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Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, with a high mortality rate. Its dismal 
prognosis is attributed to late diagnosis, high risk of recurrence and drug resistance. To improve the survival of patients 
with HCC, new approaches are required for early diagnosis, real-time monitoring and effective treatment. Exosomes are 
small membranous vesicles released by most cells that contain biological molecules and play a great role in intercellular 
communication under physiological or pathological conditions. In cancer, exosomes from tumor cells or non-tumor cells can 
be taken up by neighboring or distant target cells, and the cargoes in exosomes are functional to modulate the behaviors of 
tumors or reshape tumor microenvironment (TME). As essential components, non-coding RNAs (ncRNAs) are selectively 
enriched in exosomes, and exosomal ncRNAs participate in regulating specific aspects of tumor development, including 
tumorigenesis, tumor metastasis, angiogenesis, immunomodulation and drug resistance. Besides, dysregulated exosomal 
ncRNAs have emerged as potential biomarkers, and exosomes can serve as natural vehicles to deliver tumor-suppressed 
ncRNAs for treatment. In this review, we briefly summarize the biology of exosomes, the functions of exosomal ncRNAs in 
HCC development and their potential clinical applications, including as biomarkers and therapeutic tools.
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Introduction

Liver cancer is the sixth common malignancy and the fourth 
leading cause of cancer-related death worldwide in 2018 
[1]. Hepatocellular carcinoma (HCC) accounts for 80% of 
liver cancer, and it mainly occurs in the context of chronic 
inflammation and fibrosis that is caused by virus hepatitis, 
alcohol and non-alcohol fatty disease (NAFLD) [2–4]. The 
5-year survival rate of HCC is lower than 20% [5], primar-
ily attributed to difficulty of early diagnosis via current 

biomarkers [6]. Consequently, most HCC patients are diag-
nosed at an advanced stage, accompanied with intrahepatic 
or distant metastasis. When diagnosed, the patients are not 
eligible for curative treatments (resection or transplantation) 
while palliative treatments are the exclusive choices [7, 8]. 
For example, the multi-target kinase inhibitor sorafenib 
can prolong the survival of patients with advanced HCC 
for approximately 3 months. However, the response rate of 
sorafenib is low (~ 10%) and most patients develop disease 
progression due to drug resistance [9, 10]. Moreover, even 
for those receiving surgical resection, recurrence is a severe 
problem and half of the patients with recurrence die within 
1 year [11, 12]. Thus, there is an urgent need to develop 
new approaches of early diagnosis, real-time monitoring, 
and effective treatment for HCC.

Liquid biopsy is a minimally invasive technology for 
detecting tumor cells or nucleic acids from body fluids, 
including circulating tumor cell (CTC), circulating tumor 
DNA (ctDNA) and exosome, which help diagnose cancer, 
detect disease progression or therapeutic response [13]. 
However, the numbers of CTCs are few and half-life of 
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ctDNA is short. Thus, increasing studies have focused on 
exosomes, which are abundant in biofluids and keep stable 
for a long time. Exosomes are small extracellular vesicle 
(EVs) secreted by most cells and contain bioactive cargoes 
(proteins, nucleic acids, lipids). In cancer, exosomes from 
tumor cells or non-tumor cells can transfer the cargoes 
to recipient cells to modify their phenotypes and reshape 
tumor microenvironment (TME), affecting tumor devel-
opment [14]. Thus, exosomes are essential messengers in 
tumor progression. Moreover, exosomes are widespread in 
diverse biofluids, e.g., blood, urine, saliva. The concentra-
tion of exosomes in cancer patients is higher than healthy 
individuals, and cargoes in exosomes can reflect the origin 
cells and real-time diseases states. Thus, exosomes and their 
cargoes are under investigation as potential biomarkers con-
tributing to diagnosis [15], prognosis [16] and treatments 
[17] in cancer. What’s more, since exosomes are stable and 
with low immunogenicity, they are exploited as vehicles for 
carrying drugs and anti-tumor nucleic acids to treat cancer.

Non-coding RNAs (ncRNAs) are a class of RNAs with-
out protein-coding capability, such as microRNAs (miR-
NAs), long non-coding RNAs (lncRNAs) and circular RNAs 
(circRNAs). By interacting with DNAs, RNAs or proteins, 
ncRNAs can regulate gene expression on transcription, 
post-transcription, epigenetic levels and modulate cellular 
processes [18]. Emerging evidence suggests that various 
ncRNAs are dysregulated in cancer and participate in com-
plex network of biological regulation, e.g., cell prolifera-
tion, migration, apoptosis [19]. Interestingly, ncRNAs are 
selectively enriched in exosomes, and exosomal ncRNAs 
can exert biological functions in recipient cells to affect the 
critical processes of tumor development, e.g., tumorigenesis, 
tumor metastasis, angiogenesis, immunomodulation and 
drug resistance [20]. Besides, due to aberrantly expressed, 
exosomal ncRNAs represent a powerful source of biomark-
ers [21, 22] and novel therapeutic targets. In this review, we 
mainly overview the biology of exosomes, the functions of 
exosomal ncRNAs in HCC development and their potential 
clinical applications, including as biomarkers or therapeutic 
tools.

The characteristics and biogenesis 
of exosomes

Exosomes are often referred to EVs, but they should not 
be confused. Different from other EVs, exosomes are 
30–100 nm membranous vesicles of endocytic origin that 
are released by live cells while apoptosis bodies are secreted 
during apoptosis and microvesicles (MVs) are shedding 
from plasma membrane directly [23]. Although exosomes 
were considered as cellular garbage bins to remove hazard-
ous substance before, recent studies have identified them 

as important means of intercellular communication [24]. 
Exosomes can mediate bulk of physiological or pathologi-
cal processes, e.g., antigen presentation [25], injury repair 
[26], and tumor metastasis [27]. The functions of exosomes 
depend on their contents. An array of biomacromolecules is 
contained in exosomes, including proteins (heat shock pro-
teins, tetraspanin), nucleic acids (mRNAs, ncRNAs, DNAs), 
as well as lipids (cholesterol). In Exocarta (www.exoca rta.
org), 9769 proteins, 3408 mRNAs, 2838 miRNAs and 1116 
lipids were identified in exosomes in multiple organisms. 
Besides, exRNA Atlas (exrna-atlas.org/), a data reposi-
tory of the Extracellular RNA Communication Consortium 
(ERCC), includes 5309 small RNA sequencing and qPCR-
derived exRNA profiles from human and mouse biofluids in 
19 studies. And the expression of long RNA species, includ-
ing 15,501 lncRNAs, 18,333 mRNAs and 58,330 circRNAs, 
in human blood exosomes were collected from 92 samples 
in exoRbase (www.exorb ase.org/). The cargoes are cell-
type specific, e.g., exosomes derived from B-lymphocytes 
expressed MHC I/II molecules and the B cell marker CD20 
[28]. However, the cargoes in exosomes are not identical 
to those in parent cells and are often influenced by extra-
cellular stimuli, e.g., hypoxia and low pH could induce the 
biogenesis of exosomes and change the contents [29, 30]. It 
illustrates that the biogenesis of exosomes and sorting of the 
cargoes is precisely regulated.

In brief, exosomes are generated as intraluminal vesicles 
(ILVs) that are formed by inward budding of endosomal 
membrane during the maturation of multivesicular bodies 
(MVBs), and secreted upon fusion of MVBs with plasma 
membrane (Fig. 1). The mechanisms of exosomal biogen-
esis involve multiple factors [31], and the most known regu-
lator is endosomal sorting complex required for transport 
(ESCRT). There are four types of ESCRT, including ESCRT 
0-III. ESCRT 0 and ESCRT I cluster-specific cargoes and 
target them to endosomal membrane, then ESCRT I-ESCRT 
II complex are involved in buddings of endosomal mem-
brane and they recruit ESCRT III to perform scission of 
ILVs. Apart from ESCRT, there are also other regulators in 
exosomal biogenesis, e.g., tetraspanins (CD9, CD63, CD81) 
and some accessory proteins (ALIX, VPS4). The motility of 
MVBs to plasma membrane is regulated by GTPase, e.g., 
Rab 27a/b.

After secreted into extracellular space, exosomes can 
naturally target to neighboring or distant recipient cells. 
The exosomes may activate downstream signal pathways 
in recipient cells by ligand-receptor interaction [32]. Addi-
tionally, exosomes can be internalized through fusion with 
plasma membrane, phagocytosis or receptor-mediated endo-
cytosis (clathrin dependent and independent) to deliver the 
cargoes into cytoplasm. The cargoes are functional in recipi-
ent cells and change the phenotypes of recipient cells, e.g., 
mRNAs can be translated to proteins, and miRNAs can 
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regulate gene expression by binding to target mRNAs in 
recipient cells [33]. In cancer, it has been reported that tumor 
cells release more exosomes than normal cells, and tumor-
derived exosomes (TDEs) participate in the initiation and 
progression of cancer while normal cell-derived exosomes 
can inhibit tumorigenesis, due to differential components.

Separation and characterization 
of exosomes and exosomal ncRNAs

To investigate the functions of exosomes in cancer biology, 
we need to interrogate exosomal contents. In this review, 
we mainly focus on ncRNAs in exosomes since they are 
the most abundant and crucial biomolecules derived from 
exosomes. First, we need to isolate exosomes from sam-
ples, e.g., conditioned culture medium, ground tissues or 

biofluids. Up to now, there is no standard method of exo-
some isolation, and five categories of exosome isolation 
techniques have been developed, including differential 
ultracentrifugation-based techniques, size-based tech-
niques, immunocapture-based techniques, precipitation, 
and microfluidic-based techniques [34]. According to a 
worldwide survey of International Society for Extracellular 
Vesicles (ISEV), differential centrifugation is the most com-
monly used method for separation (about 56%), and density 
gradient centrifugation, filtration, size-exclusion chroma-
tography (SEC), immuno-isolation, precipitation are used 
by 5–20% of respondents each [35]. Moreover, additional 
techniques that involve a wide variety of microfluidic device 
have been developed, such as field-flow fractionation (FFF), 
asymmetric flow field-flow fractionation (AFFF), and field-
free viscoelastic flow. However, absolute purification or 
complete isolation of exosomes is an unrealistic goal yet. 

Fig. 1  The biogenesis, secretion and uptake of exosomes. Early 
endosomes are formed by endocytosis. With the assistance of endo-
somal sorting complex required for transport (ESCRT), intralumi-
nal vesicles (ILVs) are generated while early endosomes develop to 
multivesicular bodies (MVBs). Some MVBs fuse with lysosome to 
be degraded while other MVBs are trafficked to fuse with the plasma 

membrane (it is regulated by GTPase, e.g., Rab27a/b) to release ILVs 
to extracellular milieu, which are called exosomes. Exosomes contain 
bioactive cargoes derived from parent cells, including DNAs, RNAs, 
proteins, as well as lipids. Exosomes can be ingested by recipient 
cells by endocytosis or fusing with plasma membrane, or through 
ligand–receptor interaction to exert diverse biological functions
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Current methods, including centrifugation protocols or com-
mercial kits all cannot separate exosomes specifically and 
completely. Thus, the separation products are actually mix-
ture of different EVs and other substances, e.g., MVs and 
lipoprotein, which may affect downstream analysis. Thus, 
appropriate methods should be selected depending on down-
stream applications and scientific question. Highly purified 
exosomes are needed to attribute a function or biomarker to 
exosomes while less pure exosomes may be acceptable when 
a biomarker is useful without enrichment.

To further the promise of EVs including exosomes as 
biomarkers or for treatment, The ISEV board members have 
published a minimal information for studies of extracel-
lular vesicles (MISEV) in 2014 and update in 2018 [36]. 
For separation, 93% of MISEV2018 survey respondents 
agreed with the categorization of techniques by recovery 
and specificity. For example, the methods with high recovery 
and low specificity include precipitation and low-molecular 
weight filters, the methods with intermediate recovery and 
specificity include SEC, differential centrifugation, high-
molecular weight filters and membrane-affinity columns, 
the methods with low recovery and high specificity include 
density gradient centrifugation and immuno-isolation. And 
there is no method with high recovery and high specificity. 
Combinations of these methods outperform single-method 
approaches. Any newly developed technique for isolation 
must indicate to which of the 4 recovery/specificity options. 
More importantly, 98% of MISEV2018 Survey respondents 
agreed that all the experimental details, e.g., centrifugation 
(g-force, rotor, ultracentrifuge, adjusted k-factor, tube type, 
adaptor, time, temperature, and brake), should be deposited 
on the EV-TRACK (http://evtra ck.org/index .php) to allow 
reproducibility.

Moreover, characterization of exosomes is important to 
show the success of isolation and demonstrate that biomark-
ers or functions are associated with exosomes [37]. Accord-
ing to MISEV 2018, the sources of EVs, e.g., number of 
secreting cells, volume of biofluid, should be described, and 
abundance of EVs should be characterized by total particle 
number or protein or lipid content, although none of them 
are exclusively associated to EVs. The purity of EVs can be 
measured by ratios of proteins/particles, lipids/particles or 
lipids/proteins. For general characterization, at least three 
positive protein markers of specific subtypes of EVs, includ-
ing at least one transmembrane/lipid-bound protein/cytosolic 
protein must be evaluated, at least one negative protein 
marker and the presence of co-isolated components, e.g., 
lipoprotein or albumin, should be tested. Even more, two 
different but complementary techniques should be used for 
characterization of single vesicles, for example, images of 
single EVs at high resolution by electron microscopy (EM), 
scanning-probe microscopy (SPM), atomic-force micros-
copy (AFM) or super-resolution microscopy, size measured 

by resistive pulse sensing (RPS), or light-scattering prop-
erties, e.g., nanoparticle tracking analysis (NTA). As for 
exosomes, exosomes usually have cup-shaped morphologies 
under EM, express the markers associated with biogenesis 
(e.g., Tsg101, Alix, CD9/63/81, HSC70) and absence of 
ER markers (Calnexin), and the size of exosomes vary from 
30 to 200 nm. However, many studies do not provide the 
adequate information of characterization yet and it needs to 
be improved in the future.

After separation of exosomes, we can extract exosomal 
ncRNAs from exosomes by RNA extracting kits or Trizol. 
The protocols of separation can be obtained from exRNA 
(http://exrna .org). Due to low concentration of exosomal 
RNAs, conventional methods for RNA evaluation are una-
vailable. For example, the results of concentration measured 
by Nanodrop or Qubit are inaccurate due to limitation of 
detection threshold. Instead, Agilent 2100 bioanalyzer can 
be used to evaluate the quality and quantity of exosomal 
RNAs. The results show that most RNA cargoes in exosomes 
are small RNAs which are 20–200 nucleotides in length 
and there is little 18S/28S rRNA. Deep sequencing reveals 
that the most abundant exosomal RNAs are miRNAs, and 
there are also fragments of mRNAs, lncRNAs or circRNAs 
and other types of ncRNAs, e.g., tRNAs, which are rarely 
explored yet [38, 39]. To identify dysregulated exosomal 
ncRNAs, quantitative analysis is required, and next-gener-
ation sequencing (NGS) [40], microarray [41], qPCR and 
digital PCR [42] can be used. A great number of exosomal 
ncRNAs have been reported to be dysregulated in HCC, and 
we will discuss their biological functions and clinical appli-
cations below.

The effects of exosomal ncRNAs on fibrosis/
cirrhosis

HCC mainly occurs in a context of liver cirrhosis (LC) 
caused by chronic infection of hepatitis B virus (HBV) or 
hepatitis C virus (HCV) [2]. In the process of cancerization, 
ncRNA-carrying exosomes can help virus spread and disturb 
host immunity, leading to persistent viral infection, caus-
ing DNA damage and HCC occurrence. For example, miR-
122 was enriched in serum exosomes from HCV patients, 
and exosomal miR-122 could help virus RNA transmission 
and replication between HCV-infected hepatocytes and 
normal hepatocytes via AGO2-miR-122-HSP90 complex 
[43]. Besides, serum exosomes from HCV patients could 
inhibit the function of natural killing (NK) cells and this 
effect was correlated with miR-122-5p (reduced expression 
of granzyme B, IGF1 receptor) and miR-222-3p (repressed 
expression of STAT5B) [44]. Similar situations also occur 
in HBV patients, caused by exosomal miR-21 and miR-29a, 
which suppressed the IL-12 expression in macrophages and 
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prevented the activation of NK cells [45]. Chronic virus 
infection will activate hepatic stellate cells (HSCs), result-
ing in sustained inflammation and fibrosis. The study from 
Devhare PB demonstrated that HCV-infected hepatocytes 
could transfer exosomal miR-19a to HSCs, and miR-19a 
could target SOCS3 in HSC, which activated the STAT3-
mediated transforming growth factor β (TGF-β) signaling 
pathway and promote fibrosis, which may favor the HCC 
tumorigenesis [46].

Additionally, NAFLD or non-alcohol steatohepatitis 
(NASH) has become another increasingly important disease 
leading to HCC. ncRNA-carrying exosomes from hepato-
cytes and non-hepatocytes both participate in progression 
of NAFLD. For example, in diet-induced steatohepatitis, the 
levels of exosomes increased early and reflected changes in 
liver histopathology. The levels of miR-122 and miR-192, 
two microRNAs abundant in hepatocyte increased in circu-
lating exosomes. Thus, circulating exosomal ncRNAs may 
be biomarkers reflecting liver injury [47]. The elevated cir-
culating miR-122 was associated with decreased liver miR-
122, which resulted in upregulation of modulators of tissue 
remodel (HIF-1α, vimentin) and induced liver fibrosis [48]. 
Interestingly, circulating miR-122 may not be exclusively 
from liver. Baranova A et al. reported that adipose might 
actively release tumor-suppressing, anti-fibrotic miR-122 
into circulation via exosomes, circulating miR-122 might 
infuse to liver to delay NAFLD progression and inhibit 
tumorigenesis [49]. Thus, detecting the levels of exosomal 
ncRNAs may help monitor chronic liver disease progression 
and evaluate the risks of HCC.

Exosomal ncRNAs and HCC progression

HCC is caused by genetic mutation and epigenetic dysregu-
lation, involved with complex signal network. The malignant 
behaviors of tumor cells not only depend on themselves, 
but are also modulated by the interaction between tumor 
cells and their TME, which comprises of endothelial cells, 
fibroblasts, immune cells, and extracellular matrix (ECM) 
[50]. Apart from cell–cell contact and soluble factors, 
ncRNA-carrying exosomes, as signal carriers between dif-
ferent cells, can affect many aspects of HCC progression, 
including tumor metastasis, tumor angiogenesis, tumor 
immunity and drug resistance (Fig. 2). Understanding the 
roles of exosomal ncRNAs in cancer biology help develop 
novel anti-tumor strategy.

Exosomal ncRNAs and HCC metastasis

Metastasis, the leading cause of death in cancer, is a mul-
tistep process, including tumor cells detach from primary 
lesion, invade the ECM, invade into circulation, survive 

in blood stream, extravasate from vessels, invade into sec-
ondary organs, and form metastases in target organs [51]. 
Exosomal ncRNAs have been demonstrated to participate in 
modulating sequential processes of HCC metastasis, includ-
ing initiation of epithelial–mesenchymal transformation 
(EMT), regulation of tumor growth and invasion, increased 
vascular permeability, formation of pre-metastatic niches, 
and tumor seeding.

EMT is a conservative process that tumor cells lose their 
epithelial phenotypes and acquire mesenchymal phenotypes, 
resulting in enhanced motility and decreased cell–cell adhe-
sion. Evidence suggests that EMT is related to initiation of 
metastasis and malignant transformation [52]. Both exoso-
mal ncRNAs from tumor cells and stroma cells are poten-
tial mediators of EMT by activating relevant pathways. For 
example, the expression of Vimentin (mesenchymal marker) 
was increased while E-cadherin (epithelial marker) was 
decreased in HCC cells after treatment with HCC-derived 
exosome. lncRNA FAL1 was upregulated in HCC-derived 
exosomes, and lncRNA FAL1 could act as sponger of miR-
1236 to increase the expression of ZEB1, which was the key 
transcription factors in EMT, and promote tumor metastasis 
[53]. Additionally, cancer-associated fibroblasts (CAFs) are 
known to play a great role in HCC progression, including 
inducing EMT [54]. The study from Zhang Z revealed that 
CAF-derived exosomes could induce EMT in HCC cells by 
activating MAPK pathways and upregulate MMP2 expres-
sion to remodel the ECM, facilitating HCC metastasis, 
which was associated with loss of miR-320a in CAF-derived 
exosomes [55].

On another hand, tumor cells can transfer oncogenic ncR-
NAs to recipient cells via exosome to promote tumor growth 
and invasion in autocrine or paracrine manners. For instance, 
TAK1, belonging to MAP3K subfamily, is a vital compo-
nent of tumorigenesis. Selective miRNAs (e.g., miR-584) 
enriched in HCC-derived exosomes could be internalized by 
recipient HCC cells, subsequently modulated TAK1 expres-
sion to enhance HCC growth and invasion [56]. Similarly, 
miR-93 was upregulated in HCC patients’ serum exosomes 
and medium of HCC cell line, and exosomal miR-93 could 
stimulate the proliferation and invasion of HCC cells by 
targeting TIMP2/TP53INP1/CDKN1A [57]. In another 
study, lncRNA TUC339 was identified to be enriched in 
HCC-derived exosomes, and exosomal lncRNA TUC339 
could promote cell proliferation and reduce cells adhesion 
to ECM, resulting in HCC spread [58]. Interestingly, the 
oncogenic effect of exosomes has been shown to not only 
occur by TDEs, but also non-TDEs. For example, adipose 
tissue could affect tumorigenesis by secreting adipokines 
[59]. The study from Zhang H demonstrated that plasma 
exosome circ-deubiquitination (circ-DB) was upregulated 
in HCC patients with higher body fat ratios, and exosome 
circ-DB derived from adipocytes could suppress miR-34a 
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and activate the USP7/Cyclin A2 signaling pathway in HCC 
cells to promote HCC growth [60].

The occurrence of metastasis not only requires the 
enhancement of growth and invasion of tumor cells, also 
need tumor cells traverse the endothelial barrier. The ves-
sels in tumor lesions have aberrant structures with increased 
permeability, which favor tumor metastasis. The crosstalk 
between cancer cells and endothelial cells, mediated by exo-
somal ncRNAs, takes part in impairing the vascular integ-
rity to assist tumor cells to invade into circulation [61]. One 
study revealed that higher level of serum exosomal miR-
103 was associated with higher metastasis potential, higher 
recurrence risks and shorter survival in the patients with 
HCC. The exosomal miR-103 secreted by HCC cells could 

act on endothelial cells to attenuate the endothelial junction 
integrity and increase vascular permeability by targeting 
endothelial adherens junction proteins, such as VE-Cad-
herin, p120-catenin, zonula occludens-1 (ZO-1), resulting 
in increased transendothelial invasion of HCC cells and 
metastasis occurrence [62].

In addition, before the implantation of tumor cells, pri-
mary tumors can establish a favorable microenvironment in 
target organs to support metastases growth, which is named 
pre-metastatic niche. The pre-metastatic niche, with the 
characteristics of inflammation, immunosuppressive and 
angiogenesis/vascular permeability [63], can be created by 
TDEs that remodel stromal contents, such as activation of 
CAFs and recruitment of myeloid-derived suppressor cells 

Fig. 2  The interaction between HCC cells and microenvironment via 
exosomal ncRNAs. As functional contents, non-coding RNAs (ncR-
NAs) in both tumor-derived exosomes (TDEs) and non-TDEs partici-
pate in the communication between HCC cells and tumor microen-
vironment to promote HCC progression. Exosomal ncRNAs could 
promote tumor growth and invasion (miR-584, miR-93, lncRNA 
TUC339, decreased miR-125a/b), initiate the epithelial–mesenchy-

mal transition (EMT) (lncRNA FAL1, decreased miR-320a), increase 
vascular permeability (miR-103), activate CAFs to form the pre-met-
astatic niche (miR-21, miR-1247-3p), affect circulating tumor cells 
(CTCs) seeding (miR-25-5p), promote tumor angiogenesis (miR-210, 
lncRNA H19), induce immunosuppressive (lncRNA TUC339), medi-
ate drug resistance (linc-ROR, linc-VLDLR, miR-32-5p), etc.
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(MDSCs) [64]. Lung is the most common site of HCC dis-
tant metastasis. The study from Fang T demonstrated the 
crosstalk between tumor cells and fibroblasts mediated by 
TDE-influenced lung metastasis of HCC. They found that 
the levels of serum exosomal miR-1247-3p were higher in 
HCC patients with lung metastasis than those without. High 
metastatic HCC cells could secrete exosomal miR-1247-3p 
to activate CAFs via targeting B4GALT3, leading to activa-
tion of β1-integrin-NF-κB signaling in fibroblasts, and acti-
vated CAFs released inflammatory cytokines (IL-6, IL-8) 
to form an inflammatory microenvironment, fostering lung 
metastasis [65].

In the final step of metastasis, CTCs will seed in the target 
organ and grow to form metastases. It was reported that inte-
grin in exosomes determines organ-specific metastasis [66], 
and exosomal ncRNAs also affect tumor seeding. Tumor 
self-seeding is a process that CTCs re-infiltrate the origi-
nal tumor, in which primary tumor-derived cytokines act 
as CTC attractants and vascular leakage favor the infiltra-
tion of CTCs [67]. The study from Liu H demonstrated that 
exosomes from primary HCC could be transferred to CTCs 
to enhance their migratory and invasive abilities, resulting 
in tumor self-seeding, which may breed more aggressive 
tumor cells and contribute to HCC progression, this effect 
was associated with horizon transfer of exosomal miR-25-5p 
by targeting leucine rich repeat containing 7 (LRRC7) [68]. 
It illustrated the crosstalk between primary tumor and CTCs 
affected HCC progression.

Exosomal ncRNAs promote angiogenesis

Active angiogenesis, supplying adequate nutrition and 
oxygen to tumor cells, is a critical step for tumor growth 
and metastasis. Due to intratumor hypoxia, tumor cells can 
release soluble factors, e.g., vascular endothelial growth fac-
tor (VEGF), as well as exosomes to promote pathological 
angiogenesis [69]. Associated exosomal ncRNAs have been 
investigated in HCC. For example, the levels of serum exo-
somal miR-210 were elevated in HCC patients and associ-
ated with microvessel density (MVD). By targeting SMAD4 
and STAT6 in endothelial cells, exosomal miR-210 derived 
from HCC cells could promote proliferation, migration and 
tube formation of endothelial cells, which are essential for 
angiogenesis [70]. In another study, hypoxia could stimu-
late HCC cells to secret exosomes containing miR-155 to 
promote angiogenesis, and the levels of exosomal miR-155 
were positively associated with the expression of VEGF and 
HIF-1α in HCC samples. Increased exosomal miR-155 in 
preoperative plasma was significantly correlated with early 
recurrence and poor prognosis [71]. HCC cells can also pro-
mote angiogenesis indirectly through CAFs. For example, 
Zhou et al. reported that HCC cells secreted exosomal miR-
21 that directly targeted phosphatase and tensin homolog 

(PTEN) to convert HSCs to CAFs, and CAFs could promote 
angiogenesis by releasing angiogenic cytokine, e.g., VEGF, 
MMP2, MMP9, bFGF and TGF-β [72]. Additionally, the 
crosstalk between cancer stem cell (CSC) and endothelial 
cells was reported to drive tumor angiogenesis.  CD90+ liver 
cancer stem cells released exosomes containing lncRNA 
H19, which could be internalized by endothelial cells, sub-
sequently upregulated the expression of VEGF and its recep-
tor VEGFR1 in endothelial cells, inducing angiogenesis 
[73]. Blocking the transfer of exosomal ncRNAs abrogates 
these effects, providing novel strategies for inhibiting tumor 
progression.

Exosomal ncRNAs modulate tumor immunity

The role of immune microenvironment cannot be ignored 
for tumor progression. Tumor cells can escape from immune 
surveillance and induce immune tolerance by multiple ways, 
including releasing exosomes [74]. Both ncRNAs-carrying 
exosomes from tumor cells and immune cells could influ-
ence immune responses [75]. On one hand, tumor cells 
could transfer oncogenic ncRNAs to immune cells through 
exosomes to induce the expansion or differentiation of 
immunosuppressive cells, e.g., regulator T cells (Treg), 
and promote apoptosis or suppress the activity of effector 
cells, e.g., cytotoxic T lymphocytes (CTLs) [76], leading 
to local or systemic immunosuppression. For example, 
under ER stress, HCC-derived exosomal miR-23a-3p could 
upregulate the expression of PD-L1 in macrophages through 
PTEN-PI3K/AKT pathway, which subsequently inhibited 
T cell function [77]. In another study, HCC-derived exo-
somal lncRNA TUC339 could educate the macrophages, 
leading to reduced pro-inflammatory cytokine production 
(IL-1β,TNF-α), compromised phagocytosis (CD86) and 
drove M2 polarization, which promoted HCC progression. 
By bioinformatic analysis, lncRNA TUC339 were found 
to be involved in regulation of CXCR chemokine recep-
tor binding, cytokine signaling pathway, an immune sys-
tem defense response [78]. Interestingly, TDEs could also 
activate anti-tumor immunity by presenting tumor-associ-
ated antigen (TAA) [79]. The balance between both sides 
of TDEs is uncertain. On another hand, ncRNA-carrying 
exosomes from immune cells also affect tumor progression 
and the effects depend on the types of immune cells. For 
example, exosomes from DC cells could present TAAs to 
CTL to activate anti-tumor immunity [80]. Exosomal miR-
142 and miR-223 from primary macrophages could inhibit 
HCC growth by decreasing the expression of stathmin-1 
(STMN1) and insulin-like growth factor-1 receptor (IGF-1R) 
[81]. Conversely, tumor-associated macrophages (TAMs), 
the most abundant immune cells in TME, released exosomes 
to promote HCC growth and stem cell properties by target-
ing CD90, associated with decreased levels of miR-125a/b 
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[82]. In another study, exosomes derived from functional 
exhausted  CD8+ T cells led to exhaustion of normal  CD8+ 
T cells, and 257 dysregulated lncRNAs were identified that 
actively participated in the regulation of diverse process of 
 CD8+ T cells, e.g., metabolism, biosynthetic process [83]. 
Thus, therapeutic intervention based on exosomal ncR-
NAs in immune regulation will help remodel anti-tumor 
immunity.

Exosomal ncRNAs mediate drug resistance

Drug resistance, an essential factor for poor prognosis, is 
a significant clinical problem [84]. As a research hotspot, 
exosomal ncRNAs have been found to be involved with drug 
resistance. For example, when exposed to anticancer agents, 
such as sorafenib, camptothecin and doxorubicin, the expres-
sion of lincRNA-VLDLR (linc-VLDLR) was increased in 
both HCC cells and TDEs. When incubated with TDEs, the 
levels of linc-VLDLR in recipient HCC cells were elevated, 
and linc-VLDLR could increase the expression of ATP-
binding cassette, subfamily G member 2 (ABC-G2), which 
involved in export of chemotherapeutic agents to reduce 
drug-induced cell apoptosis. [85]. CSCs are also involved 
in drug resistance. TGF-β could enrich lincRNA-ROR (linc-
ROR) within TDEs, leading to increased number of  CD133+ 
CSCs and reduced chemotherapy-induced cell death through 
repression of p53, resulting in drug resistance [86]. Moreo-
ver, the drug-resistant cells could deliver exosomal ncRNAs 
(miR-32-5p) horizontally to drug-sensitive cells to induce 
EMT and drug resistance by inhibiting PTEN and activating 
PI3K/AKT pathway in recipient cells [87]. What’s more, 
exosomes from stromal cells, e.g., CAFs or TAMs also play 
a great role in drug resistance in other cancers although there 
is no study in HCC yet. These findings all support targeting 
exosomal ncRNAs to enhance chemosensitivity in HCC.

Exosomal ncRNAs as biomarkers for HCC

As part of liquid biopsy, exosomes are widespread in vari-
ous body fluids, and ncRNAs in TDEs can reflect the infor-
mation of tumors and real-time disease progression. Thus, 
exosomal ncRNAs are regarded as a powerful source of 
non-invasive biomarkers for HCC. Blood is the most fre-
quently used source in the researches of biomarkers. The 
standardization of sample collection, isolation and analysis 
were reviewed elsewhere [88]. Compared with other forms 
of ncRNAs, e.g., ncRNAs in tissues or circulating free ncR-
NAs, circulating exosomal ncRNAs have advantages of 
non-invasive and stable (the lipid bilayer of exosomes can 
protect ncRNAs from degradation), raising great interest of 
researchers. Table 1 summarizes the circulating exosomal 
ncRNAs that serve as biomarkers in HCC.

Exosomal ncRNAs as diagnostic biomarkers

Early diagnosis can improve clinical outcomes of patients 
with HCC since curative resection or liver transplantation 
is available for early HCC and 5-year survival rate can be 
higher than 50% [89]. Thus, screening in high-risk popu-
lation, e.g., the patients with cirrhosis, chronic hepatitis B 
(CHB) or chronic hepatitis C (CHC), may be beneficial [90, 
91]. However, due to unsatisfactory sensitivity and specific-
ity, the efficacy of current screening tools [ultrasound and 
serum α-fetal protein (AFP)] was suboptimal [92]. Thus, 
we need new biomarkers alone or combined, with a high 
sensitivity and specificity, to improve the accuracy of early 
diagnosis.

A great number of studies suggested that circulating exo-
somal miRNAs could serve as potential diagnostic biomark-
ers, which differentiated HCC from non-HCC individuals, 
such as healthy control, as well as the patients with LC, 
CHB or CHC. For example, the levels of serum exosomal 
miR-93 in HCC patients were significantly higher than 
healthy controls (diagnostic efficacy: area under the curve, 
AUC = 0.825) [57]. Serum exosomes from patients with 
HCC contained lower levels of miR-9-3p than those from 
healthy controls [93]. The levels of miR-21 were increased 
in serum exosomes from patients with HCC than in CHB or 
healthy volunteers, and it was correlated with cirrhosis and 
tumor stages [21]. In another study, eight exosomal miRNAs 
(miR-122, miR-125b, miR-145, miR-192, miR-194, miR-
29a, miR-17-5p, and miR-106a) had significant differences 
between HCC and normal serum samples. The AUC of these 
eight exosomal miRNAs as diagnostic biomarkers varied 
from 0.535 to 0.850 [94].

Apart from exosomal miRNAs, recent studies have 
investigated the roles of serum exosomal lncRNAs as 
diagnostic biomarkers for HCC. For example, one study 
demonstrated that the levels of serum exosomal lncRNA 
ENSG00000258332.1 and LINC00635 were higher in HCC 
patients than in patients with CHB (AUC: 0.719 and 0.750, 
respectively) [95]. Similarly, the increased levels of serum 
exosomal lncRNA HEIH were found to be able to discrimi-
nate HCV-related HCC patients from patients with HCV-
induced cirrhosis or CHC [22].

Although single exosomal ncRNAs can diagnose HCC, 
combining panels of biomarkers will enable a more accu-
rate prediction of HCC than single biomarker for high-risk 
individuals. For example, Liu H et al. detected the levels of 
four most dysregulated miRNAs (miR-10b, miR-21, miR-
122 and miR-200a) at different stages during HCC develop-
ment in rat models. The four miRNAs in serum and serum 
exosomes obtained more remarkable alternation than serum 
AFP at early HCC stages. Different combinations of AFP, 
exosomes and exosomal miRNAs had stronger power in pre-
dicting HCC than serum AFP alone (AUC, 0.943 vs 0.826) 
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[96]. Moreover, ncRNAs are selectively enriched within 
exosomes, increasing the sensitivity of detection. The study 
from Sohn W demonstrated that the levels of serum exoso-
mal miR-18a, miR-221, miR-222 and miR-224 were higher 
in HCC than in CHB or LC while the levels of exosomal 
miR-101, miR-106b, miR-122 and miR-195 were lower in 
HCC than in CHB. Unlike exosomal miRNAs, the levels 
of serum circulating miRNAs showed a smaller difference 
between HCC and CHB [97].

From all these studies, we can conclude that exosomal 
ncRNAs can be used as novel diagnostic biomarkers for 
HCC. However, the results among different studies may 
be contradictory. It might be caused by patient selection, 
variable etiology, sample number and detection methods. 
Therefore, multi-center, large-sample clinical researches 
are needed in the future. Even more, the development of a 
standard isolation method to obtain sufficient exosomes of 

high purity is a challenge. The present gold standard ultra-
centrifugation is time-consuming, equipment dependent and 
has low yields. The cost of commercial kits is high and the 
purity is variable due to different principles as said before. 
Recently, microfluidic systems have been developed with 
advantages of rapid separation and small sample require-
ment (even a drop of blood) [98], providing a bright future 
in exosome field.

Exosomal ncRNAs as prognostic and predictive 
biomarkers

Except for diagnosis, exosomal ncRNAs have been intro-
duced to assess HCC prognosis. From several retrospective 
studies, circulating exosomal ncRNAs have been suggested 
as effective prognostic markers for HCC. For example, neg-
ative association of serum exosomal miR-638 with tumor 

Table 1  Exosomal ncRNAs as biomarkers in HCC

Function NcRNA (expression) Source Method Cohort Year [refs.]

Diagnosis miR-93 (↑) Serum qPCR 85 HCC vs 23 healthy control 2018 [57]
miR-9-3p(↓) Serum qPCR 30 HCC vs 10 healthy control 2018 [93]
miR-21 (↑) Serum qPCR 30 HCC vs 30 CHB, 30 healthy control 2014 [21]
miR-122 (↑)
miR-125b (↑)
miR-145 (↑)
miR-192 (↑)
miR-194 (↑)
miR-29a (↑)
miR-17-5p (↑)
miR-106a (↑)

Serum qPCR 80 HCC vs 30 healthy control 2019 [94]

ENSG00000258332.1(↑)
LINC00635(↑)

Serum qPCR 60 HCC vs 85 LC vs 96 CHB vs 60 
healthy control

2018 [95]

LncRNA HEIH (↑) Serum qPCR 10 HCC vs 22 LC vs 25 CHC 2018 [22]
miR-10b (↑)
miR-21 (↑)
miR-122 (↓)
miR-200a (↓)

Serum (rat) qPCR Normal, cirrhosis, early stage and late 
stage of HCC

2015 [96]

miR-18a (↑)
miR-221(↑)
miR-222(↑)
miR-224(↑)
miR-101(↓)
miR-106b (↓)
miR-122(↓)
miR-195(↓)

Serum qPCR 20 HCC vs 20 LC vs 20 CHB 2015 [97]

Predicting poor prognosis miR-638 (↓) Serum qPCR 126 HCC (retrospective) 2018 [99]
miR-125b (↓) Serum qPCR 128 HCC (retrospective) 2017 [100]
miR-665 (↑) Serum qPCR 30 HCC (retrospective) 2017 [101]
miR-21 (↑)
lncRNA ATB (↑)

Serum qPCR 79 HCC (prospective) 2018 [102]

Predicting recurrence/metastasis miR-103 (↑) Serum qPCR 85 HCC 2018 [62]
miR-1247-3p (↑) Serum qPCR 110 HCC 2018 [65]
miR-155 (↑) Plasma qPCR 40 HCC 2018 [71]
miR-718 (↓) Serum Microarray 6 HCC 2015 [103]
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size, vascular infiltration and TNM stage was observed. 
Decreased levels of serum exosomal miR-638 predicted poor 
prognosis in HCC. [99]. In another study, the levels of miR-
125b were associated with tumor number, encapsulation and 
TNM stage. The patients with lower serum exosomal miR-
125b levels showed reduced time to recurrence (TTR) and 
overall survival (OS). [100]. And the survival time of the 
exosomal miR-665 high-expression group was significantly 
shorter than that of the low-expression group [101]. How-
ever, the results of retrospective studies may be influenced 
by selection bias, and prospective studies are required. In a 
recent prospective study, Lee et al. reported that the OS and 
progression-free survival (PFS) were significantly lower in 
HCC patients with higher levels of exosomal miRNA-21 and 
lncRNA-ATB [102].

Since tumor metastasis and recurrence are crucial factors 
for poor prognosis, researchers may use exosomal ncRNAs 
to evaluate metastasis potential of tumors or predict recur-
rence to improve the management of HCC. For example, 
higher level of serum exosomal miR-103 was associated 
with higher metastasis potential, higher recurrence risks and 
shorter survival in the patients with HCC [62]. Increased 
level of serum exosomal miR-1247-3p was related to lung 
metastasis of HCC [65]. High expression of exosomal miR-
155 in preoperative plasma was significantly correlated 
with early recurrence [71]. And the levels of preoperative 
serum exosomal miR-718 were lower in the patients with 
recurrence after liver transplantation compared with those 
without recurrence [103]. By detecting these circulating 
exosomal ncRNAs, we can learn more information about 
tumor biology and monitor tumor progression of high-risk 
patients carefully.

Another reason for poor prognosis is drug resistance. As 
mentioned above, linc-VLDLR, linc-ROR, and miR-32-5p in 
exosomes were reported to mediate the occurrence of drug 
resistance in vitro. We may detect circulating exosomal ncR-
NAs of HCC patients to predict therapeutic efficacy of anti-
cancer drugs, although there is no such study yet. Further, 
researchers can dynamically monitor the levels of circulating 
exosomal ncRNAs at different time spots (before treatment, 
after treatment, disease progression) to evaluate the efficacy 
of treatments and real-time progression.

Therapeutic functions of exosomal ncRNAs 
in HCC

As TDEs can carry oncogenic ncRNAs to recipient cells to 
promote tumor progression, researchers may inhibit tumori-
genesis by blocking the biogenesis, secretion and uptake of 
exosomes. However, normal cells also release exosomes to 
maintain physiological functions [104]. Indiscriminate sup-
pression of exosomes biogenesis may lead to side effects. 

Thus, it is better to affect TDEs specifically or sort of onco-
genic ncRNAs into exosomes. For example, sphingosine 
kinase 2 (Sphk2) is an important regulator in exosome bio-
genesis. Using Sphk2 siRNA-loaded nanoparticles to treat 
HCC cells can reduce miRNA-21 sorting into exosomes, 
contributing to the inhibition of tumorigenic function of 
exosomes [105]. The synthetic nanoparticles can be replaced 
by exosomes, which are regarded as natural nanoparticles, 
with advantages of low biotoxicity, low immunogenicity and 
better biocompatibility. Thus, exosomes are potential options 
for new therapeutic approaches in cancer.

Unmodified ncRNA‑carrying exosomes from normal 
stem cell

It was reported that normal cells could secrete exoso-
mal miRNAs to inhibit tumor growth [106]. Recently, 
researches have focused on the roles of normal stem cell 
and their exosomes in cancer therapy. For example, mesen-
chymal stem cell (MSC) was reported to migrate to TME 
and could affect hepatocarcinogenesis and HCC progres-
sion [107]. Evidence suggests that MSC-derived exosomes 
could inhibit HCC progression, which was associated with 
delivering tumor-suppressed ncRNAs [108, 109]. However, 
some studies also reported that the exosomes from MSC may 
promote tumor progression [110]. Thus, whether it is safe 
to use MSC-derived exosomes to treat cancer is uncertain. 
Besides, exosomal ncRNAs from another stem cells, human 
adult liver stem cell (HLSC) can also influence the growth 
of hepatoma. For example, HLSC-derived exosomes could 
inhibit hepatoma growth by transferring anti-tumor miRNAs 
to downregulate the genes involved in cell proliferation, e.g., 
Cyclin D1 targeted by miR-223, E2F-2 targeted by miR-31, 
MDR1, MIF, RAB14 targeted by miR-451, DHFR targeted 
by miR-24 [111]. In another study, exosomal miR-15a, miR-
181b, miR-320c and miR-874 from HLSCs could decrease 
the expression of ITGB3, FGF1, EPHB4 and PLAU to 
inhibit tumor angiogenesis [112]. Thus, the anticancer ther-
apy based on exosomes derived from normal stem cells may 
be one more choice.

Engineered exosomes with tumor‑suppressed 
ncRNAs: target tumor cells or TME

Tumor-suppressed ncRNAs are downregulated in cancer, 
and overexpressing tumor-suppressed ncRNAs in tumor 
cells inhibit tumor progression. We can package desired 
tumor-suppressed ncRNAs into exosomes by electropora-
tion or transfecting the exosome-producing cells (Fig. 3), 
and then use the engineered exosomes to transport tumor-
suppressed ncRNAs to HCC cells to reverse their malignant 
phenotypes. Some positive results have been obtained. For 
example, Lou G et al. reported that miR-122-transfected 
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adipose mesenchymal stem cells (AMSCs) could effec-
tively package miR-122 into secreted exosomes, and miR-
122-loaded exosomes made HCC cells more sensitive to 
chemotherapeutic agents by repressing CCNG1, ADAM10 
and IGF1R [113]. Liang G et al. used electroporation to 
actively load miR-26a to HEK-293T cell-derived exosomes, 
and miR-26a-loaded exosomes could inhibit HCC growth 
and invasion by inhibiting CCND2, CCNE2, CDK6 [114]. 
In another study, HSC-derived exosomes were loaded with 
miR-335-5p, and miR-335-5p-loaded exosomes could be 
taken up by HCC cells and inhibited HCC cell prolifera-
tion and invasion by targeting CDC42, CDK2, CSNK1G2, 
EIF2C2, EIF5, LIMaK1, NRG1, PLK2, TCF3, THBS1, 
YBX1, and ZMYND8 [115]. Moreover, it is feasible to 
use siRNA-loaded exosomes to treat cancer. For example, 
GRP78 is associated with sorafenib resistance, using the 
exosomes that encapsulated siRNA against GRP78 could 
suppress sorafenib resistance in HCC [116].

Since TME is essential for tumor progression, targeting 
the stromal cells, e.g., CAFs, endothelial cells and immune 
cells, to remodel TME help treat cancer. For example, 

overexpressing miR-320a in CAFs can repress HCC metasta-
sis by targeting PBX3 [55]. TDEs and DC-derived exosomes 
(DEXs) are reported to present TAAs and elicit anti-tumor 
immunity, forming a new class of vaccines for cancer immu-
notherapy [79, 80, 117]. NcRNAs are critical regulators in 
the immune system, influencing the differentiation, matura-
tion, expansion and function of immune cells [118]. Thus, 
ncRNA-modified exosomes can be used for immunotherapy 
in HCC. For example, specific ncRNAs (miR-155, miR-142, 
and let-7i) modified TDEs could target IL-6, IL-17, IL-1b, 
TGFβ, SOCS1, KLRK1, IFNγ, and TLR4 to induce DC 
maturation and enhance their immune stimulation ability 
[119]. These results all suggest a novel therapeutic approach 
for tumor treatment.

Conclusions and perspectives

In this review, we mainly summarized recent literatures on the 
biological functions of exosomal ncRNAs in HCC develop-
ment and their clinical applications. Exosomes are small EVs 

Fig. 3  The two strategies of loading ncRNAs into exosomes. It is 
promising to use engineered exosomes to deliver anti-tumor ncRNAs 
to treat HCC. Mesenchymal stem cells (MSC) are most frequently 
used cells to produce exosomes in the studies. We can use vectors 
that contain ncRNAs to transfect MSCs, and MSCs can package the 

ncRNAs into secreted exosomes. Additionally, we can also use elec-
troporation to actively load ncRNAs into MSC-derived exosomes. In 
assays, researches have observed that the engineered exosome-con-
taining anti-tumor ncRNAs can inhibit tumor growth



4214 C. Li, X. Xu 

1 3

from most cell types and mediate signal transduction between 
different cells by transporting cargoes. NcRNA-carrying 
exosomes from tumor cells and stroma cells can modulate 
the interaction between HCC cells and their microenviron-
ments, contributing to tumor progression by regulating spe-
cific aspects, including tumor metastasis, tumor angiogenesis, 
tumor immunity and drug resistance. It provides us a novel 
horizon of tumorigenesis and potential therapeutic targets. 
Due to aberrant expression and ability of reflecting disease 
state, circulating exosomal ncRNAs can serve as diagnostic or 
prognostic biomarkers for HCC. Moreover, it is a promising 
strategy to exploit exosomes as natural nanoparticle to deliver 
tumor suppressor ncRNAs to target HCC cells or TME for 
treatment.

However, there are still some difficulties remain to be over-
come. First, for liquid biopsy, we need a standard method to 
isolate exosomes quickly, easily and specifically, and detect 
the dysregulated exosomal ncRNA rapidly and cheaply. And 
there is no proven biomarker in large sample and multi-center 
researches yet. Second, for studying biological functions, since 
most experiments are done in vitro and culture environment 
cannot imitate actual conditions, maybe the cargoes and their 
concentration are not identical to those in our body, thus, it 
is uncertain whether exosomal ncRNAs really have regulator 
functions in vivo as in vitro. Third, for therapy, the exosome-
producing cells should be selected carefully to ensure the 
safety of treatment. Red blood cells (RBCs) were reported 
as potential exosome-producing cells since they were readily 
available in blood banks and devoid of DNA [120]. Further, 
we need to learn more mechanisms about exosomal biogen-
esis and design an optimal system to produce more exosomes 
to meet therapeutic demands. Moreover, a high-efficacy and 
safe technology of loading ncRNAs into exosomes needs to be 
developed. Last but not least, targeting strategies of exosomes 
need to be studied further to achieve efficient delivery and 
avoid side effects. In all, as our understanding of exosomes 
improves, using exosomes in the management of HCC will 
become a reality in some day.
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