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Abstract
Rab18 is one of the small number of conserved Rab proteins which have been traced to the last eukaryotic common ancestor. 
It is found in organisms ranging from humans to trypanosomes, and localizes to multiple organelles, including most notably 
endoplasmic reticulum and lipid droplets. In humans, absence of Rab18 leads to a severe illness known as Warburg-Micro 
syndrome. Despite this evidence that Rab18 is essential, its role in cells remains mysterious. However, recent studies iden-
tifying effectors and interactors of Rab18, are now shedding light on its mechanism of action, suggesting functions related 
to organelle tethering and to autophagy. In this review, we examine the variety of roles proposed for Rab18 with a focus on 
new evidence giving insights into the molecular mechanisms it utilizes. Based on this summary of our current understand-
ing, we identify priority areas for further research.
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Introduction

Rab18 was first identified by Chavrier et al. from a partial-
length clone [1] and Yu et al. [2] from a full-length clone 
from a mouse pituitary cDNA library. Yu [2] established that 
mRNAs were found in a wide range of tissues and cell lines. 
Rab18 was initially believed to associate with endocytic 
structures and, in polarized epithelial cells, was localized 
to membranes near the apical surface [3]. However, sub-
sequent studies suggested roles for Rab18 in various other 
locations including: the Golgi apparatus [4, 5], the endoplas-
mic reticulum [5–7] and lipid droplets [6, 8] (Fig. 1). Other 
studies have provided a confusing abundance of evidence 
for even more roles for Rab18: in regulated secretion [9], in 
autophagy [10], and even in pathogen-induced reorganiza-
tion of the endocytic pathway [11] (Fig. 1).

Recently, a number of studies have identified poten-
tial interaction partners of Rab18 and started to suggest a 
molecular role for this protein, particularly as related to the 

endoplasmic reticulum and lipid droplets. While these stud-
ies have employed different model systems, and have shown 
less overlap than could be hoped, for the first time there are 
concrete clues to the molecular mechanisms by with Rab18 
operates. Furthermore, an inherited disease of humans, War-
burg-Micro syndrome, characterized by a characteristic set 
of disorders, including mental retardation and development 
of cataracts during childhood [12], is caused by inactivation 
or misregulation of Rab18 [13]. Thus, concrete evidence 
now exists that Rab18 plays a crucial role in human develop-
ment, yet the nature of the crucial pathways that fail in the 
absence of Rab18 are still unclear.

This review will summarize what is currently known 
regarding the mechanisms by which Rab18 may operate. 
Substantial progress has been made in identifying its inter-
action partners and sites of action. However, experiments 
have been carried out in a variety of cellular systems, and 
some of the recent literature is contradictory. Thus, there 
are important unsolved questions requiring further research.

The Rab family of small GTPases

Rab18 is a member of the Rab family of small GTPases 
within the Ras superfamily. The Rab family consists of 
60 + proteins in humans, many of which have been found to 
localize to specific organelles [14]. Like other Ras-family 
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proteins, Rab proteins are small GTPases, which typically 
act as molecular switches [14, 15]. When bound to GTP, a 
“switch” domain is exposed which can bind to interacting 
proteins referred to as effectors [16]. When GTP is hydro-
lyzed, the GDP remains bound, but a conformational change 
hides the switch domain, terminating interaction with effec-
tors. Intrinsic rates of GTP hydrolysis are typically low 
(hours to days [17, 18]), but GTP hydrolysis is normally 
triggered by interactions with GTPase activating (GAP) pro-
teins [14]. GTP exchange proteins (GEFs) activate Rabs by 
causing release of GDP and its replacement by cytoplasmic 
GTP [14]. An additional important factor in the GTP cycle 
of Rabs is that it is correlated with membrane association. 
Most Rabs are prenylated, and have fatty acids covalently 
attached to their carboxy-terminus (reviewed in [19]). This 
facilitates membrane association in the GTP state. While 
in the membrane, Rabs in the GTP form recruit multiple 
effector proteins (roughly thirty known effectors in the case 
of Rab5). These effectors can have various functions includ-
ing: membrane tethering and fusion, modifications of mem-
brane lipids, interactions with microtubule motors, and even 
recruitment or down-regulation of other Rabs (reviewed in 
[14]). Rab proteins are inactivated by GAPS, some of which 
also have effector functions [14]. After GDP hydrolysis, a 
protein called Rab-GDI extracts Rab-GDP from intracel-
lular membranes [20, 21]. Interaction with GEF proteins 
is normally required for reinsertion into membranes [14].

While there appears to be only a single Rab-GDI, there 
are many GEF and GAP proteins with varying degrees of 
specificities to different Rabs. At least 40 Rab GEFs belong-
ing to several different classes have been identified in human 
cells (reviewed in [22]), while 44 Tre2-Bub2-Cdc16 (TBC) 

domain containing proteins are believed to act as GAPs 
(reviewed in [23]). One GAP not in the TBC family (Rab-
3GAP) has also been identified ([23, 24]). Rab3GAP acts 
as a GAP for Rab3, but, importantly, also has GEF activ-
ity for Rab18 [25]. Mutation of Rab3GAP, another GAP 
(TBC1D20) or Rab18 results in Warburg-Micro syndrome 
[26]. As GEFs have only been identified with specificity for 
about half of human Rab proteins [22], the existence of a 
substantial number of unidentified Rab GEFs is likely. There 
is strong evidence that Rab GEFs play an important role in 
controlling the specificity of Rab localization to membranes 
since relocating any of several Rab GEFs to mitochondria 
resulted in abnormal mitochondrial localization of their sub-
strate Rabs [27].

Warburg‑Micro syndrome

Warburg-Micro syndrome [12] and the similar but less 
severe Martsolf syndrome [28] are genetic diseases that 
can be caused by mutations in Rab18 [26], either subunit 
of Rab3GAP (Rab3GAP1 [29], or Rab3GAP2 [30, 31]) or 
in another Rab GAP, TBC1D20 [31]. A similar syndrome 
has been recapitulated in mouse models in which Rab18 
[31] or TBC1D20 [31] have been knocked out. Rab3GAP 
functions as a GEF for Rab18 [25], while TBC1D20 shows 
GAP activity for Rab18 [13] (Fig. 2). These data strongly 
suggest that the primary defect in cases of Warburg-Micro 
syndrome is absence or disregulation of Rab18. Together, 
these mutations account for about 50% of cases of the dis-
ease, suggesting that there may be other undiscovered causa-
tive mutations.

Fig. 1   Some reported func-
tions of Rab18. Each of these 
functions is described at greater 
length in the main text
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Symptoms of Warburg-Micro syndrome present at a very 
early age and include severe mental retardation, absence of 
the corpus callosum, hypogenitalism and multiple ocular 
problems, most notably congenital cataract, microcornea 
and atrophy of the optic nerve [12]. Martsolf’s syndrome 
is similar, but milder [28]. Current thinking is that the two 
syndromes represent the ends of a spectrum: Warburg-Micro 
syndrome results from a severe deficit of Rab18 activity, 
while Martsolf’s syndrome results from milder or partial 
deficits.

Part of the collection of disorders reflected in Warburg-
Micro syndrome could reflect indirect effects of Rab18, lead-
ing to cascading effects on the complex processes involved 
in development. However, Wu et al. [32] found evidence 
for a direct role for Rab18 in regulation of neuronal migra-
tion. They found that knockdown of Rab18 with shRNAs 
resulted in impaired radial migration of cortical neurons. In 
these cells, lysosomal degradation of N-cadherin was accel-
erated. N-cadherin is essential for development of the cer-
ebral cortex [33, 34]. These results suggest a direct role for 
Rab18 in brain development, possibly involving regulation 
of N-cadherin targeting to the cell surface. Other evidence 
for intracellular roles for Rab18 comes from a mouse model 
of Warburg-Micro syndrome in which Rab18 was deleted. 
These cells show abnormal lipid droplet formation, with 
many small LDs and a small number of “supersized” LDs 
[35] consistent with results of siRNA knockdowns of Rab18 
in cultured cells [36].

It has been noted that one of the cell types most affected 
in Warburg-Micro syndrome, the cells that form the lens 
fibers of the eye, are unusual in that they eliminate most of 

their intracellular organelles as part of their differentiation 
process. There is evidence that autophagy plays an impor-
tant role in the development and maintenance of lens tissue 
and prevention of cataract (reviewed in [37]). The initial 
removal of organelles still occurred in mice with lens-spe-
cific Atg5−/− knockdown, suggesting differentiation of fiber 
cells did not absolutely depend on autophagy. However, 
the mice proceeded to develop severe cataracts, suggest-
ing autophagy was important for maintenance of the lens 
[38]. As Rab18 has been proposed to participate in some 
autophagic processes, this could suggest that failure or dys-
regulation of some forms of autophagy could play a role in 
Warburg-Micro syndrome.

Regulation of the Rab18 GTP cycle

Rab3GAP is the best-established interaction partner of 
Rab18, with multiple lines of evidence from many inde-
pendent studies supporting the relationship. Mutations in 
either subunit of Rab3GAP or of Rab18 produce similar 
phenotypes in the form of Warburg-Micro syndrome [26, 29, 
30]. Further, Rab3GAP has been shown to directly associ-
ate with and to function as a GTP exchange factor (GEF) 
activity for Rab18 [25]. Like Rab18, there is evidence that 
Rab3GAP plays a role in a diversity of locations, including 
endoplasmic reticulum [25], the Golgi apparatus [39], secre-
tory vesicles [40], autophagosomes [39] and lipid droplets 
[10].

Rab3GAP was identified originally as a GAP for Rab3 
[24, 41], which plays a role in regulated secretion. It consists 

Fig. 2   Schematic showing the major known players in the Rab18 GTP cycle
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of two associated polypeptide chains, the catalytic subunit 
Rab3GAP1, and the non-catalytic subunit Rab3GAP2. In 
humans, mutations in either subunit [29, 30] can result in 
Warburg-Micro syndrome. Gerondopoulos [25] reported that 
mutations in Rab3GAP (T18P and E24V in Rab3GAP1 and 
R426C in Rab3GAP2) had no effect on GAP activity for 
Rab3a or 3b. However, these mutations severely disrupted 
GEF activity towards Rab18. Phylogenetic analysis sug-
gests that Rab3GAP1 evolved before Rab3. Rab3GAP1 is 
common to a range of organisms, including vertebrates, C. 
elegans [39], Drosophila melanogaster [42] and the marine 
alga Ostreococcus tauri [43]. However, Rab3 is not found 
in plants, but is specific to metazoans, and may have arisen 
from a gene duplication of Rab8 during the evolution of neu-
rotransmitter release [44]. Since Rab18 is believed to have 
been present in the last eukaryotic common ancestor [44], 
and is also present in a wide range of eukaryotes including 
vertebrates and C. elegans [10], D. melanogaster [45] and 
Trypanosoma cruzi [4, 46], it is plausible that Rab3GAP1 
evolved initially as an exchange factor for Rab18.

A study by Spang et al. conducted in human primary 
fibroblasts has suggested that Rab3GAP plays a role in 
autophagy [39]. They reported that siRNA directed against 
both subunits of Rab3GAP reduced LC3 cleavage and 
autophagosome formation after autophagy was induced in 
human primary fibroblasts by rapamycin treatment. Interest-
ingly, Atg5 punctae were accumulated, suggesting Rab3GAP 
plays a role in autophagy at an early stage, but subsequent 
to the recruitment of Atg5 [39]. Inactivation of exchange 
activity by the mutation R728A, which blocks GAP activ-
ity for Rab3 abrogated rescue. However, they reported that 
simultaneous knockdown of all Rab3 isoforms (Rab3a, 3b, 
3c, and 3d) had no effect on autophagy [39], suggesting that 
Rab3GAP’s role in autophagy was independent of Rab3. 
Subsequent work by the same group favored the idea that 
Rab3GAP functioned by regulation of Rab18 instead [10], 
and they provided evidence that the roles of Rab18 and Rab-
3GAP in autophagy were interrelated [10].

Independent of its role on secretory granules as a GAP 
for Rab3, Haines et al. provided evidence that Rab3GAP 
interacts with the mannose-binding protein ERGIC-53 [47] 
which is localized to the endoplasmic reticulum, to ER-
Golgi intermediate compartment (ERGIC), and to the cis-
Golgi network [48, 49]. This interaction between Rab3GAP 
and ERGIC-53 was dependent on the p97 adaptor protein 
UBXD1 [47]. The significance of this finding is unknown. 
Hanes speculated that Rab3GAP and UBXD1 could modu-
late trafficking of a minor proportion of ERGIC-53 to the 
cell surface [47]. However, Rab18 is also found on the 
endoplasmic reticulum [5, 6], and has some role along with 
Rab3GAP in maintaining ER structure [25]. Martin et al. 
[6] reported that some Rab18 was on vesiculotubular struc-
tures associated with endoplasmic reticulum. They raised 

the possibility these could be abnormal structures induced 
by overexpression of Rab18, however association of Rab18 
with ERGIC was not ruled out. More detailed studies of 
the early secretory pathway in the absence of Rab18 could 
prove insightful.

Li et  al. [50] provided evidence that the TRAPPII 
complex could function as an alternate GEF for Rab18 in 
HEK293 cells. They reported that activity of TRAPPII was 
required to recruit Rab18 to LDs, and that Rab3GAP was 
found on ER, but not on LDs. This contrasts with Spang 
and Feldmann [10, 39], who reported in two related studies 
that Rab3GAP both associated with LDs and was required 
for recruitment of Rab18 to LDs. More research will be 
required to address this discrepancy, but it is possible that 
the mechanism of Rab18 recruitment to LDs could depend 
on cell type or on the metabolic state of the cell. Notably, 
Spang and Feldmann induced autophagy using starvation 
and rapamycin [10, 39].

TBC1D20 is the only GAP yet identified for Rab18 
although it shows only weak GAP activity for Rab18 in vitro 
[51], while showing strong GAP activity for Rab1. However, 
multiple lines of evidence identify it as physiologically rel-
evant. First, mutations in TBC1D20 which impair its GAP 
activity have been shown to cause Warburg-Micro syndrome 
in humans [51], and in a mouse model [51]. TBC1D20 par-
ticipates in processes suspected to involve Rab18 including 
autophagosome maturation [52] and replication of hepatitis 
C virus [53]. In another study, Handley et al. found that 
mutations in TBC1D20 resulted in redistribution of Rab18 
from other organelles to ER [13], suggesting that TBC1D20 
GAP activity may regulate the intracellular localization of 
Rab18. It is unknown whether other proteins show GAP 
activity for Rab18, and whether it might interact with dif-
ferent GAP proteins on different organelles. If so, accumula-
tion of Rab18 on ER could lead to depletion elsewhere, and 
explain how mutations in a GAP protein could mimic the 
effect of Rab18 knockdown. More research on the molecu-
lar role and intracellular distribution of TBC1D20 will be 
required.

Association of Rab18 with endoplasmic 
reticulum and with lipid droplets

Most groups studying Rab18 have identified a proportion of 
it localized to ER (e.g., [5, 6, 25]). Rab3GAP is also found 
localized to ER in cells [25], as is TBC1D20 [54], suggest-
ing the presence of some Rab18-related regulatory proteins 
on ER. Interestingly, an analysis of the Rab proteins present 
within the last eukaryotic common ancestor (LECA) found 
20 Rab proteins in six groups [44]. Rab18 was already found 
as a distinct Rab in the LECA, suggesting an ancient ori-
gin, and the ancestral Rab18 was proposed to originate in 
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a pre-LECA organism, from Rab1 via a gene duplication 
event. Rab1 has functions associated with ER exit in most 
eukaryotes [44], and this could suggest an ancestral function 
for Rab18 related to the endoplasmic reticulum.

In humans, the ancestral Rab18 has undergone addi-
tional duplications, generating a family of proteins, includ-
ing Rab18, and a small family of similar proteins: Rab40a, 
Rab40b, and Rab40c [44]. The functions of the Rab40 
family of proteins are unclear. Rab40b may have a role in 
the production of invadopodia [55]. Interestingly, Rab40c 
has been reported to associate both with LDs and with ER-
derived structures, similarly to Rab18 [56, 57], and deletion 
of Rab40c or overexpression of the protein DAB2IP, which 
shows GAP activity towards Rab40c results in increased LD 
accumulation [57]. Rab40c has also been reported to medi-
ate clustering of LDs [56]. This suggests that some ances-
tral functions of Rab18 might be distributed, or potentially 
redundant with the Rab40 proteins. However, this will only 
become clear with more research.

Ozeki et al. proposed, based on electron microscopic 
evidence, that Rab18 mediated attachment of LDs to endo-
plasmic reticulum [8]. They also found that Rab18 showed 

increased association with LDs over time [8], this suggests 
that Rab18 may mediate attachment of ER to established 
LDs. Both Ozeki [8] and Martin [6] reported that Rab18 
labeled only a subset of LDs. Gillingham [45] identified the 
NRZ complex as a major effector of Rab18, and proposed 
it could be involved in tethering of COPI-coated vesicles or 
of lipid droplets to ER membranes. Xu [36] proposed on the 
basis of more extensive experiments that Rab18 mediated 
association of LDs with ER via NRZ tethers and SNARE 
proteins (Fig. 3). They reported that Rab18 was necessary 
for the growth of newly formed LDs, suggesting it plays an 
early role in LD maturation. In their study, Rab18 knockout 
resulted in accumulation of 100 nm diameter LDs, which 
formed at a normal rate from endoplasmic reticulum. How-
ever, these LDs then failed to expand, suggesting an early 
role for Rab18 in transferring lipids from the ER.

The discrepancy between [36], which suggests a general 
role for Rab18 in LD growth and the earlier studies, which 
only identified Rab18 on a subset of LDs is unlikely to be 
related to choice of cell lines, as at least some experiments 
were conducted in 3T3 cells in all of these studies. How-
ever, continued interaction of nascent LDs with ER has 

Fig. 3   Current model for Rab18/NRZ-mediated tethering of lipid 
droplets to endoplasmic reticulum. In this model, Rab18 on the LD 
membrane recruits the NRZ complex consisting of NAG, ZW10 and 
RINT. Elements of the NRZ complex in turn bind to SNARE proteins 
(Use1 and BN1 P1) found in ER membranes. Also shown is Rab18 

on ER membranes recruiting fatty acid synthase, which could favor 
enlargement of lipid droplets. Whether Rab18 on ER membranes 
could also recruit NRZ complex, and whether this complex could 
participate in tethering interactions, has not been addressed
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been described elsewhere [58]. Wilfling et al., using elec-
tron microscopy, identified connections between ER and 
LDs, which they proposed allowed transfer of enzymes in 
the triglyceride synthesis pathway including GPAT4, and 
DGAT2, from ER to growing LDs, allowing in situ pro-
duction of triglycerides on the LD. The molecular mecha-
nisms by which these connections occur are unclear. The 
same group has proposed that Arf1 and COPI adjusts the 
phospholipid and surface tension of the LD surface to favor 
connections [59], but no evidence to date rules out classical 
Rab-regulated membrane tethering as a component of the 
process. Potentially, Rab18 could coordinate a variety of 
interactions between ER and LDs, and some of these interac-
tions might be driven largely by ER-associated Rab18. Thus, 
the reported lack of Rab18 on some LDs [6, 8] (such as the 
immature LDs described in [36]) is not inconsistent with a 
role for Rab18 in regulating association of these LDs with 
ER. It is also possible that Rab18 remains associated with 
LDs through part of their life cycle, and is then lost.

Some other studies have proposed a role for Rab18 on 
ER independent of LDs. Barr et al. [25] reported that both 
Rab18 and Rab3GAP are required for normal ER structure 
in a variety of different cell types. They reported that in the 
absence of either protein, or in primary fibroblasts obtained 
from Warburg-Micro patients, tubular ER was suppressed, 
while CLIMP-63 defined ER sheets spread into the cell 
periphery. Based on that, they propose that Rab18 plays a 
role in maintaining normal ER structure. This could indicate 
a distinct function of Rab18 in regulating reticulons or other 
proteins important for ER morphology. This study did not 
rule out that inefficient transfer of fatty acid or triglycerides 
from ER to LDs could lead to toxic effects from accumula-
tion in ER. However, Jayson et al. have claimed that deletion 
of the gene for Rab18 has no effect on ER morphology in a 
carcinoma cell line [60].

Secretion

There is evidence for roles for Rab18 in secretion. Vazquez-
Martinez et al. [9] reported that endogenous and GFP-tagged 
Rab18 colocalized with secretory granules in PC12 cells, 
while GFP-Rab18 S22 N, which does not bind nucleotide, 
did not. Rab18, in their assays, functioned as a negative 
regulator of regulated secretion.

Regulated secretion in PC12 cells has some mechanis-
tic similarities to synaptic vesicle release, and is similarly 
regulated by the small GTPase Rab3a. It is notable that Rab-
3GAP was identified first as a GAP for Rab3 [24], which 
plays an important role in regulated secretion. Rab3GAP 
and Rab18 are ancient proteins conserved over a wide range 
of eukaryotes and likely originating prior to the last com-
mon ancestor of eukaryotes, while Rab3 is phylogenetically 

more recent, being found only in metazoans [44]. This could 
suggest that Rab3GAP acquired an interaction with Rab3 as 
part of the process of the evolution of regulated secretion 
pathways utilized by multicellular organisms. It could be 
speculated that Rab18, which Rab3GAP was intrinsically 
able to recruit, was co-opted to play a role as a negative 
regulator. Secretory-granule specific interaction partners of 
Rab18 are not known, and the mechanisms by which Rab18 
suppresses secretion are currently unknown. It is interesting, 
however, that neuronal phenotypes, including altered neu-
rotransmission are found in Warburg-Micro syndrome [61]. 
This suggests that modulatory effects of Rab18 on regulated 
secretion are physiologically significant.

Virus assembly

Rab18 has been proposed to play a role in the replication of 
BK Polyoma virus [62], dengue virus [63], hepatitis B virus 
[64] and hepatitis C virus [11, 65, 66]. In several of these 
cases, the virus appears to be targeting Rab18 localization to 
LDs or what may be roles in lipid metabolism. Some stud-
ies give what may be important information about Rab18 
interaction partners, or clues about its possible mechanism 
of action.

Hepatitis C virus has been shown by numerous groups 
to utilize LD and ER membranes as part of its replication 
cycle (reviewed in [67]). Salloum et al. [11] reported that the 
Hepatitis C viral protein NS5A binds to Rab18 on LDs in a 
GTP-dependent fashion, and that this interaction results in 
enhanced genome replication. Dansako et al. [66] reported 
further that the core protein of HCV was recruited to LDs 
in a Rab18-dependent fashion, and that this recruitment 
enhanced viral assembly. These findings provide another 
example of pathogens interacting with Rab proteins to 
modify cellular functions, and underline that Rab18 plays 
important roles on ER and LDs.

A whole-genome siRNA screen identified Rab18 together 
with syntaxin 18 and NRZ complex members RAD50 
interactor 1 and ZW10 kinetochore protein, as host factors 
essential for the replication of BK Polyoma virus [62]. BK 
Polyoma virus is endocytosed and then goes to the ER by 
a retrograde transport pathway which shares common ele-
ments with the retrograde pathway utilized by ricin and 
shiga toxins to traffic to the ER via the Golgi apparatus [68, 
69]. Elements of the nucleocapsid are then exported to the 
cytoplasm, and subsequently viral DNA and proteins are 
imported into the nucleus where they can establish an infec-
tion. While the roles played by Rab18, syntaxin 18 or NRZ 
complex were not established in this study, these proteins 
were required for BK Polyoma virus to reach the ER, and 
after knockdown, it accumulated in late endosomes instead 
[62]. The same NRZ complex, in concert with syntaxin 18, 
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was reported to tether LDs to ER in a Rab18-dependent 
manner in an independent study [36]. An attractive possi-
bility is that the same NRZ complex involved in tethering 
of LDs to ER is involved in fusion of retrograde transport 
intermediates with ER.

Studies of Rab18′s role in virus infection may also reveal 
candidate Rab18 effectors that have not been uncovered in 
other studies or to confirm interactions that were previously 
identified at low confidence. Tang et al. [63] reported that 
Rab18 recruits the enzyme fatty acid synthase (FAS) to the 
site of viral replication of Dengue virus. FAS is a cytosolic 
enzyme complex which synthesizes fatty acid chains with a 
length of up to 16 carbons, many of which undergo further 
elongation by other enzymes in the endoplasmic reticulum 
[70]. FAS was previously identified in a co-immunopre-
cipitation screen for Rab18 in lysates from 3T3-L1 cells 
[71], however it was not similarly identified in lysates from 
HeLa cells in the same screen. Tang [63] also reported that 
wild-type and constitutively active (Q76L) Rab18 co-pre-
cipitated with FAS, but that the Rab18-S22N mutant defec-
tive in nucleotide binding failed to co-precipitate with FAS. 
FAS relocated to the ER and to LDs upon infection with 
dengue virus. This relocation of FAS could be abrogated 
with expression of Rab18-S22N [63]. Taken together, these 
data suggest that FAS could be a physiological effector of 
Rab18, which is co-opted by the virus in order to modify 
the lipid composition of intracellular membranes to favor 
viral replication. Modification of lipid content of intracel-
lular membranes has been reported for other viruses [72]. 
The association of Rab18 with FAS suggests that Rab18 
may be involved in coordinating lipid synthesis pathways 
with the ER and with LDs. Further research will be required 
to determine what these roles may be under physiological 
conditions.

Lipolysis and autophagy

In early work identifying Rab18 on LDs, the Parton group 
reported that upregulators of lipolysis such as isoproterenol 
increased association between Rab18 and LDs. This was 
confirmed in work by the Malagon group [73], which fur-
ther reported that siRNA knockdown of Rab18 suppressed 
isoproterenol-induced glycerol release. This could suggest 
that Rab18 plays a role in regulating at least some forms of 
lipolysis.

LDs contain primarily triglycerides and cholesterol esters, 
which are hydrophobic forms in which lipids can be conveni-
ently stored. In most studies, LDs are induced by loading 
with oleic acid [7], which suggests the primary stored lipids 
in most experimental systems would be triglycerides. In 
whole organisms, LDs can contain substantial quantities of 
cholesterol esters as well. This has physiological relevance, 

e.g., in the process of conversion of macrophages to foam 
cells [74], which is believed to be an early step in the devel-
opment of an atherosclerotic lesion.

Triglycerides can be disassembled, and free fatty acids 
released from LDs by two primary classes of mechanism. 
First, cytoplasmic enzymes such as ATGL [75] and HSL 
[76] can be relocated to the surface of the LD, where they 
hydrolyze triglycerides to release free fatty acid and glyc-
erol (reviewed in [77]). This mechanism is often regulated 
by phosphorylation of the enzymes and of surface proteins 
of the LD [76]. The released fatty acids have various uses, 
including use as precursors for membrane lipids (primar-
ily in endoplasmic reticulum) and in mitochondria for 
β-oxidation. LDs can associate specifically with ER and 
with mitochondria, and this has been proposed to facilitate 
the transfer of released free fatty acid (reviewed in [78]). As 
earlier discussed, multiple groups have reported evidence 
that Rab18 facilitates tight association between LDs and ER. 
Notably, association of cytoplasmic enzymes with LDs can 
be modulated and temporally regulated, and does not neces-
sarily lead to the consumption of the entire LD.

Autophagy [79, 80] is the second mechanism by which 
the contents of LDs can be made accessible to the cell. In 
autophagy of LDs (lipophagy [81]), a LD is progressively 
surrounded by a phagophore, which closes to trap the LD 
in a membrane-bound structure which will then fuse with 
lysosomes (reviewed in [82]). In the lysosome, lysosomal 
acid lipase can release free fatty acid from triglyceride and 
cholesterol esters [82]. In contrast to the action of cytoplas-
mic enzymes, autophagy is normally thought to irreversibly 
commit an entire structure to degradation. While the rela-
tive importance of autophagy and cytoplasmic enzymes is 
unclear, it appears to vary between cell types and depending 
on the mechanism by which degradation of storage forms of 
lipids was induced. In some circumstances, e.g., in a foam 
cell model in which LDs were induced in macrophages by 
heavy loading with lipoprotein particles, autophagy appears 
to be the primary mechanism by which cholesterol esters are 
cleaved [74].

Several studies have provided evidence for a link between 
Rab18, Rab3GAP and autophagy. Makino et al. [83] found 
that accumulation of free cholesterol leads to Rab18-depend-
ent degradation of perilipin 2, which is a surface protein 
of LDs. This degradation was inhibited both by ubiquitin 
inhibitors and by the autophagy inhibitor 3-methyladenine. 
Other studies provided additional evidence that Rab3GAP 
[39, 42, 84] and Rab18 [10] play a role in the regulation of 
autophagy. Some of these studies included data obtained 
from D. melanogaster [42] and C. elegans [39], suggesting 
that these roles are conserved over a wide range of organ-
isms. These studies suggested that Rab3GAP and Rab18 
favor the lipidation of the Atg8 homologues LC3 and 
GABARAP, and that Rab3GAP works in part by opposing 
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an anti-autophagy action of FEZ1 and FEZ2. In their hands, 
knockdown of Rab3GAP could be rescued by a balanced 
knockdown of FEZ1/2 [39]. In addition to their study, Rab-
3GAP was identified as an interaction partner of FEZ1 [85]. 
Since Atg5-positive structures accumulated with Rab3GAP 
knockdown, they argued that the step regulated by Rab18/
Rab3GAP occurred after the recruitment of Atg5 [39]. Nota-
bly, while there is evidence that Rab18 induces catabolism 
of LDs [73] and degradation of some LD proteins, such as 
PLIN2 [83], the studies by Spang [39] and Feldman [10] 
were focused on general autophagy, although they did pro-
vide evidence that Rab3GAP associated with LDs under 
pro-autophagy conditions [39]. The roles of Rab18 and Rab-
3GAP may be cell-type specific as Jayson et al. [60] failed 
to identify a need for Rab18 in turnover of LDs in human 
mammary carcinoma cells. Also, unlike deletion of Rab18 
or Rab3GAP, deletion of important Atg proteins can lead to 
embryonic or neonatal lethality in mice (reviewed in [86]). 
Thus, more research is required to determine the molecular 
mechanisms involved in Rab18’s regulation of autophagy, 
and also whether Rab18 plays a prominent role specifically 
in some cell types or in lipophagy.

It has been reported that Rab18 recruitment onto LDs 
is driven by Rab3GAP activity [10]. However, Li et al. 
[50] have argued, based on GAP assays and knockdown 
experiments that part of the TRAPPII complex, specifi-
cally TRAPPC9, functions as the GEF for recruitment of 
Rab18 to LDs in HEK293T cells. In their hands, knock-
down of either TRAPPC9 or COPI led to failure of Rab18 
to be recruited to small LDs, and reduced lipolysis, leading 
to a phenotype of oversized LDs. They reported that Rab-
3GAP1 was primarily localized to ER, and did not relocalize 
to LDs under their experimental conditions. The discrepancy 
between these studies is unclear, and additional work will 
be required. It cannot be ruled out that there are multiple 
mechanisms for Rab18 recruitment to LDs related to dis-
tinct actions of Rab18. Notably, Li [50] did not distinguish 
between autophagic lipolysis, and lipolysis resulting from 
the action of cytoplasmic proteins.

Sidjanin et  al. specifically examined the effect of 
TBC1D20 deletion in lens fiber cells, and argued that 
inhibited autophagy in these cells led to the loss of lens 
transparency and cataracts found in Warburg-Micro syn-
drome [52]. TBC1D20 shows GAP activity for Rab18, as 
previously discussed, and it is attractive to consider that 
TBC1D20 could work together with Rab18 and Rab3GAP 
to regulate autophagy. However, it is also a GAP for Rab1, 
and in this study the autophagy phenotype could be recapitu-
lated by expression of Rab1b-Q67L, which is defective for 
GTP hydrolysis, even in the presence of a functional GAP 
[52]. Given the complexity of autophagy, which is known 
to involve multiple Rabs and Rab-GAPs, more research will 
be required.

Conclusions

Rab18 has been implicated in a wide variety of processes 
including autophagy, secretion and lipid droplet biogen-
esis. While its mechanistic roles in these processes are 
still not well characterized, the elucidation of interaction 
partners has indicated some common threads exist. In 
particular, Rab3GAP is also implicated at most potential 
sites of action of Rab18. Multiple lines of evidence sug-
gest that major roles for Rab18 primarily lie in two areas: 
autophagy and tethering to endoplasmic reticulum. Other 
roles for Rab18 (e.g. in secretion) may exist. However, 
their molecular mechanisms are unclear.

A number of recent studies have elucidated important 
effectors of Rab18 involved in tethering lipid droplets to 
endoplasmic reticulum. These include members of the 
NRZ complex, and syntaxin 18. There is evidence that 
these interactions are involved in the growth of LDs either 
via direct transfer of triglycerides from ER, or transfer of 
anabolic enzymes such as DGAT2 via membrane bridges. 
There is some evidence that effectors of Rab18 such as 
FAS may play other direct roles in mediating the growth 
of LDs. While extensive progress has been made, further 
research will be required to establish the precise roles of 
Rab18 and interacting proteins in LD–ER interactions. 
Rab18 could in principle regulate these interactions from 
either the surface of the LD or from the ER membrane, 
as it is present in both locations. Further research should 
include investigation of the geometry of productive inter-
actions of Rab18 with its effectors to clarify whether 
specific interactions are productive only in cis (within 
the same membrane) or in trans (between distinct mem-
branes). This may require structural studies to complement 
the cellular and biochemical methods already in use.

The roles of Rab18 in lipid droplet catabolism and in 
autophagy are more poorly understood. It is clear that 
Rab18 plays a role in lipolysis, and also in autophagy, 
but it is currently unclear whether Rab18’s regulation of 
lipolysis is via up-regulation of autophagy. There is tan-
talizing evidence that some of the more striking pheno-
types in Warburg-Micro syndrome may relate to defects in 
autophagy. There is evidence from recent studies that the 
yeast homologue of syntaxin 18, ufe1, is delivered to sites 
of autophagosome formation in COPII vesicles [87]. It is 
possible that Rab18 could be involved in a similar process 
in higher eukaryotes (Table 1).

Tethering and membrane association could be a com-
mon function preserved between distinct cellular pro-
cesses. Thus, in the absence of other candidate Rab18 
effectors, it would be logical to test, e.g., with selective 
knockdowns, whether syntaxin 18 or NRZ complex mem-
bers play a role in autophagy, especially in cell systems 
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where a role for Rab18 has been suspected or demon-
strated. This would test the attractive hypothesis that many 
of the seemingly diverse roles of Rab18 in fact take place 
through a common mechanism.
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