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Abstract
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic 
aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional 
classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from 
air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising 
biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research 
attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and 
tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mecha-
nisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of 
the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases 
and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental 
and industrial applications.

Keywords  Laccase · Green catalyst · Mediator · Engineering · Immobilization · Decolorization · Degradation · 
Delignification

Introduction

Laccases (benzenediol:oxygen oxidoreductases, EC 
1.10.3.2) belong to a family of blue multicopper enzymes 
that oxidize a range of substrates, such as phenols (–OH), 
anilines (–NH2), arylamines, ascorbic acid, and certain inor-
ganic compounds, coupled to the four-electron reduction of 
dioxygen to water [1–3]. Laccases are widely distributed 
in nature. The first laccase was extracted from the latex of 
the Japanese lacquer tree Rhus vernicifera in the late 19th 
century [4]. To date, laccases are widely distributed in 
almost all wood rotting fungi [5]. Laccases have also been 
identified in several higher plant species [4, 6–8], lichens 
[9], and sponges [10]. Moreover, polyphenol oxidases with 

laccase-like activity have also been found in oysters [11], 
insects [12–14], metagenome libraries of bovine rumen [15], 
and acidic bog soil metagenome [16]. Among these laccases, 
fungal laccases have been widely studied. Several studies 
on the application of Trametes versicolor laccase have been 
conducted in recent years [17–27], but fungal laccases gen-
erally fail to work in extreme environments during industrial 
operations. Laccases are usually suitable under mesophilic 
and acidic reaction conditions [28]. Therefore, bacterial lac-
cases have attracted research attention [29–42]. Here, we 
summarized bacterial laccases, mainly including Bacillus 
and actinomycetic laccases.

Laccases are monomeric, dimeric, or tetrameric glycopro-
teins. First and foremost, bacteria are the sources of prokar-
yotic laccase. To our knowledge, the molecular structure 
of typical bacterial laccase usually contains three types of 
copper ions according to their magnetic and spectroscopic 
properties, namely, type 1 (T1), type 2 (T2), and double type 
3 (T3) copper ions [43, 44]. The center of T1 copper, which 
is in charge of electron transfer, is responsible for substrate 
oxidation. T1 copper exhibits strong electronic absorbance 
around 610 nm, and electro-paramagnetic resonance (EPR) 
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can be detected. The T2 site is a mono-nuclear center formed 
by T2 copper; the site is colorless, and EPR is also detect-
able. The T3 site is composed of two strongly coupled T3 
coppers, which provide a weak absorbance near the UV 
spectrum (330 nm); here, EPR is not detectable [43]. The 
trinuclear T2/T3 cluster is composed of one T2 copper ion 
and two T3 copper ions, which bind and reduce molecu-
lar oxygen to water [45, 46]. The copper centers are shown 
using Bacillus subtilis CotA-laccase, a fully characterized 
and studied laccase (Fig. 1).

The other significant bacterial laccases are from actino-
mycetes, which belong to broad bacteriology. Streptomyces 
laccases of actinomycetes are the most identified and charac-
terized and are known as extracellular enzymes. A variety of 
laccases have been identified in species including S. cyaneus 
[30, 47, 48], S. coelicolor [49, 50], S. bikiniensis [51], and S. 
ipomoea [52]. Among these laccases, S. coelicolor laccase is 
the most extensively characterized. Different from the typi-
cal three-domain bacterial laccases, Streptomyces laccases 
are usually two-domain laccases, such as the so-called small 
laccase (SLAC) from S. coelicolor (Fig. 2). Compared with 
common three-domain laccases, SLAC is composed of only 
two domains without domain 2. Domain 2 is responsible 
for the connection and positioning of domains 1 and 3 in 
three-domain laccase, which is essential for the formation 
of trinuclear cluster at the interface of domains 1 and 3 [28]. 
However, to form the trinuclear cluster and intact catalytic 
site, the homotrimer structure is formed to overcome the 
lacking domain 2 in two-domain laccases [50, 53]. SLAC 
contains 12 copper ions that form three pseudo-symmetri-
cally related active units. Each SLAC monomer consists of 

two domains (Fig. 2a, domain 1, which includes A1, B1, and 
C1, and domain 2, which is composed of A2, B2, and C2). 
Each copper center is formed by two neighboring chains 
organized in a head-to-tail manner (A1–B2, B1–C2, and 
C1–A2) and contains four copper ions (Fig. 2c). The three 
copper ions of type 1 are localized near the surface of the 
central part of the trimer. Three trinuclear copper clusters are 
placed between domains 1 and 2 of each of the two neighbor 
chains of the trimer, contributing strongly to the stability 
of the trimer [50]. However, the spectroscopic and kinetic 
properties remained similar to those of the common three-
domain laccases [54].

In recent years, bacterial laccases from different microor-
ganisms have been isolated and characterized. The strategies 
of upgrading the production of laccases have also been sum-
marized [55]. Metagenomic analysis [16] has become the 
most useful and powerful technological tool for determining 
potential laccase from natural microorganisms, especially 
from the genes of uncultured and non-cultivable microbes. 
Immobilization and genetic engineering technologies remain 
in demand [39, 56–60]. Nanomaterials and ultrafiltration 
membranes have been extensively researched as vectors for 
laccase [18, 25, 61–65]. The applications of bacterial lac-
cases, such as degradation of textile dyes, pollutant degra-
dation, bio-sensor, and paper industry, are increasing due 
to their notable features in extreme industrial environment. 
Compared with fungal laccases, bacterial laccases exhibit 
the most significant advantages of high thermostability, wide 
pH range, and tolerance to alkaline conditions. Bacterial lac-
cases are regarded as promising biological green tools for 
industrial applications.

Fig. 1   Overall structure and 
copper centers of B. subtilis 
CotA-laccase (PDB code 
1GSK). a Domains, T1, and T2/
T3 copper (domains1, 2, and 3 
represented in cyan, magenta, 
and red, respectively). D2 acts 
as a bridge between D1 and 
D3. A short α-helical fragment 
shown in yellow connects D1 
and D2. A large loop segment 
shows D2 and D3 in green 
links). b Conservative amino 
acids around the copper center. 
Molecular representations were 
generated using PyMOL [190]. 
c Schematic of T1 and T2/T3 
centers, including interatomic 
distances among all relevant 
atoms [89]
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Species and properties

Bacterial laccase was first isolated from Azospirillum sp. in 
1993 from rice rhizosphere [66]. Then, laccases were gradu-
ally discovered from numerous other bacteria of different 
genera, such as Gram-positive bacteria, including Bacillus, 
Streptomyces, Geobacterial, Staphylococcus, Lysinibacillus, 
and Aquisalibacillus, and Gram-negative bacteria, including 
Pseudomonas, Delfia, Enterobacter, Proteobacterium, and 
Alteromonas [28]. In addition, an increasing number of lac-
case genes from the metagenome libraries of soil sludge and 
water are recombinantly expressed [16, 67, 68]. The most 
characterized CotA-laccases are from Bacillus, such as B. 
subtilis [57, 69, 70], B. pumilus [42, 44], B. licheniformis 
[71], B. halodurans [72], Bacillus sp. HR03 [73], B. val-
lismortis [74, 75], B. tequilensis [76], B. amyloliquefaciens 
[77], Bacillus sp. ADR [78], B. sphaericus [79], B. clausii 
[80], B. altitudinis [42], B. safensis [81], and B. cereus [82]. 
Streptomyces laccases also exist in a variety of species, such 
as S. coelicolor [49, 83], S. cyaneus [48], S. griseus [84], S. 
lavendulae [85], S. psammoticus [86], S. ipomoea [52], S. 
sviceus [53], S. bikiniensis [51], S. violaceusniger, S. liv-
idans, and S. viridosporus [87, 88]. Several novel, special 
sources of laccases are depicted in Table 1.

The molecular weight of the majority of bacterial lac-
cases is predicted to be in the range of 50–70 kDa according 
to various experimental reports. For example, the molecular 
weights of B. subtilis, B. pumilus, and Bacillus sp. HR03 

CotAs are ~ 65 kDa [44, 73, 89], whereas that of CotAs from 
B. subtilis are ~ 67.5 and ~ 66 kDa [41, 90]. SDS-PAGE anal-
ysis revealed that the molecular mass of S. cyaneus CECT 
3335 is ~ 69.5 kDa, and Mrlac from Meiothermus ruber 
DSM 1279 possesses a molecular weight of ~ 50 kDa [30, 
33]. However, a special extracellular thermo-alkali-stable 
laccase, in which laccase is a monomeric protein with a 
molecular weight of ~ 32 kDa, has been identified from B. 
tequilensis SN4 [76]. The molecular weights of several other 
bacterial laccases are shown in Table 1. In CotA from B. 
subtilis, the ~ 65 kDa form represents the fully denatured 
protein, and the fast migrating ~ 30 kDa represents a partially 
unfolded form of the enzyme [69]. In B. pumilus MK001, 
CotA was boiled for 10 min, showing a band at ~ 65 kDa; 
without boiling, a band at ~ 35 kDa was observed [35].

The most significant biochemical properties of bacterial 
laccases are their stability under various pH, high tempera-
ture, organic solvents, and metal ion conditions. Thermo-
stable laccases have been isolated from S. lavendulae with a 
half-life of 100 min at 70 °C and from B. subtilis for 112 min 
at 80 °C [43]. The CotA laccases from B. pumilus MK001 
and B. pumilus W3 exhibit a half-life of 1 and 1.14 h, respec-
tively, at 80 °C [35, 45]. The spore-bound laccase of B. sub-
tilis WD23 exhibited a high thermal and pH stability with a 
temperature half-life of 2.5 h at 80 °C, and its pH half-life 
is more than 6 months at pH 6.8 and 15 days at pH 9.0 [91]. 
The laccase also exhibits high tolerance to acetone, petro-
leum ether, ethyl acetate, and chloroform. The pure CotA 

Fig. 2   Structure of the two-
domain laccase SLAC from 
S. coelicolor (PDB: 3CG8). 
a SLAC forms homotrimers 
and monomers are colored in 
magenta, yellow, and red. T1Cu 
is shown in blue, and T2/T3Cu 
is shown in green. b 3D view 
of SLAC. c Copper binding 
scheme in SLAC. Three active 
sites in the SLAC trimer at 
domain interfaces A1–B2, B1–
C2, and C1–A2. The chain nota-
tion corresponds to the interface 
A1–B2 [50]
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laccase is 157% activated by Cu2+ and remains stable toward 
Fe2+ [90]. Moreover, special thermophilic and alkaliphilic 
bacterial strains that contain laccase-like multicopper oxi-
dases genes exist. TtMCO from the thermophilic bacterium 
Thermobaculum terrenum is extremely thermophilic with 
an inactivation half-life of 2.24 days at 70 °C and 350 min 
at 80 °C at pH 7.0 [92]. ALRh from an alkaliphilic bacte-
rial strain Thioalkalivibrio sp. is a pH-tolerant laccase that 
is stable in the pH from 2.1 to 9.9 at 20 °C [93]. CotA also 
exhibited a considerably higher H2O2 tolerance than fungal 
laccases from T. versicolor and T. trogii [42]. Several lac-
cases and laccase-like bacterial species from different envi-
ronment sources and their properties were studied in recent 
years (Table 1). Several factors, including hydrogen bonds 
and salt bridges, distribution of charged residues on the sur-
face, protein packing, and acid composition [94], contribute 
to the stability of enzymes. The proline content is apparently 
associated with increasing protein thermostability [95, 96]. 
The introduction or increase of proline number is believed to 
be conducive for improving protein thermostability among 
many mesophilic bacteria and hyperthermophiles [95]. The 
percentage of proline residues from B. pumilus W3 CotA is 
9.0% (46 pro residues and 513 total residues), and those of 
other laccases of known structure are 8% for TvLa, 8.2% for 
MaLa, 7.5% for CcLa, and 6.2% for CueO [89]. Copper ions 
also play key roles in the stability of MCOs [54]. Laccases 
possess a secondary structure that displays high β-strand 
(Fig. 3), which is a special characteristic that may explain 
their high stability.

Substrates and mediators

Laccase is a notably substrate-specific enzyme that oxi-
dizes a wide range of substrates. It can catalyze the syn-
thesis and the breakdown reaction of various organic and 
aromatic compounds. The breakdown of environmentally 
harmful pollutants contributes to an eco-friendly environ-
ment, and the synthesis of complex compounds by pro-
ducing non-toxic substances leads to bioremediation [97]. 
Substrates such as 2,2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS), 2,6-dimethylphenol (2,6-DMP), 
syringaldazine (SGZ), acetosyringone (ACS), guaiacol, 
and L-DOPA are extensively used, and substrated ABTS, 
SGZ, and 2,6-DMP are the most used substrates for enzyme 
assays (Table 1). The oxidation reactions of ABTS, SGZ, 
and 2,6-DMP usually occur at 420 (ε = 36,000 M−1 cm−1), 
525 (ε = 65,000 M−1 cm−1), and 468 nm (ε = 37,500 M−1 
cm−1), respectively [93, 98]. Substrate binding with protein 
by using SGZ is exhibited in Fig. 4. A large number of sub-
strates with large size or high redox potential, such as several 
azo and anthraquinonic dyes, cannot be oxidized directly by 
laccase. These substrates require an “electron shuttle,” called Ta
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mediator, between them and laccase [99]. Mediators are low-
molecular weight laccase substrates whose enzymatic oxida-
tion causes stable high-potential intermediates; these sub-
strates chemically react with other compounds that cannot 
be oxidized by laccase alone [100]. ABTS is the first syn-
thetic mediator that was identified to serve as a laccase sub-
strate mediator that enhanced enzyme action [101]. ABTS 
binds to the enzyme’s “pocket” mainly through H-bonds, 
vander Waals forces, and electrostatic force. The substrate 
binding pocket and interaction force between ABTS with 
the amines of laccase are shown in Fig. 5. In recent years, 
ABTS and especially ACS have been widely used as media-
tors in dye decolorization because of their high efficiency 
[70, 74, 102–104]. Several N-heterocycles bearing N–OH, 
such as violuric acid, N-hydroxyl-N-phenyl acetamide, and 
N-hydroxybenzotriazole, are effective mediators [43]. 

Laccase-mediator systems (LMSs) involve three main 
categories of mediators, namely synthetic mediators, natu-
ral mediators, and polyoxometalates (POM). An increasing 
number of synthetic mediators, such as ABTS, 1-hydroxy-
benzotriazole (HBT), violuric acid, and 2,2′,6,6′-tetra-
methylpiperidinyl-1-oxy (TEMPO), have been identified. 
The chemical structures of several synthetic mediators are 
shown in Fig. 6b. The synthetic mediators can be used in 
lignin degradation, dye decolorization, and polycyclic aro-
matic hydrocarbon (PAH) oxidation. However, three major 
drawbacks of synthetic mediators are as follows: (1) high 
cost for application at industrial scale; (2) possible forma-
tion of toxic derivatives that inactivate laccases [105]; and 
(3) poor regeneration capacity and high ratio of mediator/
substrate is high [106].

Fig. 3   Secondary structure of 
four laccases and conserva-
tive copper binding site of four 
typical laccases. a E. coli 
laccase (CueO, PDB: 1N68, 
488 residues). b S. coelicolor 
laccase (SLAC, PDB: 3CG8, 
343 residues, SLAC forms 
homotrimers). c B. subtilis 
laccase (CotA, PDB: 4Q89, 
513 residues). d T. versicolor 
laccase (fungal laccase, PDB: 
1KYA, 499 residues; the 1KYA 
structure contains a total of 4 
chains and is represented by one 
chain)
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Inexpensive and eco-friendly natural mediators from 
plants and industrial by-products [107–109] are available. 
Most natural mediators are a series of phenol compounds 
with low chemical potential that can be rapidly oxidized 
by laccases. By analyzing the interactions between CotA 
and sinapic acid (SA), the presence of methoxy groups in 
the ortho-position of the phenolic structure is crucial for 
substrate recognition by CotA-laccase [110]. Acetylacetone 
(AA) can be used to form a laccase-AA system and enhance 
the stability of laccase [111]. Moreover, SA, AS, and p-cou-
maric acid (p-PCA) can improve the stability of laccase dur-
ing the degradation of flax pulp [112]. The chemical struc-
tures of certain natural mediators are shown in Fig. 6a.

Polyoxometalates, a class of polymetal oxygen cluster 
compounds formed by the transition metal ions through 

oxygen linkages, is a kind of bifunctional catalyst charac-
terized by redox and catalysis [113]. POM can be used as 
mediator of laccase because of its highly stable structure 
and catalytic activity. It has also been used for lignin deg-
radation and dye bleaching [114–116]. In recent years, 
LMSs mixed with other enzymes have been widely used 
in reaction systems. For example, the alkalophilic bacte-
rial xylanase, mannanese, and LMS were combined for 
biobleaching of mixed wood kraft pulp, and the results 
demonstrated a reduction of 30% chlorine and 44.4% H2O2 
consumption after the triple enzyme treatment, thereby 
revealing an eco-friendly alternative for total chemical 
bleaching [117].

Fig. 4   Structure of syrin-
galdazine (SGZ) and dock-
ing model of laccase from 
B. pumilus W3 (homology 
modeling using CotA from B. 
subtilis PDB code: 1GSK) with 
substrate using Autodock Vina 
[191]
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Mechanisms of laccase and LMS

Polyphenols can be oxidized by certain enzymes, such as 
laccase (EC 1.10.3.2), catechol oxidase (EC 1.10.3.1), and 
cresolase (EC 1.18.14.1) [118], that exhibit oxidase activi-
ties. As shown in Fig. 1, laccase contains four copper atoms 
that form the active center. The binding pocket of the sub-
strate is near the T1Cu center (Fig. 5b). T2/T3 trinuclear 
cluster is responsible for the reduction of oxygen to water. 
Laccase catalysis is believed to involve three steps. First, 
T1Cu is reduced by a reducing substrate. Then, internal 
electron transferring from T1Cu to T3Cu and T2Cu occurs 
through a Cys–His pathway that is highly conserved among 
multicopper oxidases. Finally, oxygen is reduced to water 
at the T2/T3 trinuclear cluster center [28, 43]. The reaction 
mechanism of O2 to H2O is shown in Fig. 7. The reaction 
of fully reduced enzyme with O2 occurs in two two-electron 
steps. Thus, the reaction is a four-electron process. Accord-
ing to Solomon et al. [119], the first step is slower than the 
second step; thus, the first step is the rate determining step, 
which is driven by the presence of an anionic Asp residue 
near the T2Cu. The second step indicates the large driving 
force for the two-electron reduction of peroxide combining 
with the trinuclear center, which presents a triangular topol-
ogy. The reaction of the fully reduced enzyme with O2 can 

generate the native intermediate (NI). Without substrates, 
the NI undergoes a gradual decay into a resting enzyme 
form. NI and resting form are both fully oxidized forms, 
but with a difference: type 2 and coupled-binuclear type 3 
Cu are isolated in the resting enzyme whereas these are all 
bridged by μ3-oxo (O–Cu–O) ligand in NI. Moreover, the 
T2 OH− ligand and T3 OH− bridge are maintained in the 
resting enzyme [120].

The LMS can enhance reaction efficiency and enlarge the 
range of reaction. Three mechanisms govern the function 
of mediators in LMS: (1) electron transfer (ET); (2) hydro-
gen atom transfer (HAT); and (3) ionic mechanism type 
(IM). The cation radical is significant for LMS. For exam-
ple, ABTS is a commonly used substrate for bioassay and 
mediator for oxidizing other substrates, and ABTS2+ is the 
most useful radical. ABTS isoxidized in two stages (Fig. 8). 
The first stage is the formation of ABTS+∙ cation radial, 
followed by slow oxidation of ABTS+∙ to ABTS2+ [100]. 
According to Morozova et al. [100], ABTS+∙ can interact 
only with lignin phenolic groups, and ABTS2+ is required 
for the degradation of nonphenolic lignin structures. Anisyl 
alcohol and benzylalcohol can be better oxidized by ABTS+∙ 
than by ABTS2+ [43]. The redox states of ABTS are stable 
and reversible with formal redox potentials of 0.472 V for 
ABTS/ABTS+∙ couple and 0.885 V for ABTS+∙/ABTS2+ 

Fig. 5   Binding pocket of 
substrate (ABTS as an example) 
near T1Cu and the interac-
tion force between ABTS with 
ammines of laccase. Docking 
using AutoDock Vina and 
Pymol software. Interaction 
force is shown using Discovery 
Studio 3.5 Visualizer [192]. a 
ABTS binds to the enzyme’s 
“pocket”, b Showed by 40% 
transparency, c The substrate 
binding pocket and interaction 
force between ABTS with the 
amines of laccase
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Fig. 7   Reaction mechanism of O2 to H2O of bacterial laccases. a The 
model of ABTS with Cu center in laccase. b The abstracted electron 
moves from the T1Cu center to the trinuclear cluster through a Cu–
Cys–His pathway. c Mechanism of O2 reduction to water. Blue arrows 
indicate the steps in the catalytic cycle of the laccases. Black arrows 
indicate the steps that are not part of the catalytic cycle but can be 
experimentally observed. The green box indicates the transfer of an 
electron from T1Cu to the T2Cu to yield PI + e−, which occurs in the 
transfer from PI to NI but is not experimentally observed [119]

Fig. 6   Chemical structures of several natural and synthetic mediators. 
a Natural mediators; b Synthetic mediators

according to cyclic voltammetry studies [100]. In the ET 
mechanism, the Cɑ–Cβ bonds of nonphenolic aromatic 
substrates are disconnected by a cation radical and generate 
H–Cɑ=O as the final product (Fig. 9a). The oxidization of 
nonphenolic lignin structures by this mechanism includes 
ABTS and coordinated transition metals. The HAT mech-
anism is usually generated with a mediator that contains 
N–OH or phenoxy-group, such as HBT, PCA, VIO, and 
NHA. In these mediators containing N–OH, the formation 
of N–O∙ is significant. The mechanism of HAT is preferable 
for the formation of O=Cɑ–Cβ group, such as the oxida-
tion of nonphenolic lignin model compounds (4-methoxy-
benzylalcohol) by LMS (Fig. 9) [100]. The IM mechanism 
that is independent of the redox features of the substrate is 
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suggested with the laccase/TEMPO system. TEMPO can 
be oxidized by laccase to form oxoammonium ion, and then 
the oxoammonium ion oxidizes the alcoholic substances to 
form carbonyl product or hydroxylamine. The oxidation of 
alcohols by laccase/TEMPO is shown in Fig. 10 [121].  

Polycyclic aromatic hydrocarbons can be oxidized by LMS, 
but different mediators show distinctions. Taking the oxida-
tion of benzo[ɑ]pyrene for example, laccase/ABTS, laccase/
PCA, and laccase/HBT all oxidize benzo[ɑ]pyrene-generated 
quinine. However, only the accumulation of 6-benzo[ɑ]pyrene 
acetate intermediate in the laccase/ABTS system is observed 
(Fig. 11). ABTS-mediated reaction follows an ET route, 
whereas HBT (nitroxyl) radicals oxidized the aromatic sub-
strate by HAT route, and PCA phenoxyl radicals act similarly 
to nitroxyl radicals [122, 123]. Laccases not only catalyze 
the synthetic reaction but also degradation. The formation 
of C–O, C–N, C–S, and C–C bonds and the reaction of O–O 
can be attained by oxidative reaction of laccase. Five exam-
ples are shown in Fig. 12 [99, 124, 125]. Using a bacterial 
laccase, the lignin model syringylglycerol β-guaiacylether is 
successfully coupled using the phenolic compound tyramine 

as substrate [126], and indole is trimerized to form 2,2-bis(3′-
indolyl)indoxyl [127]. The mechanism of degradation, that is, 
the degradation of perfluorooctanoic acid, is complicated and 
can form approximately 10 byproducts from ECOHRs in the 
mineral buffer and Cu2+ solution [128]. The catalytic process 
of laccases is exhibited in Fig. 13.

Engineering of bacterial laccases

At present, bacterial laccases are not widely used in indus-
tries because of their low expression levels and catalytic 
activity compared with fungal laccases. To meet the 
industrial demands for high expression level, high cata-
lytic activity, stability, and reduced production cost, many 
researchers paid attention to bacterial laccase engineering. 
In recent years, heterologous functional expression and 

Fig. 8   Oxidation of ABTS to ABTS2+catalyzed by laccase

Fig. 9   Oxidation of nonphenolic lignin model compounds (4-meth-
oxybenzylalcohol) by laccase mediators. a Oxidation mechanism of 
ET; b Oxidation mechanism of HAT

Fig. 10   Oxidation of alcohols with laccase/TEMPO

Fig. 11   Three oxidation routes of benzo[ɑ]pyrene by laccase-medi-
ator system. a ET route by laccase/ABTS; b HAT route by laccase/
PCA or laccase/HBT; c Nucleophilic attack of the acetate ions of the 
reaction mixture toward the benzo[ɑ]pyrene radicals generated by 
laccase/ABTS system. Three different quinines are the final products
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rational, semi-rational, or directed evolution approaches 
have been used to convert bacterial laccases into high 
value-added biocatalysts (Table 2).

Improvement of catalytic activity and substrate 
specificity

With the resolution of the crystal structure of several lac-
cases, the laccase structure–function relationships have been 
elucidated. The “substrate binding pocket” or in the vicin-
ity of the catalytic coppers affected the activity. A useful 
“platform” from B. subtilis spores is available for directed 
evolution studies to broaden substrate specificities. The 
ABTS-bound structure shows the substrate surrounded by 
23 amino acids (Pro226, Ala227, Phe228, Cys229, Thr260, 
Arg261, Thr262, Gly321, Cys322, Gly323, Gly324, Gln378, 
Gly382, Pro384, Leu386, Thr415, Arg416, Gly417, Thr418, 
His419, Ile494, His497, and Met502). Among these amino 
acids, His419, His497, and Cys492 are coordinated with 
T1Cu, and a disulfide bond is formed between Cys229 and 
Cys322. The five residues are not altered [129]. The resi-
dues of the substrate binding pocket of CotA are randomly 
modified by saturated mutagenesis to increase the specific-
ity of the enzyme, and the mutant (L386W/G417L) is 132 
times more specific for ABTS over SGZ [129]. This finding 
is also observed in B. pumilus CotA, and the catalytic effi-
ciency of its mutant L386W/G417L for ABTS is 4.3-fold 
higher than that of WT CotA-laccase [130]. A CotA mutant 
T260L from B. subtilis spore is 120-fold more specific for 
ABTS compared with the baseline [131]. According to Xie 
et al. [110], Arg416 in CotA-laccase plays an important 
role in substrate oxidation, and the flexibility of Arg416 
facilitates the binding of various substrates. Several other 
site mutations in Bacillus laccases enhance catalytic activ-
ity (Table 2). In addition to positive mutations, unalterable 
conservative sites, such as Met502 of CotA-laccase, occur 
and act as the axial ligands of T1Cu according to several 
studies. Catalytic activities decrease strongly after substitu-
tion of this residue [132]. The substrate binding pocket of 
SLAC from S. coelicolor has also been redesigned through 
site-directed mutagenesis to improve its activity toward 
compounds of interest as redox mediators. The substitu-
tion of the two Met of the pocket by small residues (Ala 
and Gly) substantially increased the catalytic efficiency with 

Fig. 13   Catalytic process of 
laccases

Fig. 12   Formation of C–O, C–N, C–S, and C–C bonds, as well as 
reaction of O–O, can be attained by oxidation of laccase
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Table 2   Several typical bacterial laccases engineering

Source Expression host Modification Main results References

Bacillus subtilis E. coli M502L
M502F

Redox potential increased 100 mv; but catalytic 
activity is compromised; T1 copper depletion deter-
mine thermodynamic stability

[132]

Bacillus subtilis E. coli L386A
I494A

Both redox potentials downward; and catalytic effi-
ciency decreased

[134]

Bacillus licheniformis E. coli K316N
D500G
K316N/D500G

11.4-fold higher expression level; high dimerization 
of phenolic and decolorization of industrial dyes

[46]

Shigella dyesenteriae E. coli E106F
Deletion α-helix

Promoting both enzymatic activity and thermostabil-
ity

[138]

Bacillus subtilis E. coli E498D
E498T
E498L

Catalytic impairment; decreased affinity; Glu498 
plays a key role in the protonation events

[186]

Bacillus subtilis B. subtilis T260L 120-fold more specific for ABTS [129]
Bacillus sp. HR03 E. coli E188K

E188R
E188A

Thermal stability increased; kcat/Km of E188R 
enhancement

[137]

Streptomyces coelicolor E. coli Y108A
Y108F

Tyr108 does form an integral part of the active site 
and affects enzyme kinetics

[187]

Bacillus subtilis E. coli D116A
D116N
D116E

Catalytic properties severely compromised; the posi-
tion 116 in CotA is important for catalysis

[188]

Streptomyces coelicolor E. coli Y229A
Y230A

Over 10-fold increase in activity [49]

Streptomyces coelicolor – M168G
M168A
Y199W
M266A
M266W
M168G/M266A
M168G/M266W

Enhanced kinetic parameters with a phenolic 
substrate; enhancement of the ability to decolor-
ize indigo carmine in the presence of commercial 
mediators (methylsyringate and TEMPO)

[133]

Bacillus sp. HR03 E. coli D500E
D500G
D500S
G-insertion

Increase in the expression level up to threefold 
(D500G)

[135]

Bacillus subtilis P. pastoris – 76-fold increase in laccase activity through sorbitol 
addition and pH adjustment in P. pastoris

[104]

Bacillus subtilis E. coli T415A
R416A

Arg416 is crucial in the oxidation of ABTS and SGZ [110]

Aquifex aeolicus E. coli M449T, I441L
K245R, R471G
P58S, I199T
Y172C, V19A
F55S

M449T, K245R, I441L, Y172C, V19A, F55S, and in 
particular I199T have likely contributed individu-
ally or synergistically to improve oxidation for 
aromatic substrates; R471G and V19A is significant 
in the stabilization

[189]

Bacillus subtilis E. coli R146K, R429K
R476K, L431F
A478F, T480A
T480F

The residues Arg146, Arg429, and Arg476 are essen-
tial for the oxidation of ABTS and syringaldazine. 
T480F was identified to be more specific for ABTS 
than syringaldazine

[155]

Bacillus subtilis B. subtilis 1S101 E29V, L343S
E498G, T480A
T480A/E498G
E29V/L343S/E498G

An organic-tolerant and acid-stable variant T480A/
E498G had a t1/2 62.1 times increased than wt-CotA

[57]

Bacillus amyloliquefaciens E. coli D501G Better stability and catalytic efficiency [39]
Bacillus subtilis E. coli ɑ-Hemolysin secretion 

system and YebF secretion 
system

A simpler approach for extracellular production of 
recombinant CotA laccase in E. coli

[40]
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DMP and the decolorization of indigo carmine mediated 
by methylsyringate and TEMPO [133]. According to site-
directed mutagenesis by Sherif et al. [49], 17 amino acid 
residues, including 10 His involved in copper coordination, 
are crucial for SLAC activity. In particular, the Y229A and 
Y230A mutants showed over 10-fold increase in inactiv-
ity compared with WT SLAC. In S. sviceus, several Met 
residues (Met195, Met220, Met293, and Met295) located 
in the putative substrate binding site of the enzyme are sub-
stituted with Leu. Moreover, a truncated mutant without 
17 residues corresponding to the C-terminus of the lac-
case was evaluated. All variants exhibited increased redox 
potentials ranging from 16 and 81 mV over the WT enzyme 
[53]. According to Durão et al. [134], the changes in amino 
acid residues in direct contact with metal center (including 
ligands) significantly affect the properties of the T1 copper 
sites of laccase and suggested that the redox potential may 
be modulated without compromising the overall reactiv-
ity through changes in residues away from the immediate 
contact shell. The mechanisms influencing the catalytic 
efficiency through mutation is the change in interaction 
between the enzyme and substrate, as well as the variety of 
redox potential in the T1Cu site. Moreover, the quantity and 
distance of H-bonds may also be changed between laccase 
pocket residues with substrate.

Enhancement of expression level

E. coli, B. subtilis, and P. pastoris are typically used as 
expression hosts. CotA-laccase mutants are more easily 
expressed in E. coli compared with other hosts, but isola-
tion of high enzyme quantities from its cell extracts in 
practical industrial applications is expensive. The advan-
tage of B. subtilis and P. pastoris is their exocrine expres-
sion, but mutation is more easily conducted successfully in 
E. coli. In recent years, site-directed mutagenesis technol-
ogy has been used to improve functional expression and 
achieve success in B. licheniformis, Bacillus sp. HR03, and 
B. pumilus. The soluble expression in E. coli of endospore 
laccase from B. licheniformis, which is similar to B. sub-
tilis CotA, is enhanced 11.4-fold by a combination of 
random and site-directed mutagenesis [46]. One of the 
selected mutations (D500G) is found to be adjacent to the 
axial Met of T1Cu, which is responsible for an eightfold 
increase in soluble expression. After sequence alignment, 
an Asp residue in this position has only been observed in 
laccases from Bacillus genus, whereas other bacterial and 
fungal laccases present Gly. This mutation is subsequently 
introduced in laccase from Bacillus sp. HR03, which also 
caused a threefold increase in the expression in E. coli 
[135] and in B. pumilus (D501G/WLF), thereby inducing 
a 4.48-fold increase in the expression level compared with 
WLF [102]. The position Asp501 (equivalent to Asp500 in 
B. licheniformis) is located in the C-terminal segment and 
close to the T1Cu center that lies in a conserved region 

Table 2   (continued)

Source Expression host Modification Main results References

Bacillus licheniformis P. pastoris D500G 2.1-fold higher activity expressed in P. pastoris and 
9.3-folds higher expression than wild-type enzyme

[103]

Bacillus pumilus E. coli L386W, G417L
L386W/G417L
L386W/G417L/G57F

Higher catalytic efficiency for ABTS and decoloriza-
tion of four industrial dyes. Higher thermostability 
and resistance to alkaline environment

[130]

Bacillus pumilus E. coli K317N/WLF
D501G/WLF
K317N/D501G/WLF

Enhanced functional expression and remained high 
thermostability, high decolorization of azo, anth-
raquinonic and triphenylmethane dyes

[102]

Fig. 14   C-terminal sequence 
alignment of bacterial and 
fungal laccase genes. The con-
served regions are represented 
by the red background. The box 
shows the different residues in 
the purpose position
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(Fig. 14). One to three amino residues (X) in the conserved 
region (His–Cys–His–XXX–His–XXXX–Met) connected 
with copper ligands are acidic in numerous multicopper 
oxidases. Asp501 in B. subtilis CotA-laccase is found at the 
surface of a water channel [136].

In addition to site-directed mutagenesis, different 
expression hosts also enhance expression level. According 
to Wang et al. [104], protease-deficient P. pastoris strain 
SMD1168H is selected for the heterologous expression 
of the CotA-laccase from B. subtilis. The enzyme pro-
duction phase is prolonged, and the expression level of 
rCotA is effectively improved (sorbitol together with pH 
adjustment enhanced the rCotA production by 76-fold). A 
D500G mutant of B. licheniformis LS04 laccase, which 
is constructed by site-directed mutagenesis, demonstrates 
2.1-fold higher activity when expressed in P. pastoris, 
and the protein yield under the optimized conditions is 
approximately 59 mg L−1, which is 9.3-fold higher than 
that of WT enzyme [103]. Moreover, an interesting experi-
ment on CotA-laccase extracellular production in E. coli 
was conducted by a simple strategy. Two secretion systems 
(ɑ-hemolysin and YebF secretion systems) were used to 
achieve the secretion of recombinant CotA into the culture 
medium. The uropathogenic E. coli ɑ-hemolysin (HlyA) 
secretion system is the most used secretion system for 
recombinant protein production. Meanwhile, by optimiz-
ing the induction parameters, the extracellular yield of 

recombinant CotA-laccase was improved by 15-fold (157.4 
to 2401.3 U L−1) [40]. The enhancement of expression 
level renders laccases an increasingly effective catalyst for 
industrial applications.

Improvement of laccase stability

For industrial application of laccases, highly stable robust 
enzymes that are active under harsh operational conditions 
are required. According to a study by Mollania et al. [137], 
the introduction of positive charge in a connecting loop 
between domains 1 and 2 promotes the thermal stability 
of laccase from Bacillus sp. HR03. They further demon-
strate that not only the reduction of negative charges but 
also the size of newly created positive residues can affect 
laccase stability. Another mutant T480A obtained from B. 
subtilis is screened for organic solvent resistance. Then, a 
T480A/E498G variant is constructed, and the t1/2 is 62.1 
times larger than that of WT-CotA [57]. In addition to sub-
stitution, fragment deletion can enhance thermostability. 
For example, deletion of helix-5 creates a WlacD that is 
more thermostable than wild-type Wlac. Other factors that 
improve protein thermostability include deletion of surface 
loop, increased hydrophobic residues with branched side 
chains, and increased proportions of charged residues [138]. 
According to Enguita et al. [89], additional proline content 

Fig. 15   Application areas of 
laccases
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and increasingly tightly packed residues in the interface 
region between domains I and II are apparently associated 
with enhanced protein thermostability in a bacterial mul-
ticopper CotA. These methods can be referenced by other 
unstable enzymes.

Applications of bacterial laccases

Biocatalysis is regarded as a key component for the devel-
opment of a sustainable bio-economy. The application of 
enzymes as biocatalysts is becoming increasingly popular 
in numerous industries. Laccases are promising biological 
green tools that work in air and generate water as the only 
by-product. Hence, laccases, especially fungal laccases, are 
widely applied in different areas (Fig. 15), such as decolori-
zation of dyes, degradation of toxic pollutants, biosensors, 
effluent treatment, textiles, food industry, paper and pulp 
production, organic synthesis (phenolic compounds, alka-
loids, antibiotics, and bioactive polymers), cosmetics, paints, 
furniture, and nanobiotechnology [99, 125, 139, 140]. As 
environmentally friendly enzymes of prokaryotic laccases, 
bacterial laccases are being increasing researches investi-
gated in terms of their applications. In the present study, we 
summarize the main application studies on bacterial laccases 
conducted in recent years.

Laccase immobilization

Immobilized enzyme is a new technology that was devel-
oped in the 1960s. Immobilized enzymes are water-soluble 
enzymes that are physically or chemically treated to render 
them water-insoluble but still enzymatically active. Enzyme 
immobilization methods can be roughly classified into physi-
cal and chemical methods. Physical methods include adsorp-
tion and embedding, whereas chemical methods include 
coupling and cross-linking. Each method presents specific 
advantages and disadvantages depending on the application 
purpose. In general, immobilization methods are developed 
to facilitate enzyme recovery and reusability and to increase 
enzymatic stability. Materials for laccase immobilization 
include alginate gel, gelatin, polyacrylamide, hybrid nafion/
sol-set silicate film, chitosan film, silica spheres, and other 
magnetically separable particles [43, 141].

The utilization of laccases for practical application is usu-
ally limited due to their high production costs. The use of 
enzyme immobilization technology in industrial processes, 
in comparison with the use of soluble enzymes, could reduce 
process costs by reducing the quantity of enzyme required, 
since the immobilized biocatalyst can be recovered at the 
end of a reaction cycle and reused, as long as the enzyme 
remains active. In addition, immobilization technology can 
be applied in order to improve enzyme properties such as 

activity and selectivity as well as stability, because the major 
advantages of laccase immobilization are the enhancement 
in the thermostability of the enzyme and its resistance to 
extreme conditions and chemical reagents. There are many 
useful methods of laccase immobilization described in the 
research review paper [142].

Recently, a spore laccase from B. pumilus W3 was effi-
ciently immobilized on amino-functionalized celite. The 
immobilized spore laccase removed 84.15% of methyl green 
and 69.70% of acid red 1 after 48 h of treatment. Moreover, 
the immobilized spore laccase retained 87.04% of its initial 
decolorization activity after six cycles in the decolorization 
of acid red 1. This laccase can be a useful biocatalyst in the 
treatment of textile wastewater [60]. Fan et al. [143] loaded 
hollow microspheres obtained from Ganoderma lucidum 
spores with Fe3O4 nanoparticles to prepare novel magnetic 
spore microspheres. The magnetic microspheres loaded with 
CotA-laccase, which can be easily and quickly recovered by 
an external magnetic field, were used for dye decoloriza-
tion. As a result, 99% of indigo carmine was removed using 
10 mg of microspheres after 1 h, and the immobilized CotA 
retained 75% of activity after 10 consecutive cycles. The 
magnetic spore microspheres are regarded as good support 
materials for enzyme immobilization. Laccase–Cu3(PO4)2 
hybrid microspheres with hierarchical structure are success-
fully prepared and loaded on a treated copper foil surface. 
Furthermore, the microspheres exhibit higher decoloration 
efficiency and decoloration rate (nearly 3.6 times) on Congo 
red dye solution after 3 h compared with free laccase [144]. 
In addition, numerous new materials, including different bio-
polymers, such as agar–agar, polyacrylamide, and gelatin, 
were utilized as bolster materials for immobilization of fun-
gal laccase (T. versicolor) and commercialization [145]. Lac-
case immobilized on nanocopper-incorporated electrospun 
fibrous membrane successfully removed 2,4,6-trichloro-
phenol [146]. Poly (glycidyl methacrylate) (PGMA) micro-
spheres can act as ideal supports for enzyme immobilization 
[147]. These materials and methods can be referenced to 
affix bacterial laccases.

Decolorization of dyes

Effluents produced in textile industries are always strongly 
colored; consequently, their disposal into the receiving 
waters reduces light penetration and subsequently disrupts 
the photosynthetic activity of aquatic plants [148]. The 
affected wastewater poses a severe environmental risk and 
may be mutagenic or carcinogenic because of the presence 
of metals, chlorides, and dye breakdown products [149, 
150]. At present, treatment of textile effluents by expensive 
physicochemical methods that generally fail to degrade the 
pollutants but only cause dye accumulation as sludge results 
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in disposal problems. Enhanced microbial decolorization 
may provide a cost-effective and environment-friendly 
method [151, 149].

The first report on dye degradation involved an alkali-
tolerant bacterial laccase from ɤ-proteobacterium JB that 
degraded indigo carmine at pH 9.0 at 55  °C by using 
syringaldehyde, p-hydroxybenzoic acid, and vanillin as 
mediators. According to Guan et al. [148], CotA gene of 
B. pumilus W3 achieved efficient secretory expression in 
B. subtilis WB600 by screening a suitable signal peptide. 
The toxicity of the CotA–ACS-treated effluent is markedly 
lower than that of the crude effluent. B. pumilus W3 CotA-
laccase mutant is also used to decolorize five industrial dyes 
(acid red 1, acid blue 129, methyl green, malachite green, 
and methyl blue), and these variants maintain high decol-
orization rates [102]. In the presence of ACS as a media-
tor, the CotA from B. subtilis cjp3 can decolorize all tested 
dyes (reactive black 5, indigo carmine, and reactive blue 
19), but it cannot decolorize the dyes without mediators 
[70]. Similarly, laccase from B. vallismortis fmb-103 with 
ABTS, ACS, or syringaldehyde can efficiently degrade mal-
achite [74]. In addition, certain new bacterial laccases can 
decolorize different dyes without mediators. For example, 
a new thermophilic soil bacterium with hyperthermostable 
alkaline laccase activity named Anoxybacillus sp. UARK-
01 can decolorize approximately 1.64 nM of Congo Red 
per microgram protein in 30 min at 90 °C and pH 9 [152]. 
Pure Spirulina platensis CFTRI laccase alone can efficiently 
decolorize anthraquinonic dye reactive blue 4 in 4 h without 
any mediators [153]. Pure TthLAC (T. thermophilus laccase) 
decolorized green dye, orange dye, and acid red dye by itself 
[154]. Except for the thermostable and pH-stable laccase 
from K. pneumoniae, both bacterial laccase-like enzymes 
in an acidic bog soil metagenome can efficiently decolor/
oxidize sundry dyes in the absence of redox mediators [16, 
153]. Studies on the decolorization mechanism of different 
dyes by bacterial laccases are limited and thus may be a new 
research topic.

Paper and pulp industry

Bacterial laccases have successfully showed effectiveness 
for biobleaching and kraft pulps. The capability of laccases 
to oxidize nonphenolic compound, such as veratryl alcohol, 
in the presence of ABTS provides new possibilities for the 
use of bacterial laccases in the pulp and paper industry. The 
laccase from S. cyaneus CECT 3335 with ABTS as media-
tor in the biobleaching of eucalyptus kraft pulps resulted 
in a significant decrease in the kappa number (2.3 U) and 
a significant increase in the brightness of the pulps [47]. 
Laccase from S. ipomoea CECT 3341, with ACS as natural 
mediator, was also used to enhance the conventional chemi-
cal bleaching process of an industrial eucalyptus kraft pulp 

[52]. In addition, a recombinant laccase from hyperther-
mophilic T. thermophilus was applied for the biobleaching 
of wheat straw pulp. With the ABTS (5 mM) as mediator, 
pulp brightness considerably increased by 1.5% ISO [156]. 
According to Sondhi et al. [157], an extracellular thermo-
alkali stable laccase from B. tequilensis SN4 can be used 
for pulp biobleaching. An increase in brightness by 7.6% 
and decrease in lignin content by 28% are retained with-
out N-hydroxy-benzotriazole as mediators, whereas 12% 
improvement in brightness and 47% decrease in lignin 
content were observed in the presence of a mediator. An 
effective method for deinking and biobleaching involves 
the co-production of thermo-alkali stable ligninolytic and 
hemicellulolytic enzymes by growing two different Bacillus 
spp. in the same solid-state fermentation medium. The com-
bination of laccase and xylanase reveals a synergistic effect 
for enhancing pulp properties. The dual cultivation not only 
improves the utilization rate of substrates but also enhances 
enzyme yield and the inhibitory effect on the growth of non-
desirable microorganisms [28, 158].

Biomass delignification and degradation

Lignin degradation and delignification by laccases are 
important both in the environment (lignocelluosic bio-
waste) and in commercial biofuel production [159, 160]. 
Laccase digestion provides a mild, clean, and efficient treat-
ment method for bio-delignification of lignocellulose with-
out damaging the cellulose [161, 162]. However, according 
to Rocha-Martin et al. [163], laccases are supplemented to 
the enzymatic hydrolysis resulting in contradictory results 
depending on the pretreatment and substrate used. The addi-
tion of laccase on the hydrolysis of softwood increased the 
glucose conversion, while an inhibitory effect was observed 
during the hydrolysis of hardwood or agricultural residues 
like wheat straw. They used two strategies: simultaneous 
laccase treat enzymatic hydrolysis of pretreated sugar cane 
straw and corn stover (strategy 1); and a previous laccase 
treatment and a subsequent hydrolysis step of both pre-pro-
cessing substrates (strategy 2). Significant reduction of the 
glucose concentration after enzymatic hydrolysis was found 
when any of the two strategies were used. The results do not 
support the use of laccases to detoxify pretreated lignocel-
lulosic materials for improving the bioethanol production 
[163]. In addition laccase-derived compounds affect nega-
tively the enzymatic hydrolysis being the level of inhibition 
dependent on the type of phenol, besides phenoxyl radicals 
and oligomeric phenols [164]. Laccase enzymes are prom-
ising detoxifying agents during lignocellulosic bioethanol 
production from wheat straw. However, they affect the enzy-
matic hydrolysis of this material by lowering the glucose 
recovery yields. This work revealed that a grafting process 
of phenoxy radicals onto the ligin fiber could be the cause 
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of diminished accessibility of cellulases to cellulases in pre-
treated wheat straw [165].

According to Singh et al. [166], an SLAC from Amyco-
latopsis sp. 75iv3 enhances the delignification of steam-pre-
treated poplar. Their study established the lignolytic activity 
of SLAC on woody biomass and highlighted the biocata-
lytic potential of bacterial enzymes. In addition, numerous 
agricultural residues are efficiently degraded by various 
bacterial laccases, such as wheat straw by S. ipomoeae lac-
case [167, 168], peanut shell bio-waste by Aquisalibacillus 
elongatus laccase [169], sugar beet pulp by A. elongatus 
laccase [170], almond shell bio-waste by Chromohalobacter 
salexigens laccase [171], and paddy straw by S. griseorubens 
ssr38 [172]. Moreover, co-expressed mixture methods are 
used for lignocellulose degradation. Fonseca-Maldonado 
et al. [173] demonstrated that synergism occurs between an 
endoxylanase and laccase with milled sugar cane bagasse as 
a lignocellulose substrate. As examples, the three genes of 
bacterial laccase (cotA), pectate lyase (pel), and endoxyla-
nase (xyl) are simultaneously cloned in single vector E. coli. 
This enzyme cocktail is important in the pretreatment of 
lignocellulosic residues for biofuel production [174].

Pollutant degradation

Polycyclic aromatic hydrocarbons and biogenic amines are 
pollutants that are widely distributed in natural environ-
ments, such as soil, air, or aquatic environment. Most of 
these pollutants and their intermediates are toxic for living 
beings [28]. To date, increasing reports have shown that bac-
terial laccase can degrade xenobiotic compounds. Recently, 
several bacterial laccase CueO mutations from the metage-
nome of chemical plant sludge displayed that the mutants 
G276R, G276N, G276Y, and G276K oxidize carcinogen 
benzo[ɑ]pyrene more efficiently than the WT-enzyme [68]. 
According to Callejón et al. [175], recombinant laccase 
from Pediococcus acidilactici can degrade the biogenic 
amine tyramine at pH 9.5 and 4.0 with or without ABTS as 
mediator. Tyramine degradation by laccases can solve the 
problems generated in food due to the presence of this toxic 
compound. In addition, gallic acid, syringaldehyde, vanillin, 
and catechol can be degraded by bacterial-derived laccase 
[176]. Several micropollutants, such as BPA (bisphenol A), 
inflammatory drug DFC (diclofenac), and MFA (mefenamic 
acid), can also be oxidized by laccases [177, 178]. Thus, 
bacterial laccases are potential biological green tools for the 
environment.

Other applications

In addition to the above-mentioned applications, laccases 
can be used in polymer production [36], synthesis of indo 

dyes [179], detection [180, 181], biosensor, and bioreme-
diation [182]. In a word, laccases have become important 
industrially relevant enzymes as promising biological green 
tools for the environment and in industries.

Concluding remarks

The current review provides a detailed and comprehensive 
study of bacterial laccases, their species and properties, 
and substrates and mediators, as well as the mechanisms 
of laccase and LMS. Moreover, the strategies for further 
enhancement of the catalytic activity and substrate specific-
ity, expression level, and laccase stability by genetic engi-
neering are summarized. Bacterial laccases exhibit a wide 
range of applications for decolorization of dyes, effluent 
treatment, degradation of toxic pollutants, and other fields 
(textile, food, and paper industries). Biological enzyme engi-
neering (Fig. 16) is a powerful and useful technical area for 
environment-friendly and industrial production. However, 
the main obstacles for the large-scale application of bacterial 
laccases include low expression level, high price of media-
tor, and inadequate capacity to produce large volumes of 
highly active enzyme at low cost. Future research should 
focus on the following areas: (1) expansion of the production 
scale using exocrine strain as expression vector; (2) separa-
tion and screening of novel laccases or transformation of 
current laccases to new enzymes, which offer high applica-
tion potential in the absence of mediators, to reduce the cost; 
(3) development of immobilized laccases using new envi-
ronmentally friendly nanoscale material that can be easily 
reused and recycled; (4) reaction engineering to optimize the 
synthesis of specifically desired products of economic value; 
and (5) potential of laccases for Au adsorption which may 

Fig. 16   Biological enzyme engineering
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become a novel application for bioremediation in the future. 
In addition, investigations on dye degradation–detoxifica-
tion mechanism by laccases should be conducted. Hope-
fully, these questions will attract researchers’ attention in 
the future.
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