in Adamts17-/- mice was shortened, 
with enhanced fibrillin-2 deposition, suggesting increased incorporation of fibrillin-2 into microfibrils. Comprehensive gene 
expression analysis of growth plates using laser microdissection and RNA sequencing indicated alteration of the bone mor-
phogenetic protein (BMP) signaling pathway after Adamts17 knockout. Consistent with this, phospho-Smad1 levels were 
downregulated in the hypertrophic zone of the growth plate and in Adamts17-/- primary chondrocytes. Delayed terminal 
differentiation of Adamts17-/- chondrocytes, observed both in primary chondrocyte and primordial metatarsal cultures, and 
was prevented by BMP treatment. Our data indicated that Adamts17 is involved in skeletal formation by modulating BMP-
Smad1/5/8 pathway, possibly through inhibiting the incorporation of fibrillin-2 into microfibrils. Our findings will contribute 
to further understanding of disease mechanisms and will facilitate the development of therapeutic interventions for WMS.
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Introduction

Endochondral ossification is an essential process for skeletal 
formation [1]. In the first step, mesenchymal progenitor cells 
are recruited into condensations, where they differentiate 
into chondrocytes that produce cartilage-specific matrix 
proteins, such as type II collagen (Col2a1) and aggrecan. 
The cartilage then enlarges through chondrocyte prolifera-
tion and matrix production. Later, chondrocytes cease prolif-
eration and undergo hypertrophic differentiation, character-
ized by the secretion of type X collagen (Col10a1). Finally, 
hypertrophic chondrocytes undergo apoptotic cell death 
and the cartilage matrix is degraded by proteases, including 
matrix metalloproteinase 13 (Mmp13), for the proceeding 
calcification and bone formation [1].

During the endochondral ossification, the extracel-
lular matrix (ECM) microenvironment surrounding the 
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chondrocytes plays an important role not only in providing 
structural and mechanical support, but also in regulating 
chondrocyte behavior [2]. Among the macromolecules that 
constitute the ECM, “a disintegrin and metalloproteinase with 
thrombospondin motifs” (ADAMTS) proteins are members 
of a large superfamily of 19 secreted ADAMTS proteases 
and 7 ADAMTS-like (ADAMTSL) proteins [3]. ADAMTS 
proteases are characterized by highly homologous N-terminal 
catalytic and disintegrin-like domains and a C-terminal region 
that contains thrombospondin repeats, which are believed to 
bind to the extracellular matrix (ECM) [3]. ADAMTSL pro-
teins lack the N-terminal protease domain, but are homolo-
gous to the ancillary domain of ADAMTS proteases [3]. 
Weill-Marchesani syndrome (WMS), a rare connective tis-
sue disorder characterized by short stature, brachydactyly, 
joint stiffness, thick skin, and lens abnormalities, is caused 
by autosomal dominant fibrillin-1 (FBN1) mutations (OMIM 
608328) [4, 5] or autosomal recessive ADAMTS10 mutations 
(OMIM 277600) [6]. Recently, Mularczyk et al. have reported 
that mice with a truncation mutation of ADAMTS10 found 
in WMS patients recapitulate the short stature phenotype of 
WMS and show developmental changes in the growth plate 
[7]. Abnormalities in the ciliary apparatus were also observed, 
coupled with altered distribution of Fbn1 and fibrillin-2 (Fbn2) 
[7]. The skeletal muscle mass increases in the mutant mice and 
BMP signaling is reduced in the skeletal muscle and embry-
onic fibroblasts [7].

Autosomal recessive mutations of ADAMTS17, which has a 
similar structure to ADAMTS10, cause Weill-Marchesani-like 
syndrome (WMLS; OMIM 607511) [8]. WMLS patients lack 
some features of WMS patients, such as brachydactyly and 
thick skin. Meanwhile, ADAMTS17 mutations in an Indian 
family were recently shown to cause the WMS phenotype, 
including short stature, ectopia lentis, and brachydactyly, 
suggesting an overlap of WMS and WMLS [9]. Moreover, 
ADAMTS17 has also been reported to be associated with 
height variation in humans [10, 11], indicating that Adamts17 
is involved in skeletal growth. However, there have been no 
reports of Adamts17 knockout mice and the underlying molec-
ular mechanisms remain unknown. Here, we have generated 
Adamts17 null mice, and analyzed their general phenotype and 
skeletal development. We further performed gene expression 
screening analysis in Adamts17-null growth plates by laser 
microdissection (LMD) and RNA sequencing (RNA-seq), 
and examined alterations in signaling pathways caused by 
Adamts17 deletion.

Materials and methods

Animals

All mouse experiments were performed according to pro-
tocols approved by the Animal Care and Use Committee of 
the University of Tokyo (approval number: M-P12-131). In 
each experiment, we used the genotypes of littermates main-
tained in a C57BL/6 J background as controls. CAG​-Cre 
[12] mice were provided by RIKEN BRC (Saitama, Japan). 
Col2a1-Cre [13] was purchased from the Jackson Labora-
tory (Bar Harbor, ME, USA.) To generate a conditional null 
allele of Adamts17, a segment of exon 4 was flanked with 
loxP sequences to generate a frame-shift mutation by Cre 
recombination, leading to disruption of the zinc-dependent 
metalloprotease domain of Adamts17 and its downstream 
sequences (Figs. 1a, S1a). To generate Adamts17-flox mice, 
targeting vector, including the neo-expressing cassette, was 
used to induce recombination between homologous regions 
of the targeting vector and the Adamts17 locus (targeted 
allele) (Fig. 1a). Adamts17-flox mice generation was fol-
lowed by flippase recombinase target-mediated recombina-
tion of the Adamts17-targeted allele (floxed allele) (Fig. 1a).

To generate Adamts17-/- mice, we first generated CAG​
-Cre; Adamts17fl/fl by mating Adamts17fl/fl mice with CAG​
-Cre mice. Adamts17 ± mice were obtained by crossing 
CAG​-Cre; Adamts17fl/fl mice and wild-type (WT) mice. 
Thereafter, Adamts17-/- mice were generated by crossing 
Adamts17 ± mice. Sequences of the primers used for geno-
typing are shown in Table S1.

Evaluation of skeletal formation

Radiographs were obtained using a soft X-ray apparatus 
(CMB-2; Softex Co., Tokyo, Japan). After fixation in 99.5% 
ethanol and acetone, double-staining of newborn mouse 
skeletons was performed with a solution containing Aliza-
rin Red S (Sigma-Aldrich, St Louis, MO, USA) and Alcian 
Blue 8GX (Sigma-Aldrich).

Histological analyses and immunohistochemistry

Mouse limbs and skin samples were fixed in 4% paraform-
aldehyde, buffered with phosphate-buffered saline (PBS, pH 
7.4), at 4 °C for 1 day. Specimens were embedded in paraf-
fin and 5-µm thick sagittal sections were cut. Hematoxylin 
and eosin (H & E), Safranin-O, and Masson’s trichrome 
staining were performed according to standard protocols. 
Postnatal day 7 (P7) knee joints were decalcified in 10% 
ethylenediaminetetracetic acid (EDTA), pH 7.4, for 1 week. 
We examined the sagittal sections of the knee joint at the 
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depth where posterior cruciate ligament attach to the tibia 
as reported previously [14]. The lengths of the proliferative 
and hypertrophic zones were measured along the midline 
of the tibial growth plate at this depth using NIH Image J 
software. The proliferative zone was defined as the region 
with flattened, stack-forming chondrocytes and the hyper-
trophic zone was defined as the region with rounded and 
enlarged chondrocytes. For immunohistochemistry, sections 
were incubated with antibodies against Adamts17 (1:100; 
H00170691-M01; Novus Biologicals, CO, USA), Fibril-
lin-1 (1:100; MAB1919; Chemicon, Burlington, MA, USA), 

Fibrillin-2 (1:100; LS-C410948; LSbio, Seattle, WA, USA), 
Col2 (200:1; MAB8887; Millipore Sigma, St. Louis, USA), 
Col10 (1:100;14-9771-82; eBioscience, San Diego, CA, 
USA), Mmp13 (1:100; P18165-1-AP; Proteintech, Rose-
mont, IL, USA), Ihh (1:100; 13388-1-AP; Proteintech, Rose-
mont, IL, USA), PTHrP (1:200; 10817-1-AP; Proteintech, 
Rosemont, IL, USA), and phosphorylated Smad1 (pSmad1, 
1:100, ab73211, Abcam). As for the antibody against 
Adamts17, Adamts17-/- samples were used as negative con-
trol. In case of the antibodies against Adamts17, Fibrillin-1, 
and Fibrillin-2, anti-mouse Alexa Fluor Plus 488 (1:1,000; 

Fig. 1   Adamts17-/- mice display postnatal impairment of skeletal 
growth. a Generation of Adamts17-flox mice. The diagrams show the 
Adamts17 genomic locus with exon 4 (Adamts17 locus); Adamts17 
targeting vector including the neo-cassette (Targeting Vector); recom-
bination between homologous regions of the targeting vector and the 
Adamts17 locus, leading to the generation of the Adamts17-targeted 
allele (Targeted Allele); floxed Adamts17 allele following flippase 
recombinase target (FRT)-mediated recombination of the Adamts17-
targeted allele (Floxed allele); and Adamts17-deleted allele fol-
lowing Cre-mediated recombination of the floxed Adamt17 allele 
(Deleted allele). H, HindIII; S, SmaI; E, EcoRV; B, BamHI. b Pie 
chart of the genotypes detected at 7 days of age from intercrosses of 

Adamts17 ± mice on the C57BL/6 strain. Note the reduced viability 
of Adamts17-/- mice. c Alizarin Red and Alcian Blue double-staining 
of the whole skeleton (left), clavicle, upper extremities, and lower 
extremities (right) of WT and Adamts17-/- (KO) littermates at P0. 
Scale bars, 2 mm. d Length of clavicles and long bones of WT (n = 5) 
and KO (n = 6) littermates at P0. e Gross appearance of 12-week-
old WT and KO mice. f Time-course of naso-anal length and body 
weight of male WT and KO mice (n = 6 per genotype). g Bone length 
of 4-week-old and 12-week-old male WT and KO mice (n = 5 per 
genotype). Statistical significance was calculated using a two-tailed 
unpaired Student’s t test. *P < 0.05 between genotypes
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A32723; Invitrogen, Carlsbad, CA, USA), and anti-rabbit 
Alexa Fluor Plus 488 (1:1,000; A32731; Invitrogen) second-
ary antibodies were used for visualization. For the antibod-
ies against Col2, Col10, Ihh, and PTHrP, the sections were 
subsequently treated with anti-mouse (Col2 and Col10) or 
anti-rabbit (Ihh and PTHrP) EnVision-Plus System-HRP 
(DAKO, Glostrup, Denmark) for 30 min. Peroxidase labe-
ling was visualized using peroxidase substrate (3,3′-diam-
inobenzide) and was counterstained with Carrazzi’s hema-
toxylin. For pSmad1 detection, a CSA Biotin-Free Tyramide 
Signal Amplification System (Dako, Carpinteria, CA, USA) 
was used according to the manufacturer’s instructions. For 
nucleotide 5-ethynyl-2′-deoxyuridine (EdU) labeling, mice 
at age of 7 days were intraperitoneally injected with EdU at a 
dose of 50 μg/g body weight 2 h before killing, as previously 
described [15]. EdU detection was performed using a Click-
iT EdU imaging kit (Invitrogen), according to the manu-
facturer’s instructions. EdU-positive cells were visualized 
using an Alexa Fluor 594 azide (Invitrogen). For TUNEL 
staining, an in situ Apoptosis Detection Kit (Takara Bio, 
Otsu, Japan) was used.

Laser microdissection and RNA sequencing

We performed LMD using frozen sections prepared accord-
ing to Kawamoto’s film method [16], as previously described 
[17]. Briefly, the adhesive surface of Cryofilm Type IIC 
(Section-lab, Hiroshima, Japan) was attached to the speci-
men and 10-µm thick sections were cut. Microdissections of 
prehypertrophic and hypertrophic zone samples of P7 tibia 
were performed using a Leica LMD 6500 laser microdissec-
tion system (Leica Microsystems, Wetzlar, Germany). RNA 
extraction was performed using the Picopure RNA Isola-
tion Kit (Thermo Fisher Scientific, Waltham, MA, USA) 
and was amplified by two rounds of in vitro transcription 
using the Arcturus RiboAmp HS PLUS Kit (Thermo Fisher 
Scientific), according to the manufacturer’s protocols. A 
cDNA library was constructed according to the TruSeq 
RNA Sample Preparation V2 Guide Rev. C (Illumina, San 
Diego, CA, USA) and was sequencing on a HiSeq 2000 
instrument (Illumina). We then normalized sequence data 
by the trimmed mean of M (TMM) values method [18]. 
Three pairs of Adamts17-/- mice and their WT littermates 
were used. Differentially expressed genes were determined 
as having expression levels that were significantly increased 
or decreased (p < 0.05) in Adamts17 KO growth plates by 
more than twice or less than half that of WT growth plates. 
These differentially expressed genes were entered into gene 
ontology (GO) analyses using the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) bioinfor-
matics resources (david.ncifcrf.gov). Raw and processed 
data are available in the Gene Expression Omnibus (GEO) 
database under accession number GSE123076.

Primary chondrocyte culture

Primary chondrocytes were prepared from costal cartilage 
of P2 mice, as previously described [19]. Cells were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)/HG 
(Sigma-Aldrich), containing 10% fetal bovine serum (FBS) 
and 1% penicillin/streptomycin (Sigma-Aldrich). When 
cells reached confluence (day 0), differentiation was initi-
ated using culture medium containing 0.05 mg/mL ascorbic 
acid (Wako, Osaka, Japan) and 10 mM β-glycerophosphate 
(Sigma-Aldrich). The medium was changed every 2 day. 
At day 20, mineral deposits were visualized by Alizarin 
Red staining and were quantified by NIH Image J software 
(National Institutes of Health, Bethesda, MD). Immuno-
fluorescence analysis of pSmad1 was performed at day 4 in 
primary chondrocytes. Chondrocytes were cultured in 2% 
FBS and subsequently, fixed and incubated with antibodies 
against pSmad1 at 1:100 dilution. An Alexa Fluor Plus 488 
anti-rabbit IgG secondary antibody was used for detection. 
In some experiments, cell culture media was supplemented 
with 100 ng/mL of recombinant human BMP-2 (rhBMP-
2; Peprotech, Rocky Hill, NJ, USA). As for pellet culture, 
5 × 105 primary chondrocytes were transferred into a 15 ml 
tube (Falcon) and centrifuged at 500 g for 10 min as reported 
previously [20]. After 3 days incubation in (DMEM)/HG, 
containing 10% FBS and 1% penicillin/streptomycin, the 
pellets were transferred into petri dishes and incubated in 
the same medium for a further 3 weeks.

Quantitative RT‑PCR (qRT‑PCR)

Total RNA was purified using an RNeasy Mini Kit (Qia-
gen). One microgram of total RNA was reverse transcribed 
using a ReverTraAce qPCR RT Master Mix with gDNA 
Remover (Toyobo, Osaka, Japan). Each PCR reaction con-
tained 1 × THUNDERBIRD SYBR qPCR Mix (Toyobo), 
0.3 mM specific primers, and 20 ng of cDNA. mRNA levels 
of target genes were normalized to those of β-actin. Expres-
sion levels for each target gene were calculated using the 
2−ΔCt method [21]. All reactions were run in triplicate on a 
Thermal Cycler Dice instrument (Takara Bio, Otsu, Japan). 
Primer sequences are shown in Table S2.

Western blotting

Cells were lysed in Mammalian Protein Extraction Reagent 
(M-PER, Thermo Scientific) containing Complete, Mini 
Protease Inhibitor Cocktail Tablets (Roche, Basel, Switzer-
land; 11836153001) and PhosSTOP Phosphatase Inhibitor 
Cocktail Tablets (Roche, 04906845002). Cell lysates were 
subjected to SDS-PAGE and transferred onto nitrocellulose 
membranes (Bio-Rad, Hercules, CA, USA). After blocking 
with 6% skim milk, membranes were incubated with primary 
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antibodies against Smad1 (1:1000; 9743S; Cell Signaling 
Technology, Danvers, MA, USA), pSmad1/5 (1:500, Cell 
Signaling Technology, 9516S), and actin (1:2000; Sigma-
Aldrich; A4700). Membranes were incubated with a horse-
radish peroxidase-conjugated antibody (Promega, Madison, 
WI, USA), and immunoreactive proteins were visualized 
with ECL Prime Western Blotting Detection Reagent (GE 
Healthcare, Chicago, IL, USA) and an AE-6981 Light Cap-
ture II instrument (ATTO, Tokyo, Japan). Signal intensity 
was quantified with NIH Image J software and presented as 
the ratio of pSmad1/Smad1 signal intensity.

Metatarsal organ culture

Metatarsal organ culture was performed as previously 
described [22]. Briefly, metatarsal rudiments were dis-
sected from Adamts17 ± and Adamts17-/- littermate 
embryos at E15.5. Metatarsal rudiments were cultured in 
α-modified essential medium without nucleosides (Wako), 
supplemented with 0.05  mg/mL ascorbic acid, 1  mM 
β-glycerophosphate, and 10% FBS in a humidified atmos-
phere of 5% CO2 in air at 37℃ for 24 h. Rudiments were 
then incubated in 300 µL of the same medium, with or 
without 500 ng/mL of rhBMP2 for an additional 4 day. For 
immunohistological analyses, rudiments were sectioned at 
day 5. Areas of mineralized, Col10-positive, and Mmp13-
positive cartilage were measured using NIH Image J soft-
ware. For gene expression analyses, total RNA was extracted 
from two pooled metatarsal rudiments from each embryo.

Statistical analyses

With the exception of RNA-seq analyses, statistical signifi-
cance between two groups were analyzed using an unpaired 
Student’s t test. For RNA-seq analyses, a paired t test was 
applied due to the large variations in gene expression among 
each littermate [17]. Data were expressed as the mean ± SD. 
Data analyses were performed using Microsoft Excel (2013) 
and a p value < 0.05 was considered significant. All tests 
were two-tailed.

Results

Adamts17‑/‑ mice recapitulated 
Weill‑Marchesani‑syndrome and showed postnatal 
dwarfism

We first generated Adamts17-flox mice in which exon 4 
was flanked with loxP sites (Fig. 1a). The floxed allele was 
designed to generate a frame-shift mutation by Cre recombi-
nation, leading to disruption of the zinc-dependent metallo-
protease domain of Adamts17 and its downstream sequences 

(Fig. 1a). Adamts17-flox mice, which were confirmed by 
genotyping tail DNA (Fig. S1a), were mated with CAG-Cre 
mice, which ubiquitously express Cre recombinase [12]. 
Since CAG​-Cre; Adamts17fl/fl mice were viable and fertile, 
we further generated Adamts17-/- mice by crossing CAG​
-Cre; Adamts17fl/fl with WT mice. In addition to genotyping 
tail DNA, we used RT-PCR to confirm the deletion of exon 
4 in cDNA derived from various tissues of Adamts17-/- mice 
(Fig. S1b, c). Intercrosses of Adamts17 ± mice provided 
a reduced birth rate of Adamts17-/- mice compared with 
the expected Mendelian ratio (Fig. 1b), as has also been 
reported for Adamts10-/- mice [23]. Although Adamts17-/- 
neonates showed reduced length only in the humerus and 
tibia (Fig. 1c, d), they displayed apparent dwarfism after 
1 week (Fig. 1e, f). Radiographic analyses at 4 and 12 weeks 
of age revealed that the longitudinal lengths of the skull, 
long bones, and vertebrae, all of which are formed through 
endochondral ossification, were 7–9% and 6–10% decreased 
by Adamts17 deficiency, respectively (Fig. 1g).

Because ADAMTS17 is the responsible gene for both 
WMS and WMLS [8, 9], we further investigated the pre-
cise phenotypes of the digits and skin. At 8 months of 
age, brachydactyly was observed in Adamts17-/- fore- and 
hindlimbs (Fig. 2a). Metacarpal and proximal phalange 
length were significantly reduced in the fore- and hindpaws 
of Adamts17-/- mice, compared with age- and sex-matched 
WT mice (Fig. 2b). Gross examination suggested decreased 
skin elasticity in Adamts17-/- mice at 8 months, although no 
apparent differences at 3 months (Fig. 2c). H&E and Mas-
son’s trichrome staining showed increased collagen deposi-
tion and diminished epidermal fat in the skin of Adamts17-/- 
mice at 8 months (Fig. 2d). All these data indicate that 
Adamts17-/- mice recapitulated WMS.

Adamts17 deletion leads to reduced length 
of the hypertrophic chondrocyte zone, accompanied 
by microfibril dysregulation

We next evaluated endochondral ossification in Adamts17-/- 
mice. Since skeletal dysplasia of Adamts17-/- mice started 
at 1 week of age, we examined the histology of P7 proximal 
tibias. Safranin-O staining showed that the length of the 
hypertrophic zone was significantly reduced in tibias from 
Adamts17-/- mice (Fig. 3a, b). Chondrocyte proliferation and 
apoptosis, as determined by EdU labeling and TUNEL stain-
ing, respectively, were not significantly different between 
genotypes (Fig. 3c, d). There were no apparent differences 
in distribution of marker proteins, such as Col2, Col10, Ihh, 
and PTHrP between WT and Adamts17-/- growth plates 
(Fig. S2).

To investigate whether the skeletal phenotype of 
Adamts17-/- mice was caused by loss-of-function of 
Adamts17 in chondrocytes, we further examined the 
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skeletal phenotype of Col2a1-Cre; Adamts17fl/fl mice, in 
which Adamts17 is ablated in chondrocytes. In addition to 
genotyping cartilage DNA, RT-PCR confirmed the deletion 
of exon 4 in cDNA derived from Col2a1-Cre; Adamts17fl/fl 
cartilage (Fig. S1a, c). The lengths of the skull, long bones, 
and vertebrae were decreased 4–9% by Adamts17 deficiency 
in chondrocytes at 12 weeks of age (Fig. S3a, b).

We then examined the expression and localization of 
Adamts17 and fibrillin microfibrils in the epiphyseal car-
tilage of mouse embryos. We investigated growth plates at 
embryonic stage, because a previous study has reported that 
the regions of fibrillin-2 are masked by microfibril structure 
in postnatal tissues [24]. Adamts17 protein was localized to 
the extracellular matrix of the growth plate (Fig. 4a). Micro-
fibrils, as assessed by Fbn1 immunofluorescence, localized 
particularly in the hypertrophic zone (Fig. 4a). Because 
Adamts10 and Adamtsl2 are involved in the regulation of 
microfibril composition [7, 23, 25], we examined the expres-
sion of Fbn1 and Fbn2 in growth plates from Adamts17-/- 
and WT mice. Notably, Fbn2 signal intensity was enhanced 
by Adamts17 deletion, although Fbn1 was not obviously 

affected (Fig. 4a). To further confirm this result, we inves-
tigated the microfibril deposition of the pellets obtained 
from WT or Adamts17-/- chondrocytes [20]. As expected, 
enhanced Fbn2 deposition was also observed in this system 
(Fig. 4b). Fbn1 and Fbn2 mRNA expression in femoral epi-
physeal cartilage of P0 mice was not significantly different 

Fig. 2   Adamts17-/- mice recapitulate Weill-Marcehsani syndrome. a 
Distal forepaws and hindpaws of WT and Adamts17-/- (KO) mice at 
8 months of age. Scale bars, 5 mm. b Bone length of forepaws and 
hindpaws of 8-month-old male WT (n = 7) and KO (n = 5) mice. 
*P < 0.05 versus WT. c Gross inspection of skin stiffness of 3- and 

8-month-old WT and KO mice. Mice were anesthetized, shaved, and 
suspended by forceps. d Hematoxylin and eosin (H&E) and Mas-
son’s trichrome staining of skin from 3- and 8-month-old WT and 
KO mice. Scale bars, 300 µm. Statistical significance was calculated 
using a two-tailed unpaired Student’s t test

Fig. 3   Histological analyses of growth plates from WT and 
Adamts17-/- mice. a Safranin-O staining of proximal tibiae from WT 
and Adamts17-/- (KO) mice at P7; right panels show higher magnifi-
cations of the boxed areas in the left panels. The white broken lines 
indicate the boundary between resting zone and proliferative zone 
(PZ), or the boundary between PZ and hypertrophic zone (HZ). Scale 
bars, 300 µm. b Length of hypertrophic and proliferative zones in WT 
and KO mice at P7 (n = 5 per genotype). *P < 0.05 versus WT. c EdU 
labeling (green) and phase contrast images of proximal tibiae from 
WT and KO mice at P7 and rates of EdU-positive cells in PZ (n = 5 
per genotype). Inset boxes in the upper panels indicate the regions of 
enlarged images in the lower panels. Scale bars, 300 μm. d TUNEL 
staining of proximal tibiae from WT and KO mice at P7 and number 
of TUNEL-positive cells in the chondro-osseous junction (n = 4 per 
genotype). Scale bars, 300 µm. Statistical significance was calculated 
using a two-tailed unpaired Student’s t test

◂
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between genotypes (Fig. 4c). In primary chondrocytes iso-
lated from Adamts17fl/fl neonates, mRNA levels were also 
not altered by adenoviral transfection of Cre (Fig. 4d).

BMP signaling is reduced in growth plates 
of Adamts17‑/‑ mice

To further examine the underlying mechanisms, we per-
formed gene expression screening in Adamts17-/- P7 
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proximal tibial epiphyseal cartilages using LMD and RNA-
seq (Fig. 5a). We microdissected prehypertrophic and hyper-
trophic zones because there was a significant difference in 
the length of these zones between Adamts17-/- and WT 
growth plates. A Volcano plot clearly revealed that there 
were more downregulated genes (276 genes) than upregu-
lated genes (122 genes) by Adamts17 KO among the genes 
with significant (p < 0.05) differential expression (Fig. 5b). 
Hypertrophic markers, such as Col10a1 and Mmp13, tended 
to decrease in Adamts17 KO growth plate though it did not 
reach statistical significance (Fig. 5b). Among downregu-
lated genes, enriched analyses of the GO biological pro-
cess showed that the BMP signaling pathway is one of the 
processes significantly affected by Adamts17 knockout 

(Table 1), suggesting that BMP signaling pathway is inac-
tivated by Adamts17 KO. To confirm this result, we per-
formed immunohistochemistry of pSmad1, a downstream 
effector of canonical BMP signaling pathway. In the WT 
mice, pSmad1 positive cells were observed mainly in the 
prehypertrohic zone (Fig. 5c). In contrast, the number of 
pSmad1-positive cells was significantly decreased in the pre-
hypertrophic zone of Adamts17-/- mice (Fig. 5c), as com-
pared with that in WT mice.

We then investigated the association between BMP-
Smad1/5/8 signaling activity and Adamts17 using pri-
mary chondrocytes. Immunofluorescence analysis showed 
that the nuclear accumulation of pSmad1 was suppressed 
in Adamts17-/- chondrocytes (Fig. S4). Western blotting 

Fig. 4   Perichondrial microfibril dysregulation in the growth plate of 
Adamts17-/- mice.a Immunofluorescent staining of Adamts17, Fibril-
lin-1 (Fbn1), and Fibrillin-2 (Fbn2) in humeral distal growth plates 
of WT mice at E16.5. The inset box in the left panels indicates the 
location of the enlarged image shown on the right panels. Scale bars, 
300 µm. b Semiserial histological sections of cultured pellets of pri-
mary chondrocytes were stained with safranin-O and immunostained 
for Fbn1 and Fbn2. The inset box in the left panels indicates the loca-

tion of the enlarged image shown on the right panels. Scale bars, 
300 µm. c Fbn1 and Fbn2 mRNA levels in femoral epiphyseal carti-
lage of WT (n = 6) and KO (n = 5) mice at P0. d Adamts17, Fbn1, and 
Fbn2 mRNA levels in Adamts17fl/fl primary chondrocytes that were 
adenovirally transfected with GFP or Cre and cultured for an addi-
tional 3 day (n = 3 per well). mRNA levels were normalized to β-actin 
mRNA levels (Actb). **P < 0.01 versus GFP. Statistical significance 
was calculated using a two-tailed unpaired Student’s t test
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also showed a significant decrease in pSmad1 protein in 
Adamts17-/- chondrocytes (Fig. 5d). In support of decreased 
amount of pSmad1 protein, the expression of Id1, a BMP-
responsive gene, was also decreased in Adamts17-/- chondro-
cytes (Fig. 5e). Meanwhile, mRNA levels of representative 
BMP ligands were not decreased in Adamts17-/- chondro-
cytes (Fig. 5e).

Delayed terminal differentiation of Adamts17‑/‑ 
chondrocytes is prevented by BMP treatment

To investigate the effect of Adamts17 deletion on the ter-
minal differentiation of chondrocytes, primary chondro-
cytes derived from Adamts17-/- and WT embryos were 
cultured with maturation medium [19]. Adamts17-/- chon-
drocytes yielded fewer mineralized nodules than WT con-
trols (Fig. 6a). Col10a1 and Mmp13, representative termi-
nal differentiation markers, were markedly decreased in 
Adamts17-/- chondrocytes (Fig. 6b). Notably, the inhibition 
of differentiation of Adamts17-/- chondrocytes was pre-
vented by administration of rhBMP2 (Fig. 6a, b).

Finally, we used organ culture to examine the associa-
tion of Adamts17 with BMP-Smad1/5/8 pathway in the 
terminal differentiation of chondrocytes. We prepared 
primordial metatarsal cartilage from E15.5 embryos of 
Adamts17-/- mice and also from Adamts17 ± mice, which 
showed normal skeletal growth. Although the length of the 
metatarsal rudiments was not different between genotypes at 
day 0 or day 5, mineralization was delayed more frequently 
and the ratio of the mineralized zone was significantly 
reduced in the metatarsal rudiments of Adamts17-/- mice 
(Fig. 6c–e). Therefore, we performed immunohistological 
analyses at day 5 to investigate whether terminal differen-
tiation was actually inhibited. von Kossa staining showed 
apparently delayed mineralization in metatarsal rudiments 
from Adamts17 -/- mice (Fig. 6f). This was coupled with 
reduced expression of Col10a1 and Mmp13 (Fig. 6g). These 
findings were associated with reduced BMP signaling, as 
evidenced by a reduced ratio of pSmad1-positive cells, and 
Adamts17-/- metatarsals were accompanied with enhanced 
Fbn2 deposition (Fig. 6h). The expressions of Col10a1 and 
Id1 were significantly decreased whereas the expression of 
Mmp13 tended to be decreased, but did not reach statistical 
significance (p = 0.07) (Fig. 6i). Furthermore, the reduc-
tion of the mineralized zone in metatarsal rudiments from 
Adamts17-/- mice was completely prevented by the admin-
istration of rhBMP2 (Fig. 6c, e). Considering these in vitro 
and ex vivo results, we conclude that the loss of Adamts17 

impairs chondrocyte terminal differentiation due to reduced 
BMP-Smad1/5/8 signaling.

Discussion

In the present study, we showed that Adamts17 knockout 
leads to postnatal impairment of skeletogenesis, which is a 
phenocopy of WMS. In adult Adamts17-/- mice, the axial 
length of bones was shortened and WMS-specific features, 
including brachydactyly and thick skin were also observed, 
although the skin phenotype was not investigated in depth 
in the present study. As for skeletal phenotype, the length of 
the hypertrophic zone was reduced and Fbn2 deposition was 
enhanced in the growth plate of Adamts17-/- mice. Compre-
hensive expression analysis using LMD and RNA-seq indi-
cated alterations of the BMP signaling pathway by Adamts17 
knockout. In Adamts17-/- chondrocytes, BMP signaling was 
reduced without affecting mRNA levels of BMP ligands. 
The delayed terminal differentiation of Adamts17-/- chon-
drocytes was prevented by BMP treatment in experiments 
using primary chondrocytes and primordial metatarsal carti-
lage. All these findings indicate that Adamts17 is involved in 
skeletal formation through the modulation of BMP signaling 
activity.

Reports that WMS is caused by mutations in FBN1, 
ADAMTS10, and ADAMTS17 suggest a close association 
of these genes, and experimental data has accumulated 
regarding the molecular interaction between microfibrils 
and ADAMTS/L proteins. Some ADAMTS/L proteins, 
such as ADAMTS10 and ADAMTSL2, modify the compo-
sition of microfibrils [7, 23, 25]. Furthermore, ADAMTS10, 
ADAMTSL4, and ADAMTSL6 have been shown to acceler-
ate microfibril formation in vitro and in vivo [26-28]. Nota-
bly, chondrocyte-specific Adamtsl6 transgenic mice show 
enhanced Fbn1 deposition in rib cartilage, indicating that 
a strong interaction between microfibrils and ADAMTS/L 
proteins also exists in cartilage [29].

WMS and WMLS share common phenotypes and both 
disorders are caused by mutations in FBN1, ADAMTS10, 
or ADAMTS17, which are associated with microfibril bio-
genesis. In the current study, Adamts17-/- mice showed 
brachydactyly and thick skin, in addition to skeletal dys-
plasia. Humans with WMS-like syndrome, which is caused 
by ADAMTS17 mutations, typically only show short stature 
and eye abnormalities [8], although some ADAMTS17 muta-
tions do cause brachydactyly [9]. In addition, ADAMTS10 
deficiency in mice does not lead to extra-ocular manifesta-
tions of WMS [23]. The presence of two fibrillins (Fbn1, 2) 
in mice, instead of the three (FBN1-3) present in humans, 
provides a possible explanation for different phenotypes 
between humans with WMLS and Adamts17-/- mice.
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Fbn2 deposition was increased both in the growth plates 
of Adamts17-/- mice and the pellets from Adamts17 -/- 
chondrocytes without affecting the level of Fbn2 mRNA. 
Fbn2 accumulation has also been reported in the skeletal 
muscle and ciliary zonules of Adamts10-/- mice [7, 23] 
and in bronchial smooth muscle cells of Adamtsl2-/- mice 
[25]. Although the actual mechanism by which Adamts17 
selectively regulates Fbn2 incorporation into microfibrils 
is unclear, two possible hypotheses have been postulated. 
The first is that Fbn2 is a substrate of Adamts17 and Fbn2 
accumulation is caused by a decrease in its degradation in 
Adamts17-/- mice. The second hypothesis is that Adamts17 
negatively regulates Fbn2 through properties other than its 
protease activity. The first hypothesis is less likely because 
recent biochemical analyses have shown that Adamts17 does 
not cleave Fbn2 in vitro [30], although Adamts10 can cleave 
Fbn2 [23]. Furthermore, Adamtsl2-/- mice also display Fbn2 
accumulation. Nevertheless, Adamtsl2 lacks the protease 
domain that is present in both Adamts10 and Adamts17 [3]. 
Adamts10, 17, and Adamtsl2 have a highly homologous 
C-terminal ancillary domain, which is thought to play an 

important role in the assembly or integrity of the extracel-
lular matrix [3]. In addition, an ADAMTS17 mutation that 
retained an intact catalytic domain also caused WMLS [8], 
indicating that the catalytic domain of Adamts17 is not 
involved in the pathophysiology of WMLS. Taken together, 
it seems reasonable that Adamts17 negatively regulates Fbn2 
by functioning as an Adamtsl protein rather than a protease.

In the present study, BMP-Smad1/5/8 signaling was 
reduced by Adamts17 knockout both in vivo and in vitro. 
Similarly, BMP signaling has been shown to be suppressed 
in mouse embryonic fibroblast cultures from Adamts10 
WMS mice, which harbor a truncation mutation seen in 
WMS patients [7]. On the other hand, BMP signaling is 
activated in the skeletal muscle of Fbn2-knockout mice 
[31]. Considering these results, Fbn2 may negatively reg-
ulate BMP signaling and WMS may represent an Fbn2 
gain-of-function phenotype [32]. A recent study reported 
that Fbn2 can sequester BMP complexes in a latent state 
[31]. This finding is consistent with our data where BMP-
Smad1/5/8 signaling activity was reduced in Adamts17-/- 
chondrocytes without significantly changing the mRNA 
expression of BMP ligands. Though there was no sig-
nificant difference in the expression of BMP ligands in 
chondrocyte cultures, it is possible that the change in the 
expression of BMP ligands in tissues other than chondro-
cytes, such as periosteum or perichondrium, where BMP 
ligands are reported to be highly expressed [33], may be 
attributed to the phenotype observed in Adamts17-/- mice.

WMS is ascribed to the acromelic dysplasia group of 
disorders, which are characterized by short stature, short 
hands and feet, and muscular build. The acromelic dyspla-
sia group comprises geleophysic dysplasia [34], acromic-
ric dysplasia [4], and Myhre syndrome [35], in addition 
to WMS. WMS is caused by mutations in microfibril-
related genes and microfibrils play important roles in 
tissue homeostasis through their interaction with TGF-β 
and BMP [36-38]. Meanwhile, Myhre syndrome patients 
have a mutation in SMAD4, which results in a stabilized, 
but nonfunctional, mutant [35]. SMAD4 is known to be a 
mediator of both TGF-β and BMP signaling [39] and the 
expression of TGF-β and BMP target genes is actually 
decreased in fibroblasts from Myhre syndrome patients 
[34]. These data also support the idea that the impairment 
of TGF-β superfamily signaling causes the skeletal dyspla-
sia observed in the acromelic dysplasia group.

In conclusion, Adamts17-/- mice recapitulated the WMS 
phenotypes of short stature, brachydactyly, and thick skin. 
We showed, for the first time, that the skeletal impairment 
observed in Adamts17-/- mice was associated with reduced 
BMP-Smad1/5/8 signaling and enhanced Fbn2 deposition 
in the growth plate, which may be attributed to this altered 

Fig. 5   BMP signaling is reduced in the growth plates of Adamts17-/- 
mice. a Sections of proximal tibial epiphyseal cartilages before 
and after prehypertrophic and hypertrophic zones were microdis-
sected by LMD. Extracted mRNA was amplified and analyzed by 
RNA sequencing. Scale bars, 200  µm. b Volcano plot for RNA-seq 
data obtained from laser microdissected samples. Red dots indicate 
genes that were significantly (p < 0.05) and differentially expressed 
in Adamts17 KO growth plates by more than twice or less than half 
those of WT growth plates. c Immunofluorescent staining of phos-
phorylated Smad1 (pSmad1) (green) and phase contrast images in 
proximal tibiae of WT and Adamts17-/- (KO) mice at P7 and the per-
centage of pSmad1-positive cells in the prehypertrophic and hyper-
trophic zones of WT and KO (n = 5 per genotype) mice. The inset 
box in the left panels indicates the location of the enlarged image 
shown on the right panels. Scale bars, 300 µm. d Immunoblotting of 
pSmad1, Smad1, and actin in protein extracts from primary chondro-
cytes from WT and KO mice and the ratio of pSmad1/Smad1 signal 
intensity (n = 3 wells per genotype). e  Id1,Bmp2, Bmp4, and BMP7 
mRNA levels in primary chondrocytes from WT and KO mice (n = 3 
wells per genotype). mRNA levels were normalized to β-actin mRNA 
levels (Actb). Statistical significance was calculated using a two-tailed 
unpaired Student’s t test. *P < 0.05 versus WT

◂

Table 1   The top five enriched gene ontology biological processes in 
downregulated 276 genes

Go term BP Count P value

Motor neuron axon guidance 4 0.0049
Regulating of bone remodeling 3 0.0064
Branching morphogenesis of an epithelial tube 4 0.0099
Positive regulation of BMP signaling pathway 4 0.0099
Cellular response to cholesterol 3 0.011
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BMP signaling. Further studies on the role of ADAMTS/L 
proteins in skeletogenesis may provide insights into the 
pathomechanism of the acromelic dysplasia group of 
disorders.
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