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Abstract
Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth 
movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endo-
chondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different 
cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of 
joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation 
occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage 
and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage 
and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and 
signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. Here, we summarize current literature and 
discuss the molecular mechanisms underlying joint formation and articular development.
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Abbreviations
BMP	� Bone morphogenic protein
CDMP1	� Cartilage-derived morphogenetic protein 1
cKO	� Conditional knockout
FGF	� Fibroblast growth factor
FGFR3	� Fibroblast growth factor receptor 3
GAG​	� Glycosaminoglycan
GDF5	� Growth differentiation factor 5
IHH	� Indian hedgehog
MAPK	� Mitogen-activated protein kinase
NICD	� Notch intracellular domain
PTHrP	� Parathyroid hormone-related protein
Prg4	� Progeoglycan 4
SFZ	� Superficial zone
TGF-β	� Transforming growth factor-β
Tgfbr2	� TGF-β type II receptor
UDPGD	� Uridine diphosphoglucose dehydrogenase

Introduction

Osteoarthritis, a representative degenerative joint disease, 
is threatening the quality of life and daily activities of many 
elderly people. Many studies have been performed to under-
stand its pathophysiology and develop disease-modifying 
drugs over decades. However, neither of these aims have yet 
been successfully achieved. However, an increasing num-
ber of developmental biology studies have revealed various 
kinds of molecules and signaling pathways involved in skel-
eton formation. In particular, achievements of cell biology 
and regenerative medicine research have enabled the induc-
tion of chondrocytes from pluripotent and somatic stem 
cells in vitro [1–7]. Moreover, recent studies indicate that 
chondrocytes are generated through several different bio-
logical steps according to their localization during skeleton 
formation [8, 9].

Articular cartilage is a highly specialized tissue that ana-
tomically caps the end of epiphyses in the synovial joint cav-
ity. Matured articular cartilage is also referred to as hyaline 
cartilage because of its translucent appearance that reflects 
its unique constituents, such as type II collagen, glycosa-
minoglycans (GAGs), and low cellularity [10]. In addition, 
articular cartilage does not have blood vessels, lymphatic 
vessels, or nerves [10]. Articular chondrocytes produce 
extracellular matrices and maintain their environment with 
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very little or no cell turnover [11, 12]. GAGs, including 
chondroitin sulfate and hyaluronic acid, bind to each other 
via core proteins in cooperation with longitudinally orien-
tated type II collagen [10, 13]. These protein complexes 
further form the intricate network of extracellular matrices, 
which are responsible for the distribution and absorption 
of mechanical forces loaded on the articular cartilage [14, 
15]. Another structural feature of articular cartilage is the 
lubricated smooth surface composed of lubricin and hori-
zontally oriented collagens, which attenuates friction gener-
ated through skeletal motion [15, 16]. Thus, articular carti-
lage consists of multiple layers that have differently oriented 
matrices and cell populations.

In vertebrate animals, most skeletal elements develop 
from transient cartilage by a biological process well known 
as endochondral ossification [17–19]. In the initial step, car-
tilage anlagen is formed through mesenchymal condensa-
tion at the presumptive site for bone. Cartilage anlagen grow 
to form a cartilage template, accompanied by chondrocyte 
proliferation and differentiation, which has a similar shape 
to future bones. At the center of the cartilage, chondrocytes 
undergo hypertrophic differentiation and then apoptosis, 
resulting in vascular invasion and ossification by osteoblasts. 
This sequential event longitudinally spreads to metaphysis. 
Later, another ossification site, termed as the secondary ossi-
fication center, is newly formed at the epiphysis and radially 
spreads within it. Part of the cartilage between the two ossifi-
cation centers remains as a growth plate physis during skel-
etal growth, and other parts between the joint cavity and the 
secondary ossification center permanently remain as articu-
lar cartilage. Accumulating evidence indicates that articu-
lar and growth plate cartilage is derived from different cell 
sources and that different molecules and signaling pathways 
regulate these two kinds of cartilage [8, 9]. In this review, 
we introduce several crucial factors defining the inception 
of joint generation and development of articular cartilage.

Early stages of articular cartilage 
differentiation

Interzone emergence

The development of the synovial joint precedes articular car-
tilage formation. The timing of joint development depends 
on its site: forelimb and proximal joint formation generally 
precede hindlimb and distal joint formation, respectively 
[20–22]. Mice nascent limb joints are observed at around 
E12.5–E15.5, whereas articular cartilage is identified after 
birth [19]. The substantial morphological appearance of 
articular cartilage is observed in 2–4-week-old mice [12, 
23, 24] and approximately 1-month-old rabbits [25].

Notably, most parts of articular cartilage derive from 
different lineages from the growth plate cartilage. The first 
signs of joint development are presented by the appearance 
of condensed flattened cells at the presumptive joint site 
within a pre-cartilage tissue [26, 27] known as the interzone, 
the origin of the joint (Fig. 1). Removal of the interzone 
from a chick embryo leads to an uninterrupted long bone 
lacking joints [28], indicating that the interzone provides 
segmentation of skeletal elements in limbs. The interzone 
arises from mesenchymal/pre-cartilaginous tissue in which 
the cells initially express chondrocyte marker genes such 
as type II collagen, aggrecan, and matrillin-1 [11, 12, 24, 
29–32]. Instead of the decreased expression of these chon-
drogenic markers, the interzone cells acquire the expression 
of growth differentiation factor 5 (Gdf5), formerly known 
as bone morphogenetic protein 14 (BMP14), or cartilage-
derived morphogenetic protein 1 (CDMP1). Gdf5 is a rep-
resentative marker for the interzone during early joint devel-
opment [24, 29, 30, 33]. In addition to Gdf5, Wnt4, Wnt9a 
(formerly known as Wnt14), Wnt16, Erg, doublecortin, and 
Gli are also expressed in the interzone [34].

Joint cavitation

Joint cavitation is one of the most remarkable events specific 
to synovial joints and is a necessary step toward articular 
cartilage development (Fig. 1). Joint cavities are identi-
fied at around the same time as hypertrophic chondrocytes 
are observed in the center of adjacent cartilage templates. 
Previous studies have proposed that the cavity is generated 
through the apoptosis of the cells in the center of the inter-
zone termed as the intermediate zone [35–38]. However, cell 
death is sparsely observed within a thin intermediate zone 
[36, 37]. Instead, recent literature suggests that the joint cav-
ity develops by the filling of the fluidic extracellular matrix, 
particularly hyaluronan [11, 24, 31, 39–41]. Hyaluronan 
synthases, hyaluronan binding proteins, and the activity of 
uridine diphosphoglucose dehydrogenase (UDPGD) were 
specifically up-regulated at the intermediate zone before and 
during the detachment of cell–cell adhesion [11, 24, 31, 39, 
40]. Indeed, mutant mice for hyaluronan synthetase 2 exhibit 
severe deformity of the joints [41]. These events are possi-
bly regulated by mitogen-activated protein kinase (MAPK) 
signaling including p38 and Erk1/2, which are activated at 
the intermediate zone before the expression of hyaluronan 
related factors, and directly stimulate hyaluronan synthesis 
in the interzone cells in vitro [42, 43]. An extrinsic mechani-
cal stimulus may be a potent candidate for an upstream of 
these pathways. Skeletal muscle paralysis in chick embryos 
causes joint cavitation failure [44–46]. While interzone gen-
eration and Gdf5 expression were not altered in this model 
[47], the activation of MAPK signaling and hyaluronan 
synthesis were decreased at the intermediate zone [42, 48]. 
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Similar or severer phenotypes are observed in muscle-less 
mice (known as splotched-delay mutants) [49, 50]. Rolfe 
et al. carried out microarray analyses of muscle-less mice 
and showed associations of molecule signaling pathways 
including the transforming growth factor (TGF)-β superfam-
ily, fibroblast growth factors (FGFs), hedgehogs, and Wnt 
[50]. Although little is known about how mechanical stimuli 
are transduced to intracellular signals, these findings indicate 
that movement, myogenesis, and muscle contraction play 
essential roles in cavitation and the healthy development 
of joints through these representative signaling pathways.

Regulators in the early stages

Growth differentiation factor 5

GDF5, a member of the TGF-β superfamily, was first identi-
fied as the gene responsible for brachypodism in mice that 
show altered skeletal morphology, in particular in distal 

joints [51]. Mutations of the human GDF5 gene causes 
skeletal malformations including brachydactyly [52] and 
chondrodysplasia [53–55], and mutations of its receptor 
BMPR1B also cause brachydactyly [56, 57]. These out-
comes suggest that GDF5 is essential for healthy joint devel-
opment. In the early stages, Gdf5 mRNA is faintly detected 
surrounding the pre-cartilage area, then restricted within the 
interzone with reinforced expression [35, 58–60]. In mice 
with brachypodism, Gdf5 is strongly expressed throughout 
the cartilage anlagen, out of the interzone, which results in 
the fusion of digit joints [59]. These data suggest the role 
of Gdf5 in the generation and maintenance of the interzone. 
While Gdf5 is detected in most synovial joints of limbs, 
some proximal joints like elbow and knee joints are not 
fused in brachypodism mice [61]. This eventuality is likely 
due to compensation by Gdf6, another member of the GDF 
family which is dominantly expressed in proximal joints 
[62]. Indeed, double mutations of Gdf5 and Gdf6 cause 
severe joint deformity which is not observed in each mutant 
[63, 64].
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Fig. 1   Joint formation and articular cartilage development in the early 
stage. The interzone emerges at the presumptive joint site within a 
pre-cartilage tissue. After that, joint cavitation occurs in the center 
of the interzone, and the cells in the interzone and its surroundings 
gradually form articular cartilage and synovial joints. During joint 
development, the interzone cells continuously migrate to the epiphy-
seal cartilage and the surrounding cells influx into the joint region. 
The width of each box indicates the area, where a particular molecule 

is expressed. GDF5 growth differentiation factor 5, BMP bone mor-
phogenetic protein, Ihh Indian hedgehog, FGFR fibroblast growth 
factor receptor, TGF-β transforming growth factor-β, MAPK mitogen-
activated protein kinase, UDPGD uridine diphosphoglucose dehy-
drogenase, HA hyaluronic acid, PTHrP parathyroid hormone-related 
protein, PRG4 proteoglycan 4, Col2a1 type II collagen, (+) positive, 
(−) negative
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Several studies using Gdf5-Cre transgenic mice have 
shown that Gdf5-expressing cell lineage gives rise to 
all mature joint structures including articular cartilage, 
meniscus, ligaments, and synovium [65]. Therefore, 
interzone cells have been considered as progenitors for 
joints over the decades. Interestingly, the Gdf5-lineage 
progeny cells are also detected in subchondral bone as 
osteoblasts and osteocytes [9, 66], while Gdf5 expression 
is gradually down-regulated during joint development and 
diminished until birth [35, 36, 58]. Tsumaki et al. reported 
that Col11a2-Gdf5 transgenic mice, which continuously 
express Gdf5 in chondrocytes, display joint fusion with 
cartilage hyperplasia [67], as shown in brachypodism 
mice. Taken together with the transient expression of 
Gdf5, cell tracking based on the Gdf5-Cre system may 
not reflect the substantial fates of the interzone prog-
eny. Recently, Gdf5-CreERT2 and Cre-dependent reporter 
mice, in which Gdf5-positive ((+)) cells can be labeled 
by tamoxifen administration, have provided novel findings 
[9, 12, 33]. Shwartz et al. demonstrated the embryonic 
stage-specific localization of Gdf5 (+) cells and their fate 
from E10.5 to E18.5 [33]. Gdf5 (+) cells continuously 
influx into the joint region from the surrounding tissues, 
and contrarily, the interzone/early joint cells migrate out 
to the epiphyseal cartilage losing Gdf5 expression [33]. 
Surprisingly, most cells that initially form the interzone do 
not give rise to articular cartilage but to transient cartilage, 
ligaments, and meniscus [33]. Decker et al. demonstrated 
the spatiotemporal distribution of Gdf5 (+) cells up to 
adulthood, and also observed the reciprocal cell migra-
tion between the interzone and the surrounding tissues [9, 
12], as well as the previous report by Shwartz et al. [33]. 
It is now accepted that joint components are formed by 
the integration of peripheral cells in joint development. 
Epiphyseal chondrocytes migrate into the interzone at 
early stages [68], and the external regions of joints such 
as the synovium/joint capsule [69] and outer parts of the 
meniscus [30] are mainly composed of lately integrated 
cells. Thus, the fate of embryonic interzone cells, the sur-
rounding cells, and their progeny cells may be determined 
by their spatiotemporally environment.

Although Gdf5 signaling has chondrogenic effects 
in vivo [67] and in vitro [58, 70–72], Gdf5 is unlikely 
to contribute directly to articular cartilage development, 
because the diminishment of Gdf5 expression is significant 
before articular cartilage appearance and some joints in 
brachypodism mice have normal articular cartilage [33, 
61]. In adulthood, Gdf5 may be associated with homeo-
stasis of the articular cartilage, because genome-wide 
association studies have revealed that GDF5 is one of the 
susceptible genes for osteoarthritis [73–75]; however, its 
role in adult articular cartilage remains unclear.

Wnt signaling

Wnt4, Wnt9a, and Wnt16 are expressed in the interzone and 
flanking areas at the early stages, before or simultaneously 
with Gdf5 expression in the interzone [31, 37, 49, 60, 76, 
77]. The canonical Wnt signaling potently suppresses chon-
drogenesis of the limb bud mesenchymal cells in vitro [60, 
70, 77, 78]. Several gain-of-function studies suggest that the 
canonical Wnt signaling provides cells with the interzone 
phenotype upstream of Gdf5 by suppressing chondrogen-
esis [60, 76]. Meanwhile, loss-of-function studies indicate 
that joint development is achieved in Wnt ligands knockout 
mice [77–79]. Spater et al. report that the deletion of Wnt9a 
does not affect the expression of joint markers, but causes 
ectopic chondrogenesis-like synovial chondromatosis in 
some joints, which is enhanced by the additional deletion of 
Wnt4 [77, 78]. The conditional knockout (cKO) of β-catenin 
using Col2a1-Cre or Gdf5-Cre slightly affects joint develop-
ment [70, 80–82], while Guo et al. report the fusion of the 
wrist or knee in cKO using Col2a1-Cre or Dermo1-Cre, 
respectively [76]. These data should be carefully discussed, 
because alteration of the canonical Wnt signaling itself 
impairs chondrocyte differentiation and endochondral ossi-
fication [23, 77–79, 83].

Actual activity of the canonical Wnt signaling can 
be monitored using TOPGAL, a reporter containing a 
β-galactosidase gene under the control of LEF/TCF and 
β-catenin inducible promoter [84]. Yamagami et al. demon-
strate that signaling activity is not detected in the interzone 
of the elbow and shoulder at E12.5–E14.5, whereas Wnt4 
transcripts are detected there [85]. Kahn et al. show that 
Wnt4 and Wnt9a are predominant in the interzone of the 
elbow at E13.5, but TOPGAL activity is obscure [49]. The 
strong TOPGAL signal is observed in the cartilage anla-
gen at this stage, rather than in the interzone [49, 70, 85]. 
Although it is still controversial, WNT4 possibly inhibits 
canonical Wnt signaling [86, 87]. The role of Wnt in joint 
development is conflicting amongst reports, because Wnt 
ligand expression, their target cells, and their signaling path-
ways are complicated.

Besides these effects in the early stages of joint develop-
ment, canonical Wnt signaling plays another role in speci-
fying the superficial zone (SFZ) of the articular cartilage 
during the late phase. The SFZ is responsible for joint lubri-
cation by producing lubricin (encoded by the Proteoglycan 
4 (Prg4) gene) [88]. Koyama et al. report that flattened cells 
in the SFZ disappear and Prg4 expression is decreased in 
β-catenin cKO mice in Col2a1 (+) or Gdf5 (+) lineages [70]. 
Yasuhara et al. also showed a reduced number of SFZ cells 
and Prg4 expression in the articular cartilage of 7-week-old 
Col2a1-CreERT;β-cateninfl/fl mice which received tamox-
ifen administration at P7 [81]. The articular cartilage of the 
cKO mice has no stratified structure and is homogenously 
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composed of chondrocyte-like round cells [81]. Yamagami 
et al. monitored TOPGAL activity in joints during develop-
ment up to adulthood [85]. After joint cavitation, surface 
cells facing the cavity exhibit strong signal activity, which 
is observed until P7. The LacZ-positive cells are reduced 
in the articular and epiphyseal cartilage at P10 and eventu-
ally, are rarely found there at P50. Taken together, canonical 
Wnt signaling is less essential for the interzone/early joint 
development but orchestrates the integrity of joint formation 
through anti-chondrogenic effects in the SFZ of the articular 
cartilage.

Indian hedgehog—parathyroid hormone‑related 
protein

Cartilage templates and early joints influence each other 
via paracrine signaling. Indian hedgehog (IHH) and para-
thyroid hormone-related protein (PTHrP) signaling have 
been intensively studied. IHH is widely involved in both 
the proliferation and differentiation of chondrocytes during 
endochondral development [89–91]. IHH is produced from 
pre-hypertrophic chondrocytes and up-regulates PTHrP 
expression in peri-articular chondrocytes [92, 93]. PTHrP 
inhibits the differentiation of proliferating chondrocytes into 
pre-hypertrophic chondrocytes [94–96]. This feedback loop 
determines the length of long bones [97]. Before the feed-
back loop, pre-hypertrophic chondrocytes around the center 
of anlagen are associated with interzone generation through 
the secretion of IHH. The loss of IHH causes not only dwarf-
ism but also joint fusion in distal limb joints [89, 98]. In Ihh 
deficient mice, the interzone is absent or markedly hypoplas-
tic [98]. Gdf5 (+) cells are observed at prospective joint sites 
in mutants, but they flank and surround uninterrupted joint 
sites [98]. The authors conclude that Ihh is indispensable 
for the recruitment and immigration of flanking cells into 
the interzone [99].

Ihh expression is initially detected in the ossification 
center, where cells first have pre-hypertrophic phenotypes 
and then undergo the endochondral ossification process. 
Although Ihh itself is not expressed in the presumptive joint 
sites [78, 89], Patched-1, a receptor of the IHH ligand, has 
been detected around the interzone and cartilage anlagen 
[78, 89, 100]. Gli1 and Gli3, major downstream transcription 
factors of IHH signaling, are expressed around the inter-
zones and joints in the early stages [57, 59, 80, 98, 100, 101]. 
Gli3 knockout mice exhibit a malformation of phalanges and 
irregular joint shapes [101, 102]. Thus, the IHH signaling 
pathway regulates joint morphogenesis [103], and the car-
tilage anlagen contribute to development of the interzones 
and joints through secretion of IHH.

In addition to these spatial features of IHH-related mol-
ecules, the regulation of joint formation by IHH signaling 
is probably transient, since Patched-1 expression around 

the interzone is observed only from E12.5 to E13.5 in the 
elbow joints [89]. When IHH signaling is continuously 
activated in chondrocytes, Gdf5 (+) cells do not migrate 
into the interzone and joints are fused [80]. Furthermore, 
excessive IHH signaling activity in the interzone progeny 
induces ectopic cartilage formation in the knee [104]. Nota-
bly, joint morphology is not changed even when IHH sign-
aling is disrupted in the interzone progeny (Gdf5-Cre;Smo 
fl/fl) [104], contrary to the severe deformity of forelimb joints 
in Col2a1-Cre;Smofl/fl [91]. Zhou et al. demonstrate that 
Ihh deletion in adult articular cartilage does not alter joint 
phenotype. Instead, it attenuates osteoarthritis progression 
[105]. Other studies have also shown the association of IHH 
with osteoarthritis [106–108]. Taken together, the data sug-
gest that IHH signaling is possibly less essential after inter-
zone specification during joint development.

Unlike in endochondral ossification, IHH and PTHrP 
seem to be independent in interzone generation and joint 
development. The genetic alteration of PTHrP causes the 
impairment of endochondral ossification, but no severe 
changes in joints [94–96, 109, 110]. Even after IHH signal-
ing becomes silent, PTHrP-expressing cells exist in articu-
lar cartilage over a lifetime [110–112]. Recombinant human 
PTH (1–34) suppresses osteoarthritis development [113], 
and PTH/PTHrP signaling induces lubricin [114]. PTHrP 
possibly contributes to the postnatal development and home-
ostasis of articular cartilage.

Bone morphogenic protein signaling—Noggin

BMP signaling plays a central role in both chondrogene-
sis and osteogenesis [115]. Mice lacking Smad1, 5, and 8 
canonical mediators of BMPs display severe chondrodys-
plasia both in appendicular and vertebral skeletons [116]. 
In addition to Gdf5, Bmp2 and Bmp4 are expressed in the 
interzone [34, 38, 65, 80, 117]. Although it has not been 
fully revealed, BMP and IHH signaling possibly regulate 
each other in the early stages [80, 89, 91, 116, 118]. Once 
the interzone is specialized, BMP signaling is negatively 
regulated. The phosphorylation of Smads are not observed 
in the presumptive joint site before cavitation, unlike in the 
adjacent epiphyseal cartilage [68, 119, 120]. Noggin and 
chordin, the BMP antagonists, contribute to this process. 
They directly bind to BMP2 [121], BMP4 [122], and GDF5 
[35]. The expression pattern of these antagonists depends 
on the location of joints and species [31, 118, 123]. The 
mRNA of noggin is detected in the cartilage anlagen and 
temporally in the interzone [31, 37, 38, 69, 117, 124]. 
Chondrocyte-specific noggin transgenic mice display a 
marked impairment of skeleton formation [67], and nog-
gin knockout causes the remarkable hyperplasia of cartilage 
templates lacking in articular cartilage [125, 126]. Similar 
phenotypes are observed in Col2a1-Cre; Nogginfl/fl mice or 
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noggin antibody-injected chick embryos [68]. In humans, 
missense mutations of GDF5 cause synostosis, because the 
GDF5 mutants become insensitive to noggin [127]. Thus, 
noggin in the interzone contributes to the joint formation by 
antagonizing the chondrogenic effect of GDF5 [35, 36, 58].

As described above, the loss of embryo movement causes 
joint fusion. Notably, phosphorylated Smad1/5/8-positive 
cells are detected in the fused regions of paralyzed chick 
embryos and muscle-less mice [68, 119]. Considering that 
BMP signaling is regulated by the balance between ligands 
and antagonists, it is expected that the up-regulation of BMP 
ligands or down-regulation of BMP signaling by noggin or 
chordin may occur here. However, in the fused joints of mus-
cle-less mice, noggin expression is up-regulated [49]. Singh 
et al. show that noggin expression is not altered and Bmp4 
expression is down-regulated both in immobilized chicks 
and mice [119]. The interaction between mechanical loading 
and BMP signaling is not currently revealed.

After joint cavitation, noggin expression is converged 
within the epiphyseal cartilage and prevents diffusion of 
the BMP ligands from the hypertrophic chondrocytes and 
ossification center to the joint region [38, 68, 70, 117, 119]. 
Additionally, another BMP antagonist, gremlin 1, is asso-
ciated with the regulation of BMP signaling after birth to 
adulthood [128–130]. BMP signaling and its various modu-
lators are involved in the development, homeostasis, and 
pathophysiology of joints.

Transforming growth factor‑β

TGF-β signaling plays a substantial role in the homeosta-
sis of articular cartilage [131–133]. TGF-β ligands bind to 
TGF-β type II receptor (Tgfbr2), which leads to TGFβ type 
I receptor recruitment. This heterodimer complex activates 
intercellular signaling cascades, such as Smad2/3 or Smad-
independent pathways. Age-related decreases of TGF-β 
signaling in chondrocytes, partially caused by the decreased 
expression of their receptors, is associated with cartilage 
degeneration [132, 134]. Currently, the intraarticular admin-
istration of human chondrocytes transduced with a viral vec-
tor containing the gene for Tgf-β1 transcription is undergo-
ing a clinical trial for the treatment for osteoarthritis [135].

The role of TGF-β signaling in joint development is also 
prominent [136, 137]. The deletion of Tgfbr2 in the early 
mesenchyme (Prx1-Cre) results in the inhibition of interzone 
appearance in phalanges [36, 37]. Accordingly, the Gdf5 
(+) lineage cannot enter into putative sites for the interzone 
in Prx1-Cre;Tgfbr2 fl/fl mice [36, 37], similar to Ihh null 
mice [98]. Furthermore, TGF-β signaling exerts suppres-
sive effects against chondrogenesis in limb bud culture [36] 
as well as Wnt/β-catenin signaling [76, 80]. As mentioned 
previously, the generation of the interzone requires the inhi-
bition of chondrogenesis within the pre-cartilage anlagen, 

where BMP signaling is activated. BMP and TGF-β signal-
ing share a co-mediator, Smad4, which triggers the nuclear 
translocation of the Smad complex. Therefore, this competi-
tion may be significant in interzone formation. Smad4 dele-
tion in the early mesenchyme causes the severe impairment 
of limb development, including joint creation [138, 139], 
whereas in chondrocytes, it predominantly affects endo-
chondral ossification accompanied with less alteration of 
the joints [140].

Expression analyses have also provided significant evi-
dence. Spagnoli et al. show that Tgfbr2 positive cells were 
detected explicitly in the interzone from E12.5 to E16.5 
using Tgfbr2 reporter transgenic mice [37]. Apart from the 
transient expression in the interzone, Tgfbr2 expression is 
sustained in the joints and surrounding tissues until adult-
hood [69]. Joint intima including the perichondrium, syn-
ovium, enthesis, and articular cartilage surfaces in knees 
are expressed in neonates, while the epiphyseal cartilage 
is not [69]. These findings may support the hypothesis that 
articular and growth plate cartilage are derived from differ-
ent cell sources [70].

Fibroblast growth factor 18/fibroblast growth factor 
receptor 3 signaling

FGF18 is among the FGF family members involved in articu-
lar cartilage. Fgf18 null mice die in the early neonatal period 
and display impaired skeletal development [141–143]. Muta-
tions of its receptor FGFR3 also cause severe dwarfism and 
achondroplasia in mice and humans [144–146]. Thus, it is 
evident that FGF18/FGFR3 signaling is indispensable for 
skeletogenesis. FGFR3 expression is found in differentiating 
chondrocytes [142, 147–149], whereas FGF18 is secreted 
from the perichondrium [142, 150]. This interaction is one 
of the characteristic findings indicating that the morphology 
of the cartilage template is determined by the perichondrium 
[151, 152]. FGF18/FGFR3 signaling induces chondrogen-
esis from the limb mesenchyme in vitro [153], suppresses 
the proliferation and hypertrophy of growth plate chondro-
cytes in vivo [142, 143, 154, 155], and partially regulates 
subsequent osteogenesis [142–144, 154, 156].

FGF18 transcripts can be detected in the interzone cells 
[142, 143]; however, its role is unknown, because most 
Fgf18 null limb joints are unaffected [141–145]. Generally, 
FGF18/FGFR3 signaling seems to be deeply associated with 
IHH-PTHrP and the canonical Wnt signaling. Gain-of-func-
tion of FGFR3 signaling leads to the decreased expression 
of Ihh ligands and Pthrp receptors [93, 157, 158]. Postna-
tal chondrocyte-specific Fgfr3 deletion induces multiple 
chondroma-like lesions adjacent to the disordered growth 
plates by the up-regulation of Ihh signaling [159]. On the 
other hand, the constitutive activation of IHH signaling 
decreases Fgf18 expression and subsequent ectopic cartilage 
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hyperplasia in joints [104]. Furthermore, the hedgehog-
induced phenotypes are rescued by the stabilization of 
β-catenin or treatment with FGF18 [104]. Interestingly, 
Fgf18 is a direct transcriptional target of canonical Wnt sign-
aling [160, 161]. Considering these findings, FGF18 may be 
involved in joint generation by mutually affecting the Ihh/
PTHrP and the canonical Wnt signaling.

Adult articular chondrocytes also express FGF18 and 
FGFR3 [153, 162]. Mori et al. report that Fgf18 is domi-
nantly expressed in articular cartilage compared with growth 
plate cartilage, both in infant and adult rats [163]. Fgfr3 
knockout results in early osteoarthritis [164] with enhanced 
Ihh signaling [165, 166]. It is currently accepted that FGFR3 
signaling exerts anabolic effects in healthy articular carti-
lage, while FGFR1 signaling exerts catabolic effects in 
articular chondrocytes [167]. Indeed, FGF2, a representative 
FGFR1 ligand, is up-regulated [168], and FGFR3/FGF18 is 
down-regulated in osteoarthritis cartilage [162, 169]. The 
therapeutic effects of FGF18 have been validated in various 
studies [163, 166, 170–172], and a clinical trial using recom-
binant human FGF18 for osteoarthritis is ongoing [135].

Late stages of articular cartilage 
differentiation

Interzone and joint development are regulated by various 
factors and signaling pathways as described above. Some of 
them may be dispensable during the specification of articu-
lar cartilage. Indeed, Gdf5, Wnt9a, Ihh, Bmp, and noggin 
disappear in the late stages of joint development [24, 34, 
70]. Instead, the expression of structural proteins such as 
lubricin, tenascin-C, CD44, and type II collagen, which con-
tribute to smooth movement and loading, becomes marked 
during differentiation toward adult articular cartilage [34, 
70]. TGF-βs, FGF18, and PTHrP are continuously expressed 
from the interzone cells to matured articular chondrocytes, 
implying their extensive roles in articular cartilage. Cur-
rently, they all are considered as potential therapeutic agents 
for osteoarthritis [135].

Kozhemyakina et al. identify Prg4 (+) cells in the SFZ as 
articular cartilage progenitors [173]. When Prg4 (+) cells 
are labeled at E17.5, their progeny cells compose all layers 
of articular cartilage in adulthood [173]. Even in 1-month-
old mouse cartilage, Prg4 (+) cells slowly expand to the 
entire cartilage layers above the tidemark in 1 year [173]. 
Meanwhile, Decker et al. recently showed that articular car-
tilage is thickened mainly by zone-specific increases in cell 
volume in the late stage, and that cell proliferation or death 
plays a minor role [12]. Neonatal peri-articular chondrocytes 
actively proliferate, but underneath chondrocytes do not 
[12]. Although it is widely known that cell turnover is mark-
edly suppressed and much less essential for the homeostasis 

of articular cartilage, it is surprising that the proliferation of 
articular chondrocytes is almost undetected in 2-week-old 
mice [12]. The peri-articular cartilage at this age contains 
fewer glycosaminoglycans, which are abundant in the under-
neath cartilage templates [12, 23, 110, 174]. These data may 
indicate that articular cartilage is not a residual of a carti-
lage template, rather it is newly formed by articular chon-
drocytes. Although whether the articular chondrocytes are 
derived from the interzone or the cartilage template is still 
controversial, joint components are probably constructed by 
the influx and efflux of cells during development [12, 33].

Regulators in the late stage

Lubricin

Lubricin, encoded by Prg4, is one of the major compo-
nents of the synovial fluid, which is produced from syn-
oviocytes and articular chondrocytes [175, 176]. Lubricin 
is responsible for joint lubricity [177, 178], and its expres-
sion is decreased in osteoarthritis [179, 180]. Exogenous 
lubricin injection is a promising treatment for osteoarthri-
tis [181–183]. Prg4 expression is observed at the inception 
of joint cavitation and becomes intense during cavitation 
[88, 184]. Even after development, lubricin is dominantly 
expressed in the surface cells of the synovium and articular 
cartilage [88, 185]. Several factors, including mechanical 
loading, PTHrP, and TGF-β have been identified as upstream 
regulators of Prg4 [114, 186, 187]. The transient activation 
of the canonical Wnt signaling up-regulates SFZ cell growth 
and Prg4 expression, and its deletion impairs SFZ develop-
ment along with Prg4 down-regulation [70, 81]. Meanwhile, 
the deletion of Prg4 in mice does not alter skeletal develop-
ment in the neonatal period, and gradually causes abnormal-
ity at the surface of the articular cartilage with the deposition 
of an acellular layer with aging [88, 177, 188]. Although 
Prg4 is detected at the joint cavitation, it is likely less critical 
during joint formation and contributes to articular cartilage 
homeostasis.

Notch

Notch signaling regulates many asymmetric cellular devel-
opments via binding cell surface ligands (Jagged1, 2, Delta-
like 1, 3, 4) and receptors (Notch1–4), whereby Notch intra-
cellular domain (NICD) translocates into the nucleus and 
activates their downstream genes including Hes/Hey family 
members in concert with co-transcriptional regulator RBPjκ 
[189, 190]. In development, cells interfere with neighbor 
cells via Notch signaling, which yields cell diversity from a 
homogenous population. Notch signaling inhibits chondro-
genesis in the early stage mesenchyme. Rbpjκ deletion in 
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the limb mesenchyme enhances chondrogenesis, and NICD 
overexpression in chondrocytes severely impairs skeletal 
development [191, 192]. Moreover, notch signaling also 
regulates the survival, proliferation, and differentiation of 
chondrocytes during the endochondral ossification process 
via the RBPjκ-independent pathway [152].

In contrast to its robust role in endochondral ossifica-
tion, Notch signaling is dispensable for joint formation 
and articular cartilage development. Joint structure and 
articular cartilage are almost normal in Rbpjκ cKO mice 
using Prx1-Cre and Col2a1-Cre [192, 193]. In the matu-
ration and homeostasis of articular cartilage, the role of 
Notch signaling is controversial. Mirando et al. show that 
the chondrocyte-specific deletion of Rbpjκ at 1 month of 
age leads to a progressive osteoarthritis-like pathology in 
the subsequent course with aging [193], while Hosaka et al. 
demonstrate that the chondrocyte-specific deletion of Rbpjκ 
at 7 weeks suppresses osteoarthritis development in a surgi-
cally induced mouse model [194]. Furthermore, the up-reg-
ulation of Notch signaling in adult articular cartilage induces 
osteoarthritis [195]. Notably, Notch expression is detected 
in the SFZ cells of articular cartilage, which are considered 
a cartilage progenitor [184, 196, 197]. Notch expression and 
positive cells respond to osteoarthritic change with activa-
tion and altered distribution [184, 194, 198]. Considering 
that Notch is expressed in the SFZ and that articular car-
tilage homeostasis is disturbed when Rbpjκ is deleted at 
2–4 weeks [193, 199], Notch signaling may be involved in 
the final differentiation or maturation of articular cartilage.

Conclusion

In this review, we introduced crucial factors involved in joint 
and articular cartilage development. Molecular mechanisms 
underlying endochondral ossification and joint specification 
have been well studied over decades. Additionally, articular 
cartilage homeostasis and the pathophysiology of osteoar-
thritis have been a research focus in recent years. On the 
other hand, molecules, signaling pathways, and cells that 
regulate the late stage differentiation and maturation of 
articular cartilage remain obscure. Furthermore, articular 
cartilage development in humans may be entirely different 
from mice, where articular cartilage is thinner and multi-
layered. These issues may be obstacles to clinical application 
of the findings mentioned in this review.
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