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Abstract
Age-related macular degeneration (AMD) is the predominant cause of visual loss in old people in the developed world, 
whose incidence is increasing. This disease is caused by the decrease in macular function, due to the degeneration of retinal 
pigment epithelium (RPE) cells. The aged retina is characterised by increased levels of reactive oxygen species (ROS), 
impaired autophagy, and DNA damage that are linked to AMD pathogenesis. Mitophagy, a mitochondria-specific type of 
autophagy, is an essential part of mitochondrial quality control, the collective mechanism responsible for this organelle’s 
homeostasis. The abundance of ROS, DNA damage, and the excessive energy consumption in the ageing retina all con-
tribute to the degeneration of RPE cells and their mitochondria. We discuss the role of mitophagy in the cell and argue that 
its impairment may play a role in AMD pathogenesis. Thus, mitophagy as a potential therapeutic target in AMD and other 
degenerative diseases is as well explored.
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Abbreviations
AMBRA1	� Activating molecule in beclin-1-regulated 

autophagy
AMD	� Age-related macular degeneration
AMPK	� AMP-activated protein kinase
ARE	� Antioxidant-binding element
Atg	� Autophagy-related gene
DMT1	� Divalent metal transporter 1
ER	� Endoplasmic reticulum
FPN1	� Ferroportin 1
FPF	� Flavoprotein fluorescence
FtMt	� Mitochondrial ferritin
Gp78	� Glycoprotein 78
HDAC6	� Histone deacetylase 6
HIF-1α	� Hypoxia-inducible factor-1α
Hsp	� Heat-shock protein

IMM	� Inner mitochondrial membrane
Keap1	� Kelch-like ECH-associated protein 1
LIR	� MAPK1LC3-interacting region
MAM	� Mitochondria-associated endoplasmic 

reticulum membrane
MAPK	� Mitogen-activated protein kinase
MAPK1LC3	� Microtubule-associated protein 1 light-

chain 3
Mfn	� Mitofusin
MMP	� Mitochondrial membrane potential
MPT	� Mitochondrial permeability transition
MRC	� Mitochondrial respiratory chain
mtDNA	� Mitochondrial DNA
mTORC1	� Mammalian target of rapamycin complex 

1
Mul1	� Mitochondrial E3 ubiquitin ligase
Nrf2	� Nuclear factor (erythroid-derived 

2)-related factor 2
OMM	� Outer mitochondrial membrane
PGC-1α	� Peroxisome proliferator-activated receptor 

gamma coactivator-1α
PI3K	� Phosphatidylinosotole-3-kinase
PINK1	� Phosphatase and tensin homologue-

induced putative kinase
POS	� Photoreceptor outer segment
ROS	� Reactive oxygen species
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RGC​	� Retinal ganglion cell
RPE	� Retinal pigment epithelium
SAMD	� Senescence-associated mitochondrial 

dysfunction
SASP	� Senescent-associated secretory phenotype
Sirt1	� NAD-dependent deacetylase Sirtuin 1
Smurf1	� SMAD-specific E3 ubiquitin protein 

ligase 1
SOD	� Superoxide dismutase
SQSTM1/p62	� Sequestosome1/p62
Tfam	� Mitochondrial transcription factor A
TIM	� Translocase of the inner mitochondrial 

membrane
TOM	� Translocase of the outer mitochondrial 

membrane
Ub	� Ubiquitin
VDAC	� Voltage-dependent anion channel
VEGF	� Vascular endothelial growth factor

Introduction: AMD and autophagy

Age-related macular degeneration (AMD) is an eye disease 
characterised by a progressive decrease in macular function. 
It is the leading cause of visual impairment in the Western 
world in the elderly. There are approximately 50 million 

people suffering from AMD worldwide and the number is 
expected to increase threefold over the next 20 years. Thus, 
AMD is becoming a major global public health issue [1]. 
AMD is a complex disease with multifactorial etiology 
including ageing, family history, smoking, high blood pres-
sure, obesity, hypercholesterolemia, and arteriosclerosis [2, 
3].

The disease affects photoreceptors, choriocapillaris, and 
the retinal pigment epithelium (RPE) in the sensitive mac-
ula, which is responsible for colour and sharp central vision 
(Fig. 1a) [4, 5]. AMD can be divided into two distinct forms: 
dry (atrophic) and wet (exudative). A total of 80% of patients 
suffer from the dry subtype, for which no efficient treat-
ment exists. Wet AMD development is strongly associated 
with upregulation of the vascular endothelial growth factor 
(VEGF), which is the principal therapy target to inhibit det-
rimental neovascularisation process caused by this growth 
factor [6].

Age-related macular degeneration-related loss of vision 
is primarily associated with a progressive degeneration and 
cell death of the RPE, which secondarily evokes adverse 
effects on the rod and cone cells. The RPE cells are pre-
disposed to chronic oxidative stress due to their high lev-
els of oxygen consumption, exposure to lipid peroxida-
tion products derived from photoreceptor outer segment 
(POS) and continuous light stimuli. Oxidatively damaged 
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Fig. 1   a The simplified partial structure of the aged retina show-
ing the position of retinal pigment epithelium (RPE). The retina 
is exposed to high levels of light. Extracellular drusen formations 
between RPE and the Bruch’s membrane is a sign of ageing and the 
progression of age-related macular degeneration (AMD). POS, pho-
toreceptor outer segment. b The aged RPE cell. Lipofuscin deposits, 
located in lysosomes, are their hallmarks, and enough accumulated, 

they contribute to the development of AMD. Light and reactive oxy-
gen species (ROS) exposure produce continuous stress. The increase 
in defective mitochondria load fosters ROS exposure internally. The 
cell uses autophagy and mitophagy for degeneration of the damaged 
material. Their activities are weakened in aged cells, thus augmenting 
the accumulation of dense indissoluble lipofuscin waste. MRC mito-
chondrial respiratory chain
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molecules, including carboxyethylpyrrole, malondialdehyde, 
4-hydroxynonenal, and glycation end products, accumulate 
in the macular area, and are the source of chronic oxidative 
stress as well [7–9]. Golestaneh and associates [10, 11] have 
recently found that RPE cells from AMD patients produce 
more ROS than those derived from control normal donors. 
These cells from AMD sufferers were unable to increase the 
expression of superoxide dismutase (SOD) during oxidative 
stress [12]. In senescent RPE cells, the ability to respond 
to oxidative stress is weakened, resulting in an accumula-
tion of auto-oxidative lipofuscin in the lysosomes of RPE 
cells and extracellular drusen formation between RPE and 
Bruch’s membrane [13, 14] (Fig. 2b; fundus of a healthy 
eye presented in Fig. 2a). In addition to the oxidative stress 
and formation of molecular aggregates, immunologic pro-
cesses are involved in AMD pathogenesis. Generation of 
inflammatory-related molecules in the Bruch’s membrane 
and recruitment of macrophages, dendritic cells, comple-
ment activation, and microglial activation in the macular 
area have been documented [5, 15, 16]. In addition, ROS-
induced DNA damage in RPE cells can contribute to the 
development of AMD [17–19].

A number of retinal pathologies, including AMD, are 
connected with mitochondrial dysfunction [20]. Decreased 
numbers of mitochondria, loss of mitochondria cristae [the 
folds in the inner mitochondrial membrane (IMM)], reduc-
tion of the mitochondrial matrix density as well as muta-
tions in mitochondrial DNA (mtDNA) (“Mitochondrial 
DNA damage”) have been reported in studies examining the 
RPE of AMD donors [18, 21, 22]. Therefore, mitochondria 
appear to be an important target for study trying to survey of 
AMD pathology, and possibly provide promising for thera-
peutic targets.

Autophagy is a collective term for the complex lysoso-
mal clearance processes utilised by cells to eliminate large 
unwanted structures such as cytoplasmic material (ubiquit-
inated macromolecules), organelles [as exemplified by dam-
aged mitochondria, endoplasmic reticulum (ER), and peroxi-
somes], and pathogens. Moreover, it is an important means 
for survival in the starvation state when the cell literally 
“eats itself” [23–25]. Autophagy can be further subdivided 
into microautophagy, chaperone-mediated autophagy, and 
macroautophagy. The last of these is the best studied and is 
referred hereafter as autophagy. It is initiated upon induction 
(as defined by nutrition shortage) by the formation of isolation 
membranes, which originate from endoplasmic reticulum or 

Fig. 2   a Fundus photograph of a healthy eye. b Fundus photograph 
of a dry AMD eye. The arrow indicates a yellowish zone of drusen 
accumulation in the macular area. Drusen are located between reti-

nal pigment epithelium and Bruch’s membrane. The photographs are 
from Imaging Data Source data bank, Department of Ophthalmology, 
Kuopio University Hospital, Kuopio

Fig. 3   An early phase of mitophagy (the white arrow) is seen as the 
formation of double membrane, wrapped around a mitochondrion, in 
a mouse primary retinal pigment epithelial (RPE) cell. Picture is cap-
tured by transmission electron microscopy (×15,000 magnification). 
The photograph is from Ophthalmology Research Unit, University of 
Eastern Finland, Kuopio. M damaged mitochondrion, N nucleus
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other cellular membrane (Figs. 1b, 3). Then, they elongate as 
phagophore membranes and engulf a portion of the cytosol 
to form double membrane autophagosomes, which invagi-
nate material for degradation. Furthermore, autophagosomes 
undergo multiple steps, including the attachment of the small 
GTPase Rab7, which signals their maturation, and is likewise 
needed for the transport of autophagosomes along microtubuli 
[26]. Finally, they fuse with primary lysosomes forming autol-
ysosomes, and their contents are then degraded by lysosomal 
enzymes and recycled. This whole route is regulated by at least 
41 autophagy-related genes (Atgs) identified so far [27, 28].

Autophagy is stimulated in response to many stress stimuli 
that are constantly present in the RPE such as hypoxia, oxida-
tive stress, inflammation, or unfolded proteins [14, 29, 30]. 
Furthermore, autophagic proteins are intensely expressed in 
the eye [31, 32]. Autophagy, besides of the phagolytic degrada-
tion, is important in the daily turnover of POS too [33]. This all 
indicates that autophagy is essential in the fitness of both the 
neuroretina and the RPE. Failure of autophagy in aged cells, 
including RPE cells, results in the accumulation of protein 
aggregates, cellular degeneration and eventually cell death [28, 
34]. Vice versa, functional autophagy reduces the toxicity of 
the protein aggregates and may prevent age-related modifica-
tions of RPE [30]. To date, there is strong evidence that weak-
ened autophagy flux increases lipofuscinogenesis and RPE 
damage in AMD [11, 31, 35–39]. When autophagic capacity 
declines simultaneously with increased ROS production and 
protein aggregation as in RPE degeneration and AMD, it may 
activate inflammasomes, which provoke a low-grade inflam-
mation in retinal cells and accelerate ageing process [40, 41]. 
Autophagy was for long considered as a non-selective means 
of bulk degradation, especially during starvation, where it 
provides nutrition to the cell. However, more recently, sev-
eral selective types of autophagy have been revealed. These 
include the degradation of cytoplasmic aggregates (aggre-
phagy), lipid droplets (lipophagy), exogenous pathogens (xen-
ophagy), and of organelles (for instance nucleophagy and ribo-
phagy) [42–44]. The last group includes mitophagy. Although 
mitophagy is closely connected to general autophagy, it func-
tions in several distinct pathways. In fact, mitophagy could be 
regarded not only just a type of autophagy, but also an essential 
and distinct part of the mechanisms that govern mitochondrial 
quality control. Figure 3 represents the action of mitophagy, 
revealed by transmission electron microscopy.

Impaired mitochondria stimulate 
non‑selective autophagy

Increased generation of ROS or decreased ATP production 
has been shown to induce general autophagy. Mitochon-
dria may play a key role in the regulation of autophagy by 
ROS signaling in mammalian cells [45–47]. It is especially 

important in RPE, where oxygen consumption and thus ROS 
production are excessive. Under starvation conditions, H2O2 
is accumulated in mitochondria, leading to the inhibition 
of Atg4 activity. This results in an increase in the lipida-
tion of Atg8 (a yeast gene) mammalian orthologues MAP-
K1LC3 and GATE-16, which are both involved in canonical 
autophagy [47]. In agreement with this, it has been shown 
that autophagosome marker proteins Atg5 and MAPK1LC3 
localise in mitochondria during nutrient deprivation [48]. 
In addition, regions of MAPK1LC3 overlap with markers 
of the outer mitochondrial membrane (OMM), but not with 
those of the IMM, and matrix markers, probably excluding 
their involvement of mitophagy [49]. Autophagy may be 
regulated by the proteins located on mitochondrial surface, 
including beclin-1, which localises to the mitochondria and 
ER [50]. Beclin-1 is regulated by several proteins, includ-
ing activating molecule in beclin-1-regulated autophagy 
(AMBRA1) and the anti-apoptotic factor Bcl-2 [51, 52]. In 
normal conditions, Bcl-2 interacts with AMBRA1 at mito-
chondrial surface and beclin-1 in ER to inhibit autophagy. 
However, in starvation, AMBRA1 dissociates from Bcl-2 
and associates with beclin-1 at the reticulum and mito-
chondria surface to promote autophagy [52, 53]. The role 
of AMBRA1 and Bcl-2 in the selective autophagy of mito-
chondria, mitophagy, is discussed in “Ubiquitin-mediated 
mitophagy: PINK1 and Parkin”. A growing body of evi-
dence suggests the involvement of non-selective autophagy 
in the management of mitochondrial fitness. On the other 
hand, mitochondria may have a role of signaling platform 
to regulate autophagy.

Mitophagy

Mitophagy, an autophagic pathway 
for mitochondrial quality control

Mitophagy is a principal mechanism of mitochondrial qual-
ity control eliminating aged, and damaged mitochondria 
[54–58]. Therefore, mitophagy is important for cellular 
homeostasis and cell survival, because the maintenance of 
a balance between normal and damaged mitochondria is 
essential for efficient energy production in the cell. Moreo-
ver, unnecessary mitochondria may be the sources of ROS, 
cytochrome c and other apoptosis-related factors, which may 
induce cell damage and eventually death. Oxidative damage 
to membrane proteins and anomalous protein aggregation 
might eventually form aqueous pores and to induce the mito-
chondrial permeability transition (MPT). This can further 
promote mitophagy. The loss of mitochondrial membrane 
potential (MMP) is a marker of mitophagy, but is gener-
ally not considered as a primary mitophagy-inducing factor 
[55, 59]. However, in the study by Kim and Lemasters [60], 
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directly, photoirradiated mitochondria lost their MMP and 
were subsequently labelled with MAPK1LC3, thus indi-
cating that this loss might directly promote mitophagy, at 
least in extreme conditions. In addition, mitophagy occurs 
in developmental regulation. Mitophagy participates in the 
differentiation of retinal ganglion cells (RGCs), which are 
projecting neurons of the retina [61]. It is also necessary for 
the reticulocyte maturation [62].

Some mitochondria-associated ER membrane (MAM) 
proteins are directly involved in autophagy/mitophagy. They 
act to bring mitochondria into close proximity of ER and 
serve as a communication platform [63]. Hamasaki and oth-
ers [64] have shown that ER–mitochondria contact sites are 
themselves the origins of the autophagosome membrane. In 
addition, they revealed at least two MAM-related autophagic 
proteins, Atg14L and Atg5. The former is an early autophagy 
marker and an essential pro-autophagic protein, which is 
relocalised to MAMs, inducing autophagosome formation 
under starvation. Atg5 is another important MAM-resident 
protein required for the formation of autophagosomes, which 
are directly associated with MAMs. In general, MAM pro-
teins and the ER–mitochondria junctions can have an impact 
in many diseases, including cancers and AMD [65].

Mitophagy and other types of selective autophagy are 
tightly regulated and need to react to various stimuli. Mul-
tiple levels and several mechanisms seem to be involved 
in this regulation. The upstream control for the initiation 
of mitophagy requires at least the mitogen-activated pro-
tein kinase (MAPK) pathway regulation [66, 67]. It is not 
involved in induction of non-selective, general autophagy, 
and so far, its exact mechanism and function in mitophagy 
is unclear. It has been suggested that the upstream control is 
involved in the phosphorylation phase, such that in the initial 
activation of mitophagy receptors and mediators launch the 
process.

Evidently, mitophagy represents an extreme attempt of 
a cell to maintain homeostasis disrupted by malfunction-
ing mitochondria. Mitophagy and mitochondrial biogenesis 
are balanced acts controlled by an intricate regulatory net-
work [68]. Proper coordination of them is essential for stress 
resistance and longevity. Age-related decline of mitophagy 
increases the amount of redundant and non-functional cel-
lular elements and this leads to impaired functioning of the 
cell. Factors that contribute to mitochondrial homeostasis 
play a role in the pathogenesis of many age-related disor-
ders, such as neurodegenerative and cardiovascular disorders 
and cancers. Therefore, mitophagy presents an emerging 
potential as a target for therapy in these diseases.

Ubiquitin‑mediated mitophagy: PINK1 and Parkin

Around the turn of the millennium, two genes, PINK1 (phos-
phatase and tensin homologue-induced putative kinase 1) 

and Park2 [RING-IBR-RING (RBR) E3 ubiquitin ligase, 
Parkin] were found to be associated with Parkinson’s disease 
in certain Japanese and Italian families, respectively. Follow-
up functional studies revealed that both of them cooperate 
in the degradation of damaged mitochondria via mitophagy 
[69–73]. An overview of PINK1/Parkin-derived mitophagy 
is presented in Fig. 4.

Phosphatase and tensin homologue-induced putative 
kinase is a mitochondrial serine/threonine kinase, occur-
ring in three isoforms, which may be targeted to the OMM 
with its kinase domain facing the cytoplasm, facilitating its 
physical interaction with Parkin, which resides in that cellu-
lar compartment [74, 75]. Parkin can subsequently catalyze 
a variety of ubiquitination reactions, ranging from mono- 
to poly-ubiquitination. All three isoforms of PINK1 may 
participate in the PINK1-Parkin interaction [76]. PINK1 is 
proposed to direct the mitochondrial localisation of Parkin 
through phosphorylation [77]. In steady-state PINK1 and 
Parkin control mitochondrial fission and fusion processes, 
as PINK1 is an upstream regulator of Parkin. PINK1 is kept 
at low levels in functional mitochondria and Parkin is evenly 
distributed throughout the cytoplasm.

In mitochondria with normal MMP, PINK1 is imported 
to IMM by the action of translocases of the outer (TOM) 
and inner membrane complexes. Furthermore, it is cleaved 
by the rhomboid protease PARL, and then degraded [78]. 
When the MMP is lost, the import of PINK1 into the IMM 
is prevented, and it remains on the OMM. Then, PINK1 is 
bound to the TOM complex as a dimer with the Tom7 subu-
nit being the most important factor for this [79, 80].

Recently, it was found that heat-shock protein 70 (Hsp70) 
stabilised PINK1, thus mediating mitophagy [81]. The Hsp 
system is another quality-control mechanism and protein 
turnover regulator in the cell besides autophagy, and this dis-
covery suggests that it can augment mitophagy. Moreover, 
Hsp system can protect RPE cells against oxidative stress 
and in this way can be linked to AMD pathogenesis [14, 82].

Parkin is an important element of the ubiquitination-
mediated mitophagy pathway [77, 83]. In basal conditions, 
Parkin is in an auto-inhibited conformation, and its ubiquitin 
ligase activity remains dormant. The activation of Parkin 
is regulated by Bcl-2 and occurs when it is translocated to 
mitochondria. After this translocation, PINK1, located at 
OMM of damaged mitochondrion, phosphorylates Ser-65 
of Parkin [84, 85]. Subsequently, Parkin acts to ubiquitinate 
mitochondrial surface proteins, including Mitofusin 1/2 
(Mfn1/2) and voltage-dependent anion channel 1 (VDAC1), 
probably to prevent refusion and mitochondrial clustering. 
This ubiquitination results in the recruitment of adaptor 
proteins, including histone deacetylase 6 (HDAC6) and 
sequestosome-like protein receptors (p62/SQSTM1, NBR1, 
NDP52, TOLLIP, TAX1BP1, and optineurin) that link ubiq-
uitinated substrates to the autophagic complex. MAPK1LC3 
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and autophagosomal membranes are then co-recruited when 
damaged mitochondria are aggregated and transported. This 
results in the engulfment of mitochondria by the autophago-
some membrane, forming a “mitophagosome”, its matura-
tion and transport, and final fusion with lysosomes in an 
HDAC6-dependent manner [26, 86]. Furthermore, SQSTM/
p62 expression is blocked when PINK1 is knocked down, 
indicating the SQSTM1/p62 expression as a consequence 
of mitophagy induction [87]. PINK1 can drive low-level 
mitophagy as well. It recruits autophagy receptors NDP52 
and optineurin independently of Parkin, suggesting the par-
ticipation of at least one other Ub E3 ligase in mitophagy 
[88].

Activating molecule in beclin-1 regulated autophagy is 
involved in the PINK/Parkin2 mitophagy pathway, besides 
its participation in non-selective autophagy (“Impaired mito-
chondria stimulate non-selective autophagy”). AMBRA1 
binds Parkin and then MAPK1LC3 with its MAPK1LC3 
interacting region (LIR) domain [52]. Likewise, beclin 1 
interacts with Parkin and regulates its localisation to the 
mitochondria [89]. Moreover, AMBRA1 has been shown 
to act in non-selective autophagy of mitochondria, inde-
pendently of the PINK/Parkin2-regulated pathway, which 
has been discussed above [52]. As AMBRA1 is involved in 
both non-selective autophagy and PINK/Parkin2 regulated 

mitophagy, this highlights its role as an important regulator 
of the mitochondrial turnover.

SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1), 
another E3 ubiquitin ligase, may interact in PINK1/Parkin-
mediated mitophagy [90]. Mice deficient in the Smurf1 gene 
accumulate damaged mitochondria in various organs. In 
addition, Smurf1 interacts with SQSTM1/p62, suggesting 
its involvement in mitophagy/autophagy.

Recently, Lemasters [56] has proposed that autophagic 
degradation of the whole mitochondria occurs in fact 
according to two types. Type 1, which resembles the gen-
eral autophagy, would represent the non-selective form of 
mitophagy. Mitochondrial damage, produced by photoirra-
diation, promotes the type 2, in which the autophagic pha-
gophore formation does not occur and it is not associated 
with mitochondrial fission. In this type, the depolarised 
mitochondria would merge directly with MAPK1LC3-
containing structures, after the associations of mitochon-
dria with PINK1 and Parkin. Furthermore, inhibition of the 
phosphatidylinositol-3-kinase (PI3K) (class III) pathway, 
the established upstream signaling pathway for the nutrient 
deficiency-stimulated autophagy, does not block the type 
2 mitophagy, implying that it is independent of beclin-1. 
Further research is still needed for the elucidation of these 
processes.
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Fig. 4   The PINK1-Parkin-derived pathway of mitophagy. In this 
presentation functional mitochondrion with regular pH and mem-
brane potential encounters damage due to external or internal stress 
(e.g., reactive oxygen species excess). PINK1 is recruited to the outer 
mitochondrial membrane. Thereafter Parkin is phosphorylated and 
translocated. Activated Parkin ubiquitinates the outer membrane. 
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mitochondrial membrane potential, LC3 MAPK1LC3, p62 Sequesto-
some1/p62, Rab7 small GTPase Rab7, Ub ubiquitin
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Receptor‑mediated mitophagy

Receptor-mediated mitophagy is independent of ubiqui-
tination. The Nix protein (known also as Bnip3L) is an 
integral OMM protein receptor, which regulates the selec-
tive removal of damaged mitochondria without protein 
ubiquitination in mammals [91, 92]. Nix gene-deficient 
mice develop anemia due to weakened receptor-mediated 
mitophagy [93, 94]. Nix has a ZXXY structure [Z aromatic 
(Trp/Phe/Tyr), Y large hydrophobic (Leu/Ile/Val), and X 
any amino acid residue] that facilitates its interaction with 
Atg8 family proteins MAPK1LC3 and GABARAP via an 
LIR domain [91, 95]. Therefore, Nix is a typical autophagy 
receptor, which brings mitochondria to autophagosomes via 
direct interaction with the Atg8 proteins [91].

Recent findings indicate that the phosphorylation of Ser-
34 and 35 residues in the LIR domain of Nix increases its 
ability for interaction with MAPK1LC3. In addition, this 
contact is stronger, compared to that observed with the non-
phosphorylated protein. This is due to additional hydrogen 
bonds between phosphorylated serines and nitrogen-contain-
ing basic amino acids in MAPK1LC3 [96].

The ubiquitination of mitochondrial proteins by the E3 
ligase Parkin is assisted by Nix [97, 98]. However, the locali-
sation of Nix in the mitochondrial outer membrane predis-
poses it to deliver mitochondria to autophagosomes without 
any ubiquitination, which may be useful for distinguishing 
between ubiquitination- and receptor-mediated mitophagy 
subtypes.

The Bnip3 protein, a Nix homologue, is another candi-
date for being a mitophagy receptor [99, 100]. This protein 
may initiate mitophagy by disturbing the interaction between 
beclin 1 and Bcl-2 proteins [101]. Bnip3 has an LIR domain 
to facilitate its binding to the MAPK1LC3/GABARAP pro-
teins. Therefore, Nix and Bnip3 may act together to initi-
ate mitophagy through the same mechanism underlined by 
MAPK1LC3/GABARAP binding. They may have overlap-
ping functions as mitophagy receptors in normal conditions 
when damaged mitochondria should be removed to prevent 
cell death [100].

Another mitophagy receptor is FUNDC1, an integral 
mitochondrial outer membrane protein [102, 103]. Its 
role as a receptor has been described in hypoxia-induced 
mitophagy. In basal conditions, FUNDC1 is phosphorylated 
and blocked by casein kinase 2 and kinase Scr. In hypoxia as 
well as mitochondrial depolarisation conditions, FUNDC1 
dephosphorylation by a mitophagic Ser/Thr phosphatase 
PGAM5 is triggered and mitophagy thus activated [104]. 
FUNDC1 interacts with MAPK1LC3 through its LIR motif. 
Another novel mitophagy receptor, FKBP8 (also known as 
FKBP38) belongs to FK506-binding protein (FKBP) fam-
ily and is similarly anchored to OMM like Nix, and has an 
LIR domain as well. It recruits lipidated MAPK1LC3 to the 

damaged mitochondria and increases Parkin-independent 
mitophagy. Surprisingly, FKBP8 escapes from mitochon-
dria before degradation, even though it acts as the receptor 
for the degradation process [105].

Some recently found PINK1/Parkin-independent Ub-
ligases act on mitophagy signaling pathways as well. Gly-
coprotein 78 (Gp78), an E3 ubiquitin ligase, is involved 
in Parkin-independent mitophagy [106]. Gp78 regulates 
mitochondrial dynamics (fusion/fission) and mitophagy by 
regulating Mfn1. Mitochondrial E3 ubiquitin ligase (Mul1), 
a multifunctional ubiquitinase and sumoylase, ubiquitinates 
Mfn1 and thus regulates mitochondrial dynamics [107]. 
Mul1 interacts with Unc-like kinase 1 (ULK1) and the E2 
conjugating enzyme Ube2E3, which both act in autophagy/
mitophagy. Mul1 has an LIR domain in its RING finger 
domain and its binding with GABARAP requires the pres-
ence of Ube2E3, suggesting that an important role that Mul1 
performs in the mediation of mitophagy [108].

Mitochondrial quality control and ageing

Mitochondrial DNA damage

The relation between the impairment of mitochondrial func-
tion and ageing and age-related diseases has been estab-
lished in a wide range of organisms (e.g., [109–111]. The 
common consensus for ageing asserts that the process is 
started initially by molecular damage, which in turn leads 
to cellular and tissue degradation, and finally to the loss of 
an organ’s or tissue’s functionality [112]. The free radical 
theory proposes that ROS are as the main source of agents, 
which damage DNA, proteins, and lipids [113]. Damage to 
mtDNA is considered to be a major type of injury, in regard 
to degenerative diseases.

Mutations in this organelle’s DNA lead to compromised 
mitochondrial redox functions. They induce a decline in 
the activity of enzymes in the citric acid cycle as well as 
a decrease in the capacity of the mitochondrial respiratory 
chain (MRC). This diminishes cellular energy production, 
but increases ROS formation by impaired MRC, which may 
damage further the mtDNA. This can lead to the accumu-
lation of lesions resulting in mitochondrial dysfunctions, 
which have been linked to several human diseases, includ-
ing neurodegenerative disorders and cancer [114, 115]. The 
decrease of mitochondrial dynamics due to mtDNA muta-
tions is well documented. Mitochondria can thus influence 
or regulate many important key features of ageing [20, 112]. 
Mitophagy might be an important means to regulate as well 
as manage the removal of the mitochondria with mutated 
mtDNA, and these might have implications for AMD pathol-
ogy [17].
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As the extent of mtDNA damage increases with ageing, 
this could be causative or just associative with senescence 
[116]. There might be genetic variation between individuals 
in greater susceptibility to mtDNA damage, associated with 
AMD [117]. mtDNA damage in RPE cells can have impact 
on mitochondria function and connect these lesions to the 
development of AMD [17–19]. Eight times more mtDNA 
damage, compared to nuclear DNA, has been reported in 
RPEs of AMD donors. This has been alleged to be much 
higher than in normal ageing when mtDNA lesions are usu-
ally maintained at low levels and located in the common 
deletion region of mtDNA. However, mtDNA damages 
in AMD donors have been observed to the mitochondria 
genome-wide [18]. Furthermore, less efficient DNA dam-
age response, compared to that in the nucleus, suggests that 
mitochondria are the weak link in the RPE functionality 
faced with relentless pressure that ROS generation bares on 
that tissue [20].

A possible mechanism of AMD is associated with the 
dynamics of Alu transposons that represent commonly dis-
persed short-interspersed repeat elements in the human 
genome [118]. Normally, the level of Alu transcription is 
low, but it increases in stress conditions [119, 120]. The 
amount of Alu transcript is regulated by RNase III DICER1, 
which is crucial for miRNA processing. Dysfunctional or 
deficient of DICER1 disturbs the functioning of the miRNA 
network and results in the accumulation of toxic Alu tran-
scripts [121]. To search for the mechanism underlying toxic-
ity of non-degraded Alu retrotransposons, Tarallo and asso-
ciated showed that deficient DICER1 or excess of Alu RNA 
activated the NLRP3 inflammasome and TLR-independent 
MyD88 (myeloid differentiation primary response 88) sign-
aling [122]. No physical interactions between Alu RNA and 
NLRP3 were observed, while the Alu retrotransposone-
induced mitochondria ROS production prior to the prim-
ing of inflammasome. Recently, Kerur and others showed a 
connection with mitochondrial damage, as an accumulation 
of Alu RNA-induced cytosolic escape of mtDNA with the 
involvement of cyclic GMP–AMP synthase (cGAS) [123]. It 
was shown that Alu RNA-induced opening of the mitochon-
drial permeability transition pole in RPE cells resulting in 
mitochondria swelling, rupture, and release of mtDNA into 
the cytosol. It seems that mtDNA is an important factor for 
the toxic action of Alu RNA in RPE cells and in the patho-
physiology of AMD.

Mitochondria, mitophagy, and the cell senescence

It has been assumed that the mechanisms that drive to senes-
cence, a state of irreversible cell cycle arrest, might as well 
promote age-related diseases [124, 125]. Cell senescence, 
induced by stress associated with ageing, is linked with a 
deficit in health and fitness. The phenotype of senescent 

cells includes the inability to replicate, adoption of immu-
nogenic activity consisting of the pro-inflammatory, senes-
cent-associated secretory phenotype (SASP), which includes 
increased expression of various cytokines, chemokines, 
growth factors as well as persistent DNA damage signaling 
[125–127].

It has been established that ageing and damaging of mito-
chondria are interconnected. Mitochondrial dysfunction is 
a significant cause of ageing, and senescent cells contrib-
ute to the senescence-associated mitochondrial dysfunction 
(SAMD) [125, 128, 129]. Damaged mitochondria produce 
ROS, which increase the likelihood of mtDNA damage 
(“Mitochondrial DNA damage”) and this leads to senescent 
growth arrest [130]. In addition, dysfunctional mitochondria 
release potentially detrimental molecular patterns, consisting 
of ROS and mtDNA fragments, which can trigger inflam-
masome activity or SASP [41, 127]. Thus, the failure of 
mitophagy can lead a reduced capacity to “clean” damaged 
mitochondria, resulting in inflammation. This can be related 
to AMD pathogenesis [131]. It should be noted that SASP 
includes the increased expression of VEGF, a factor that 
is directly related to the wet form of AMD (“Introduction: 
AMD and autophagy”) [132].

Autophagy is a cellular mechanism that provides nutrients 
in starvation and quality control, as it removes non- and dys-
functional cellular components. In regard of the senescence, 
autophagy has been found to have contradictory roles. In 
addition, autophagy can act as a pro-ageing mechanism, as 
it can promote oncogene-induced senescence. Overexpres-
sion of unc-like kinase 3 (ULK3), an autophagy gene, pro-
motes autophagy and induces the Ras oncogene. Knockdown 
of autophagy genes Atg5 and Atg7 can bypass senescence 
[133]. On the other hand, autophagy is known as an anti-
senescence process [134]. Mitochondrial damage increases 
the expression of autophagy genes MAPK1LC3, Atg5, and 
Atg8 as well as enhancing mitophagy, and thus postpones 
senescence. Inhibition of Mammalian target of rapamycin 
complex 1 (mTORC1), a suppressor of autophagy, leads to 
the restraint of aged phenotypes. This “duality” is explained 
by the complex nature of the autophagic/mitophagic pro-
cesses. Moreover, the timing of the autophagic inhibition is 
essential. In young cells, autophagy inhibition can lead to 
senescence, whereas in old cells, autophagy upregulation 
can be important for the establishment of the aged pheno-
type [125].

Mitophagy seems to be independent of the general 
autophagy, in the regard of senescence. Mitophagic activity 
is found to be reduced in aged cells [135, 136]. mTORC1 
activity is elevated in aged cells and lysosomal overload can 
disrupt the terminal events of autophagy/mitophagy. This 
leads to the accumulation of lipofuscin within the lysosomes, 
a hallmark of AMD (“Introduction: AMD and autophagy”). 
Mitophagy can be inhibited by p53, which interacts with 
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Parkin and prevents its localisation on damaged mitochon-
dria [137]. The suppression of PINK1 in aged cells leads to 
a lowered mitophagy [138]. In addition, PINK1 deficiency 
suppresses mitochondrial fission, which is important for 
the elimination of dysfunctional parts of the mitochondrial 
“network”, thus further promoting the senescent phenotype 
[135].

The PGC‑1α‑Nrf2 axis

Transcription factor Nrf2 [nuclear factor (erythroid-derived 
2)-related factor 2, known also as NFE2L2] has a key role 
in the maintaining of cellular homeostasis in stress. It is 
a powerful activator of genes that contain electrophile-
response elements in their promoter sequences and many 
of them code for antioxidant proteins. In these genes, 
electrophile-response elements are also called antioxidant 
response elements (AREs) [139]. Moreover, Nrf2 regulates 
mitochondrial biogenesis and ROS metabolism as well as 
the expression of many nuclear-encoded genes, like mito-
chondrial transcription factor A (Tfam), which in turn regu-
lates mtDNA transcription, translation, and repair. Keap1 
(Kelch-like ECH-associated protein 1) regulates Nrf2 by its 
targeting for ubiquitination. However, in conditions where 
there is increased oxidative stress, Keap1 is modified, Nrf2 
is released and thus becomes activated. Furthermore, Keap-
1-Nrf2 and autophagy are cross-regulated. For example, 
SQSTM1/p62 is a target for Nrf2. SQSTM1/p62 can further 
sequester Keap1 and this positive feedback coordinates Nrf2 
and autophagy activities [140]. In RPE cells, a knock-out of 
Nrf2 gene resulted in the downregulation of SQSTM/p62 
expression, but in an Nrf2-gene knock-out animal model, 
its expression was not changed in these cells. Therefore, the 
pathways of Nrf2 in the regulation of autophagy/mitophagy 
might be more complicated and remains to be characterised 
closer [141]. An increase in Nrf2 gene activity and the sub-
sequent upregulating of ROS-induced damage-preventing 
proteins has been found in the RPE of AMD donor eyes. 
This suggests that it is one compensatory mechanism due to 
increased ROS [8].

Nuclear factor (erythroid-derived 2)-related factor 2 is, 
moreover, a downstream transcription factor for PGC-1α 
(peroxisome proliferator-activated receptor gamma coacti-
vator-1 alpha) gene. The Nrf2 and PGC-1α proteins interact 
with each other as well (the latter as co-factor) activating 
mitochondria-related genes, mentioned earlier in this sec-
tion [142, 143].

It has been shown that in the RPE maturation, the expres-
sion of the PGC-1α gene increases in mitochondria. In addi-
tion, it is a strong activator of mitochondrial function and 
antioxidant capacity in RPE cells [144]. Furthermore, PGC-
1α is positively regulated by energy sensor NAD-dependent 
histone deacetylase Sirtuin 1 (Sirt1) and AMP-activated 

protein kinase (AMPK) [145, 146]. These both link it to 
autophagy. Recently, PGC-1α gene, along with Sirt1 protein, 
has been found to be repressed in RPE cells from AMD 
patients in which disintegrated mitochondria were found 
[10].

Gene knock-out animal models of PGC-1α and Nrf2 
have been employed in the study of the RPE [141, 147]. 
When either of these genes is disrupted, signs of degen-
eration and the loss of function are evident. In RPE cells, 
Nrf2 gene knock-out degenerative signs (drusen, lipofus-
cin, and expression of inflammatory proteins) and develop-
ment of autophagy-related vacuoles has been found. PGC-
1α absence leads to dysregulation of all major pathways 
engaged in the retinal damage and apoptosis, restoring, and 
rejuvenation. Recently, a double-knock-out animal model of 
PGC-1α and Nrf2 genes has been established. Unpublished 
preliminary results from our laboratory show increased 
autolysosomes, increased expression of autophagy mark-
ers, damaged mitochondria, RPE degeneration, and finally 
age-related visual loss in double-knock-out mice. These find-
ings link mitochondrial damage to PGC-1α and Nrf2 gene 
deficiencies, and these may have an impact in autophagic 
and mitophagic clearance in the RPE, and thus be involved 
in AMD pathogenesis. This justifies the suitability of this 
double-knock-out animal model for AMD studies.

Therapeutic potential of mitophagy in AMD

Lemasters [55], who introduced the term mitophagy, consid-
ered it as targeted defense against oxidative stress, malfunc-
tioning mitochondria and ageing. With regard to RPE ageing 
and AMD, the mitochondrial damage has been proposed as 
a possible source of oxidative stress, due to high oxygen 
consumption and intensive light exposure in the retina. This 
increased stress causes mtDNA damage, oxidation of other 
molecules, and the decrease of cellular antioxidant capac-
ity [148]. Mitophagy could be considered as an important 
protective mechanism of RPE cells against oxidative stress, 
which prevents retinal degeneration.

Weakening of mitochondrial activity and decrease in 
mitochondrial quality have been linked with ageing and 
the progress of age-related diseases, such as cardiovascular 
and neurodegenerative disorders, and cancers in the elderly 
[68, 149]. The RPE of AMD eyes manifest the decrease of 
mitochondria number, defective fission/fusion processes, 
disorganised cristae, and lower levels of MRC proteins. In 
addition, decreased levels of heat-shock proteins involved 
in the import of nuclear-coded proteins, suggests that severe 
defects in mitochondrial biogenesis due to shortage of cyto-
solic proteins, is an important factor [19, 21]. Weakened 
antioxidant protection combined with the shortage of mito-
chondrial capacity may strongly reduce RPE function and 
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contribute to the onset of AMD. While senescent RPE cells 
might have sufficient energy at the resting state, they cannot 
efficiently display stress response, which demands supple-
mentary ATP and thus reduces preventative capacity [150].

Advanced age results in mitochondrial decay, bioenerget-
ics deficit (reduced MMP), shortage of antioxidant defense, 
and increased sensitivity to oxidative stress in RPE cells 
[151]. In addition, it has been found that while the number 
of mitochondria decreases and their length increases with 
age in the RPE from both aged human donors and rhesus 
monkeys [151, 152]. The elongation of mitochondria is 
associated with metabolic/oxidative stress. Furthermore, 
elongated mitochondria form parallel clusters and unex-
pectedly, these are oriented orthogonally (perpendicularly) 
to the basal membrane of the cell. The increased flavopro-
tein fluorescence (FPF), correlated with elevated mito-
chondrial dysfunction, has been observed in nonexudative 
(dry) AMD. The heterogeneity of FPF indicates that there 
is increased variability in the severity of the damages in the 
eyes observed in advanced AMD [153]. These findings fur-
ther suggest that the age-related mitochondrial dysfunctions 
might be involved in the pathogenesis of AMD.

Some genetic variants of the MRC complex I are as well 
associated with an increased risk of AMD [154]. Inhibi-
tion of complex I function leads to ROS increase and subse-
quently reduces cell viability, by causing mitotic catastrophe. 
Mitophagy is later activated, since PINK1 and Parkin are 
localised to depolarised mitochondria [155]. In RPE cells, 
mitophagy can prevent the cell death, but when it is further 
blocked, it causes non-apoptotic cell death [156].

Terluk and associates [19] have found that mtDNA dam-
ages occur already in the early phases of AMD and they are 
limited to RPE, in both the macular and peripheral regions. 
These can be detected before the occurrence of the disease 
symptoms. Early intervention to prevent DNA damages 
could be useful in the attenuation of this disease’s progres-
sion. This could be done via modulation of mitophagic activ-
ity when mitochondria with damaged DNA and disturbed 
expression of important proteins involved in MRC could be 
removed.

Excess iron has been reported too in AMD retinas. This 
contributes to the excess ROS formation catalyzed by Fe3+ 
ions [157]. The accumulation of iron is accompanied by 
ROS production, as well as increased expression of the 
Divalent metal transporter 1 (DMT 1) and the decrease of 
Ferroportin 1 (FPN 1) gene expressions. These changes have 
been detected in dysfunctional mitochondria and linked to 
several neurodegenerative diseases. As this happens in the 
secluded space of mitochondria, causing the decrease of 
MRC complex I activity [158], it is likely to be important in 
the development of AMD via dysfunctional mitochondria.

Mitochondrial ferritin (FtMt), an iron-storage protein, 
controls antioxidant capacity via regulation of Fe storage. 

It suppresses the Fenton reaction, in which Fe2+ reacts with 
H2O2 resulting in the production of hydroxyl radicals [159]. 
The expression of FtMt increases in ageing and in neurode-
generative maladies [160]. A mutation in the FtMt gene has 
been associated with AMD occurrence [161]. Furthermore, 
the increase of FtMt triggers mitophagy via hypoxia-induc-
ible factor-1α (HIF-1α) regulated pathway in RPE cells. 
However, FtMt may cause the induction of in wet AMD via 
an increase in VEGF secretion [162]. FtMt may be important 
in the protection of RPE cells by inducing mitophagy, reduc-
ing age-related stress, and exerting an antioxidant effect in 
mitochondria.

The alteration of protein phosphorylation induced by oxi-
dative stress has been recently studied in RPE cells in inter-
actome network scale [163]. Phosphorylation is a survival 
mechanism for proteins in chronic oxidative stress. However, 
this has a positive correlation with AMD progression. More-
over, general mitochondrial protein phosphorylation leads 
to alterations in mitochondrial activity, which could lead to 
increased mitophagic clearance of non-functional organs.

As no effective treatment for AMD exists so far, except 
for the moderate success of anti-VEGF treatment for the wet 
AMD [6], new prospects promising any alleviation from this 
disease or its progression would be worth examining. The 
enhancement of mitophagy, for more efficient removal of 
malfunctional mitochondria, lies within this area. This is 
likewise in connection with the augmenting of the energy 
metabolism of the mitochondria in aged cells, where the 
function of RPE cells decreases. These could be of poten-
tial use in the future AMD therapy. In the AMPK–mTOR 
energy-sensor route [164], AMPK, which increases 
autophagy/mitophagy, can be induced by metformin, a dia-
betes type 2 drug in use, and AICAR (5-aminoimidazole-
4-carboxamide-1-β-ribofuranoside). The autophagy inhibi-
tor mTOR is further suppressed by AMPK and its activity 
can be reduced by rapamycin [68, 165]. In addition, met-
formin induces MRC complex I function [166], blocks pro-
inflammatory NF-kappa B signaling [167], and inhibits the 
secretory-associated senescence phenotype (“Mitochondria, 
mitophagy, and the cell senescence”) [168]. It can be thus 
used as a senostatic drug, which inhibits the senescent phe-
notype. Moreover, metformin induces mitophagy by reduc-
ing the abundance of cytosolic tumour suppressor factor p53, 
which has been found to inhibit mitophagy via interaction 
with Parkin [169]. This is an interesting example of “two-
way feat” of p53 for autophagic action, as it can directly 
activate mitophagy as well [170].

The PGC-1α-Nrf2 axis (“The PGC-1α-Nrf2 axis”) could 
be targeted in mitochondria-related AMD therapy. Mito-
chondrial biogenesis can be enhanced by inducing PGC-1α 
via Sirt1, which can induce autophagy/mitophagy. Resvera-
trol, a polyphenolic natural compound, stimulates Sirt1 indi-
rectly by elevating NAD+ levels and by activating AMPK 
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[68, 171, 172]. Several other polyphenolic compounds (e.g., 
quercetin, berberine, catechin, ferulic acid, and tyrosol) are 
Sirt1 agonists as well, they sustain the stimulating action of 
resveratrol, and as such have a potential in therapy of many 
degenerative diseases [173]. Keap1-Nrf2 interaction inhibi-
tors could be useful as inducers of mitophagy for the treat-
ment of pathological conditions characterised by impaired 
mitochondrial quality control [174]. For example, electro-
philic inducers carbonyl cyanide p-trifluoromethoxyphenyl-
hydrazone, dimethylfumarate, curcumin, and tert-butylhyd-
roquinone attach to Keap1 and thus prevent the degradation 
of Nrf2, leading to activation of mitochondrial biogenesis 
and autophagy/mitophagy.

In addition, the augmentation of Hsp70 might be useful 
in the mitophagy stimulation, since it regulates the stabil-
ity of PINK1 [81] (“Ubiquitin-mediated mitophagy: PINK1 
and Parkin”). Delivery of exogenous (recombinant) Hsp70 
might be a strategy against RPE degeneration [82], not only 
as the augmentation of the chaperone activity itself and the 
protection against oxidative stress, but in the maintenance 
of mitophagy.

Spermidine, a ubiquitous polyamine compound has been 
found to be beneficial for slowing down ageing. This might 
be due to its capacity to upregulate autophagy. Spermidine 
increases autophagic flux and promotes mitophagy. It acts 
as acetylase inhibitor, though independently of Sirt1 [175]. 
Urolithin A, a metabolite of natural bioactive polyphenolic 
ellagitannins, has been found to induce mitophagy in mam-
mals [176]. Remarkable, it reduces the number of mitochon-
dria, but maintains the respiratory capacity in short-term 
dispensing. The long-term exposure promotes the biogen-
esis of mitochondria and their number. Other effective com-
pounds include antibiotics and plant-derived metabolites 
[177]. For example, naturally occurring antibiotic actinonin 
induces mitophagy, possibly via depletion of mitophagic 
ribosomes and RNA decay [178, 179]. Recently, activation 
of mitophagy via Parkin and PINK1 modulation has been 
studied by a screen of chemical compounds, and by the use 
of artificial ligands, also called neo-substrates, such as ATP 
analogue kinetin triphosphate [180, 181]. The natural-based 
and synthetic compounds could be of a promising use in the 
treatment of mitophagy-dependent disorders, and generally 
in the anti-ageing therapies.

Senolytic therapy targets senescent cells to be destroyed 
or inhibit their secretory phenotype to eliminate their influ-
ence on other cells. In a recent, unpublished chemical 
screening, many compounds have been found, which can 
modify autophagy and/or mitophagy [125]. Many of them 
could act as senolytics via modification of the interactions 
between mitophagy, SAMD, and SASP (“Mitochondria, 
mitophagy, and the cell senescence”), for example, by the 
release of apoptosis-stimulating factors monitoring lowering 
of MMP [124, 125]. Therefore, targeting senescent cells by 

mitophagy induction is a promising perspective strategy to 
fight AMD, especially since senescence and not apoptosis 
can be responsible for death of retinal cells in AMD [182, 
183].

Conclusions

Non-selective autophagy, mitophagy, and other selective 
types of autophagy act as a central node in a network con-
trolling cellular development, lifespan, and death. Notably, 
non-selective autophagy is crucial as a pro-survival mecha-
nism and it is upregulated in critical situations as well as 
ageing when other quality-control pathways (such as protea-
somes) could fail to function. On the other hand, mitophagy 
is crucial for the mitochondrial quality control and it is more 
tightly controlled than non-selective autophagy. It is, how-
ever, induced in specific stress situations to prevent the accu-
mulation of damaged mitochondria, although there seems so 
far to be no direct evidence of mitophagy activation solely 
by ageing [184].

Disturbances in autophagic clearance have been alleged 
to be associated with many degenerative diseases includ-
ing AMD. Mitochondria may stimulate general autophagy, 
and ROS-dependent destructive mechanisms seem to under-
line this effect. In addition, mitochondria are targeted by 
mitophagy, the mitochondria-selective type of autophagy 
especially when they are affected by damaging agents and 
become dysfunctional. The efficacy of mitophagy may be 
regulated both positively and negatively by the dynamics 
of mitochondria. Mitophagy may contribute to the mainte-
nance of mitochondria and this fact may be relevant to con-
trol important biological processes. Therefore, the interplay 
between mitophagy and mitochondria may belong to funda-
mental mechanisms of energy and metabolism homeostasis 
in eukaryotic cells, and in the development of age-related 
maladies, which could be related to the reduced of mito-
chondrial activity.

Despite the important role of mitophagy, several ques-
tions concerning fundamental aspects of its regulation 
are still open. First of all, what is the difference between 
mitophagy pathways activated by different factors? Second, 
what is the range in which Parkin may activate mitophagy 
by ubiquitinating/degrading mitochondrial surface proteins? 
Finally, what are the precise mechanisms of the mitophagy 
regulation by the interactions between PINK1, Parkin, and 
their substrates on the mitochondrial surface? These and 
other questions should be addressed in the future research 
on mitophagy.

In summary, the recuperation of mitochondrial quality 
and activity might be useful in anti-ageing therapies. Deeper 
understanding of the role of cellular autophagic clearance 
mechanisms, including mitophagy against ROS, is essential 
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for searching for effective therapeutic tools against age-
related degenerative diseases, such as AMD.
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