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Abstract
Matrix metalloproteinases (MMPs) have been investigated in context of chronic inflammatory diseases and demonstrated to 
degrade multiple components of the extracellular matrix (ECM). However, following several disappointing MMP clinical tri-
als, recent studies have demonstrated unexpected novel functions of MMPs in viral infections and autoimmune inflammatory 
diseases in unanticipated locations. Thus, MMPs play additional functions in inflammation than just ECM degradation. They 
can regulate the activity of chemokines and cytokines of the immune response by precise proteolytic processing resulting in 
activation or inactivation of signaling pathways. MMPs have been demonstrated to cleave multiple substrates of the central 
nervous systems (CNS) and contribute to promoting and dampening diseases of the CNS. Initially, believed to be solely 
promoting pathologies, more than 10 MMPs to date have been shown to have protective functions. Here, we present some 
of the beneficial and destructive roles of MMPs in CNS pathologies and discuss strategies for the use of MMP inhibitors.
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Abbreviations
AIDS  Acquired immunodeficiency syndrome
BBB  Blood brain barrier
CNS  Central nervous system
CVB3  Coxsackievirus type B3
ECM  Extracellular matrix
ECs  Ependymal cells
HIV  Human immunodeficiency virus
IFN  Interferon
MBP  Myelin basic protein
MMP  Matrix metalloproteinase
MS  Multiple Sclerosis
RSV  Respiratory syncytial virus

SLE  Systemic lupus erythematosus
SLEDAI  Systemic lupus erythematosus disease activity 

index
TIMP  Tissue inhibitor of metalloprotease

Introduction

Matrix Metalloproteinases (MMPs) should no longer be 
regarded as being disease promoting detrimental extracel-
lular proteases—especially given the chequered history of 
MMP inhibitor drugs [1]. These were developed and trialed 
at a time when MMPs were few in number, substrates even 
fewer, and their in vivo roles mostly only deduced from 
admittedly compelling in vitro studies. While their biologi-
cal activity is linked to the balance between the levels of 
MMPs and their inhibitory TIMPs in inflammatory diseases, 
with a shift in the MMP/TIMP ratio commonly associated 
with disease [2, 3], the multitude of beneficial disease-damp-
ening functions of MMPs ever increases. So much so, we 
contend that the major role of MMPs is in fact in temporal 
modulation of inflammatory and immune processes by pre-
cise regulation of the bioactivity of signaling molecules and 
their pathways. This is to maintain extracellular homeosta-
sis by invoking negative feedback loops to dampen inflam-
mation over time and stimulate tissue resolution. Overall, 
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MMPs are multitasking proteins [4], often with moonlight-
ing functions [5], with additional roles to mere matrix deg-
radation in both the extra- and intra-cellular compartments. 
Recent evidence further pushes this paradigm shift with 
critical new roles revealed for MMPs in initiating and then 
terminating interferon responses and signaling pathways in 
viral infection and autoimmunity. Here, we describe these 
in relation to diseases of the central nervous system (CNS).

MMPs: inside the matrix

The CNS is composed of the brain and spinal cord, both 
structurally and functionally unique organs, and central to 
life and thought. One arm of neuroscience is to understand 
the complex neural circuitry of brain and spinal cord. Many 
studies intend to decipher psychiatric and neurological dis-
orders; however, the underlying molecular mechanisms of 
various neuropathologies have yet to be elucidated. None-
theless, given the unimaginable complexity of ~ 100 trillion 
neurons and their connections, relatively few neurological 
disorders and disease occur. In the healthy CNS, the micro-
environment is a guiding factor that affects neurological 
development and function [6]. Though not a prominent ana-
tomical feature of the CNS, the regulation and remodeling 
of the neural extracellular matrix (ECM) are essential to the 
maintenance of homeostasis in the brain and thought [6–10].

MMPs are key enzymes influencing physiological and 
pathological processes due to their proteolytic remodeling 
capabilities [6, 10, 11]. Despite recent advances in under-
standing that the ECM serves more than a simple role in 
cell adhesion, structural integrity, and cell signaling [7, 11], 
the significance of neural ECM signaling and interactions 
between neural cells remains elusive. MMPs are secreted by 
many neural cells [12] and contribute to early CNS devel-
opment as well as synaptic remodeling that continuously 
shapes the brain throughout adulthood [6, 12–16]. Several 
studies demonstrate that MMP-mediated proteolysis drives 
the structural and functional changes that occur during the 
development and homeostasis of the CNS [17–20].

An important component of embryonic development is 
the neural stem cell niche that provides a continual supply 
of new neural cells, including neurons and glia, for the post-
natal brain. The maintenance of this stem cell niche is highly 
dependent on micro-environmental cues and cell to cell 
interactions [21]. The specific organization of cytoarchitec-
ture and ECM environment delineating the niche guides the 
fate of neural stem cells and plays a role in regulating their 
regenerative potential. MMPs have long been ascribed as 
proteases primarily responsible for the turnover and remod-
eling of ECM substrates [21], a function that is crucial in 
the development and maturation of stem cell populations in 
processes such as neurogenesis. To generate the adult neural 

stem cell niche, the early postnatal ventricular–subventricu-
lar zone (V-SVZ) undergoes rapid and complex reorgani-
zation. MMP-12 has been implicated in several aspects of 
this process. Both intracellular and extracellular MMP-12 is 
involved in guiding the fate of postnatal stem cell niches in 
the V-SVZ of the brain [21], owing to its ability to remodel 
the ECM and inactivate protease inhibitors. Furthermore, 
elevated MMP-12 expression has been identified in devel-
oping ependymal cells (ECs) that line the cerebrospinal 
fluid filled ventricles in the brain, suggesting another role 
of MMP-12 in regulating the maturation of ECs [21].

Recently, studies have begun to elucidate the role that 
MMPs play in regulating neural circuit remodeling [12, 
17–21]. MMP-9 has been involved in hippocampal synaptic 
plasticity and plasticity related processes such as long-term 
potentiation in murine models [17–19]. Several studies have 
characterized the expression of MMPs across the brain, with 
many revealing that the zymogen forms of MMPs are more 
commonly present in comparison with their active coun-
terparts [6], although there are many stimuli within the 
neural environment that can cause the activation of MMPs 
and the precise substrates of these active MMPs remain 
widely unknown and unexplored [10, 22, 23]. In addition, 
the localization and function of MMPs vary greatly across 
differing brain regions [7]. For example, although MMP-9 
may support beneficial physiological processes such as 
the maintenance of synaptic plasticity in the hippocampus 
[17–19], it has also been suggested to facilitate blood brain 
barrier (BBB) disruption in neurodegenerative diseases such 
as multiple sclerosis (Fig. 1) [24–27] and in collagen scan-
ning [28, 29]. It is, therefore, crucial to further character-
ize the function of individual MMPs and their roles within 
the Matrix; it is also important to consider that maladaptive 
remodeling of the neural ECM may contribute to diseases 
of the CNS.

MMPs: outside the matrix

Matrix metalloproteinases, as their name suggests, cleave 
multiple ECM proteins and so remodel the matrix. However, 
only ~ 27% of MMP substrates are ECM and ECM-associ-
ated proteins, whereas 73% of the known MMP substrates 
are non-ECM proteins [30]. These include chemokines, 
cytokines, cell-surface receptors, angiogenic factors, ami-
noacyl transferases, growth factors, and proteins involved 
in immune signaling [1, 30, 31]. Importantly, MMPs should 
not be regarded as just detrimental in inflammatory diseases, 
as multiple beneficial roles for MMPs have been character-
ized [1, 32]. The tight regulation of MMPs is fundamental 
to ensure that both their beneficial and detrimental roles are 
exerted in moderation. Changes in the MMP/TIMP ratios 
can reveal key biological functions [33, 34]; it is now well 
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characterized that MMPs can be both drug targets and anti-
targets depending on the tissue localization, cell types, and 
stage of the disease [1, 32]. This concept is highlighted by 
a series of papers describing the roles of MMPs in cleaving 
and modulating the biological activity of virtually all of the 
54 human chemokines [35]. Thus, neutrophils are attracted 
to sites of injury or infection by 8 CXCL chemokines, one 
of which, IL8 (CXCL8) is activated by neutrophil-specific 
MMP-8 in a feedforward mechanism [36], but in  vivo, 
MMP-8’s major role is to inactivate the cognate serpin inhib-
itor of elastase, alpha 1 antitrypsin [37], the more potent 
activator of IL8. All eight of the Glu-Leu-Arg (ELR) + CXC 
chemokine chemoattractants for neutrophils are cleaved and 
inactivated by macrophage-specific MMP-12 in a feedback 
loop [38]. Two CCL chemokines, CCL15 and CCL23, are 
activated by MMP activity to chemoattract macrophages, 
the most potent being MMP-12 in a feedforward mecha-
nism [39]. Multiple MMPs can cleave and inactivate CCL 
chemokines, switching these to antagonists, to terminate 
macrophage infiltration [40, 41]. Other examples include 
SDF1alpha and beta inactivation by MMP-2 and other 
MMPs, and the shedding of membrane anchored CX3CL 
(fractalkine) by MMP-2 which generates a soluble antago-
nist chemokine [42].

Finally, non-proteolytic roles of MMPs have also been 
identified and are implicated in cell adhesion, proMMP acti-
vation, cell migration, and invasion [43–45]. The hemopexin 
C-terminal domain [46–48] of MMP-14 binds native type I 
collagen and opposes MMP cleavage of collagen, whereas 

the fibronectin triple repeats of MMPs facilitate MMP-1 
cleavage of triple helical collagen by opening up the helix 
[49]. Thus, MMPs are no longer mere matrix degraders but 
have been widely demonstrated to play key roles in the ini-
tiation and resolution of inflammation. It is now time to exit 
the Matrix and to start characterizing the misunderstood 
roles of MMPs outside the Matrix.

MMPs are central in the nervous system

MMPs are typically expressed at low levels in the healthy 
adult CNS. However, following injury or neurological disor-
ders, the protein levels of various MMPs become modulated 
(Tables 1, 2). Typically, MMP-9 is hardly detectable in the 
healthy CNS, but is upregulated in diseases such as multiple 
sclerosis [26, 50]. Although MMP-9 can be expressed in epi-
thelial or endothelial cells, the increase of MMP-9 levels is 
most likely due to the infiltration of neutrophils, monocytes, 
and macrophages to the site of injury or inflammation in 
the brain following disruption of the BBB (Fig. 1) [51–54]. 
Given its ability to degrade the ECM and tight junction 
proteins, MMP-9 has been directly implicated in mediating 
BBB permeability, although this effect could be partially 
linked to MMP-2 as well [55–58]. In healthy individuals, 
the highly selective properties of the microvasculature of 
the CNS allows for the transport of ions, metabolites and 
cells into the delicate tissues of the brain and spinal cord to 
be tightly regulated [59]. Damage to this barrier, potentially 

Fig. 1  Schematic representation of diverse immune cells secreting proteases and break down the blood brain barrier. Proteases are depicted as 
green pacmans
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through the aberrant activity of MMPs and additional pro-
teases, permits the infiltration of inflammatory leukocytes 
into the CNS that may drastically enhance the neuroinflam-
matory response, culminating in the onset of CNS disease 
[60].

Multiple sclerosis (MS) is one of many neuroinflam-
matory diseases in which aberrant MMP activity has been 
characterized (Table 1) [61]. Experimental autoimmune 
encephalomyelitis (EAE) is a widely utilized murine model 
used to study the pathogenesis of human MS (Table 2) [62]. 
MMPs have been implicated in the pathogenesis of MS due 
to their ability to cause loss of BBB integrity and propagate 
the neuroinflammatory environment [63]. Fragmentation of 
myelin as a result of MMP-mediated proteolysis has also 
been implicated in the immunopathogenesis of MS [64], 
primarily due to the supporting evidence of increased levels 
of proteases in the brains of MS patients [27, 64, 65] and the 
ability of these enzymes to enhance the destruction of the 
myelin sheath and release immunogenic peptides [64, 66]. 
Most MMPs, including MMP-2, MMP-3, and MMP-9, can 
cleave myelin basic protein (MBP) to release peptides that 
contain immunodominant epitopes (Table 3) [64, 66–68]. 

Interestingly, the charge micro-heterogeneity of MBP may 
make it more susceptible to MMP cleavage [69]. The previ-
ous studies have also suggested that proteolytic cleavage of 
myelin-derived antigens prior to their ingestion by antigen-
presenting cells may influence the strength and specificity 
of the subsequent immune response [70–72], for example, 
MT3-MMP via the Nogo-66 receptor cleavage [73]. Thus, 
classifying the posttranslational modifications that affect the 
functions, charges, and generation of MBP isoforms that 
are vulnerable to proteolytic degradation may be a novel 
approach to gain a better understanding of the underlying 
biological mechanisms in MS. However, the role of MMPs 
in regulating neuronal inflammatory cells that then effect 
destruction remains largely ignored.

Hijacking the matrix: link between viral 
infections, MMPs and CNS pathologies

MMPs have been demonstrated to generate neurotoxic prod-
ucts that lead to neuronal apoptosis in acquired immuno-
deficiency syndrome (AIDS) [77] and to regulate immune 

Table 1  Roles and expression of selected MMPs in human CNS diseases

Human MMPs Disease Biological roles and references

MMP-1 Alzheimer’s disease ↑ Levels Alzheimer’s disease cortex [74]
MMP-2 Amyotrophic lateral sclerosis ↓ During duration of disease [75]

HIV/AIDS ↑ Levels in HIV-associated demented patients [76]; ↑ neuronal apoptosis [77]
Multiple sclerosis Unchanged mRNA in MS brain lesions [24]
Stroke ↑ Activity in infarcted cerebral tissue [78]

MMP-3 Multiple sclerosis Unchanged mRNA in MS brain lesions [24]
MMP-7 HIV/AIDS ↑ levels in HIV-associated demented patients [76]

Multiple sclerosis ↑ mRNA levels in MS [24]
MMP-9 Acute disseminated encephalomyelitis ↑ Serum levels at acute stage [79]

Amyotrophic lateral sclerosis ↑ levels in CSF in patients with rapid progression of disease [75]
HIV/AIDS ↑ Levels in HIV-associated demented patients [76]
Multiple sclerosis ↑ In cerebrospinal fluid (CSF) [50, 80–83]; ↑ mRNA and plasma protein levels in MS 

patients [24, 26, 84, 85]; ↑ protein levels in serum/leukocytes of MS patients [65, 
86]

Seizure ↑ Levels in seizure patients [87]
Stroke ↑ Activity [78] and levels [88] in infarcted cerebral tissue

MMP-10 Stroke ↑ Levels in infarcted cerebral neurons [88]; proMMP10 as a marker following acute 
ischemic stroke [89]

MMP-12 Multiple sclerosis ↑ in active demyelinating lesions [90]
MMP-23 K+ channels regulation Blocks  K+ channels [91]
MMP-28 Multiple sclerosis ↑ Expression within demyelinated lesions [92]
TIMP-1 Acute disseminated encephalomyelitis ↑ Serum levels at acute stage [79]

Multiple sclerosis Unchanged mRNA in plasma [26]; ↑ protein levels in serum of MS patients [86]; ↓ 
protein levels in serum of MS patients [93]

TIMP-2 Multiple sclerosis mRNA unchanged but ↑ unbound TIMP2 in plasma of MS patients [26]; Elevated 
protein levels in serum of MS patients [86]

Stroke ↑ Levels in infarcted cerebral tissue [88]
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Table 2  Roles and expression of selected MMPs in Mouse and Rat CNS disease models

Mouse/rat MMPs Model or disease Biological roles and references

MMP-2 Experimental autoimmune encephalomyelitis Unchanged mRNA levels during disease course in rats [94]
Focal cerebral ischemia ↑ Expression in rat [57]
Spinal-cord injury Mmp2−/− mice have ↓ recovery [95]

MMP-3 Cuprizone model of toxic demyelination ↑ mRNA expression in the early phases of demyelination and the remyeli-
nation phase in mice corpus callosum. ↑ protein levels in astrocytes [96]

Experimental autoimmune encephalomyelitis Unchanged mRNA levels during disease course in rats [94] but elevated 
in mice [97]

Neuroinflammation ↓ Neutrophils count in Mmp3−/− in comparison with wild-type mice [98]
MMP-7 Cuprizone model of toxic demyelination Unchanged mRNA in this model [96]

Experimental autoimmune encephalomyelitis ↑ Expression in rat CNS during the development of symptoms [94] but 
not in mice [97]; Mmp7−/− mice are resistant to EAE [99]

MMP-8 Experimental autoimmune encephalomyelitis Mmp8−/− mice exhibit ↓ in the number of CNS-infiltrating cells and 
demyelinating lesions as compared to wild-type counterparts [100]

MMP-9 Alzheimer’s disease MMP-9 rescued insulin survival signaling in vitro and in early stages in 
the 5XFAD model of AD [101]

Amyotrophic lateral sclerosis ↑ Motor neuron disease and ↓survival in Mmp9−/− mice [102]
Epilepsy ↓ Kindled seizure progression in Mmp9−/− mice [103, 104]
Experimental autoimmune encephalomyelitis ↑Expression in rat and mice CNS during the development of symptoms 

[94, 97]; ↓ severity in Mmp9−/− mice [105, 106]
Focal cerebral ischemia ↑ Expression in rat [57]; ↓ ischemic lesion volumes in Mmp9−/− compared 

with wild type littermates [107]
MMP-10 Cuprizone model of toxic demyelination Unchanged mRNA in this model [96]
MMP-11 Cerebral artery occlusion ↑ Levels following stroke [108]

Cuprizone model of toxic demyelination ↑ mRNA expression in the remyelination phase in mice corpus callosum 
[96]

Experimental autoimmune encephalomyelitis Unchanged mRNA levels during disease course in rats [94]
MMP-12 Aging neuroinflammation ↑ Cerebral mRNA and protein expression during aging [109]

Cuprizone model of toxic demyelination ↑ mRNA expression in the early phases of demyelination mice cortex and 
both in the corpus callosum and cortex in the peak of demyelination. 
↑ protein levels in microglia, astrocytes and cells of oligodendrocyte 
lineage [96]

Experimental autoimmune encephalomyelitis ↑ Expression in rat and mice CNS during the development of symptoms 
[94, 97]

↑ Severity and disease burden in Mmp12−/− mice as compared to wild-
types [110–112]

Ischemic stroke ↑ In middle cerebral artery occlusion subjected rats [113]
Spinal cord injury ↑ Functional recovery of hindlimb strength in Mmp12−/− mice as com-

pared to wild-types [114]
MMP-13 Cuprizone model of toxic demyelination Unchanged mRNA in this model [96]

Experimental autoimmune encephalomyelitis Unchanged mRNA levels during disease course in rats [94]
MMP-14/MT1-MMP Cuprizone model of toxic demyelination ↑ mRNA expression in the early phases of demyelination and the remyeli-

nation phase in mice corpus callosum [96]
MMP-15/MT2-MMP Cuprizone model of toxic demyelination ↓ mRNA expression in the peak of demyelination in mice [96],
MMP-24/MT5-MMP Cuprizone model of toxic demyelination ↓ mRNA expression in the peak of demyelination in mice [96], ↑ 

promotes pro-amyloidogenic regulation of APP metabolism and Mt5-
mmp−/− mice rescued amyloid pathology, cognitive decline and inflam-
mation [115].

Sciatic nerve injury Mt5-mmp−/− mice did not develop neuropathic pain after sciatic nerve 
injury [116]

Thermal pain stimulation Mt5-mmp−/− mice displayed ↑ sensitivity to noxious thermal stimuli [117]
MMP-25/MT6-MMP Experimental autoimmune encephalomyelitis ↑ Proteolysis inactivates crystallin-αβ that is a suppressor of MS [118]
MMP-28 Experimental autoimmune encephalomyelitis ↑ Expression within demyelinated lesions [92]
TIMP-1 Cuprizone model of toxic demyelination ↑ mRNA expression in the early phases of demyelination mice cortex and 

both in the corpus callosum and cortex in the peak of demyelination [96]
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responses during viral infections [150]. Elevated expres-
sion of MMP-9 in the CSF of human immunodeficiency 
virus (HIV)-infected patients has been detected [151], and 
MMP-2, MMP-7, and MMP-9 have been demonstrated to 
be elevated in HIV-associated demented AIDS patients [77, 
78]. Upon viral entry and replication, the host cell secretes 
multiple response immune signals including proteases 
and cytokines. The interactions between viruses, host pro-
teases, cytokine signaling, and CNS pathologies are only 
starting to be characterized. However, a potentially wide-
spread mechanism was described [77]. In HIV, MMP-14 
was induced on neuronal cell surfaces, which activated 
proMMP-2 secreted from macrophages or microglial cells 
infected with HIV [77]. The activated MMP-2 then cleaved 
the chemokine SDF-1 [152], the resulting N-terminally 
truncated product missing residues 1–4 only, then switched 
receptor binding specificity [153] from CXCR4 to CXCR3, 

and was neurotoxic. In human HIV patients cleaved SDF1 
was detected in elevated amounts in the CNS [77] and anti-
HIV treatment induced beneficial reductions in neuronal 
autophagy in lentiviral infection [154].

Interferons and MMPs

Cytokines are key players in the regulation of a functioning 
immune system, but upon dysregulation, they become con-
tributors to multiple pathologies [155]. Interferon-α (IFNα) 
is a well-studied cytokine that plays critical roles in immu-
nobiology and is implicated in most autoimmune diseases, 
viral infections, and bacterial infections, and despite its key 
roles, the extent of its regulation and signaling pathways is 
not well established [156–158]. In exploring this, Marchant 
et al. [131]. characterized a novel unexpected function of 

Table 2  (continued)

Mouse/rat MMPs Model or disease Biological roles and references

Epileptic rodent model ↑ Expression to regulate the nervous system [119]
Experimental autoimmune encephalomyelitis ↑ Expression in mice CNS during the development of symptoms [97]

TIMP-2 Cuprizone model of toxic demyelination ↑ mRNA expression in the peak of demyelination in mice corpus callosum 
[96]

TIMP-3 Cuprizone model of toxic demyelination ↑ mRNA expression in the early phases of demyelination in corpus cal-
losum and cortex, and the remyelination phase in mice corpus callosum 
[96]

TIMP-4 Cuprizone model of toxic demyelination ↑ mRNA expression in the early phases of demyelination in cortex and the 
remyelination phase in mice corpus callosum [96]

Table 3  Selected substrates of MMPs related to the CNS

Substrates: gene 
name

Substrates: protein name MMPs that can cleave the substrate References

APP Amyloid protein precursor MMP-1, -2, -3, -9, -14, -16, -24 [120–124]
CRYAB Alpha-crystallin B chain MMP-9, -25 [118, 125]
DAG1 Dystroglycan MMP-2, -9 [126–128]
ENO2 Gamma-enolase MMP-1, -2, -8, -9, 14 [129]
GRIN1 Glutamate receptor ionotropic, NMDA 

1/N-methyl-D-aspartate receptor
MMP-7 [130]

IFNA Interferon alpha MMP-12 [131]
IFNB Interferon beta MMP-9 [132]
IFNG Interferon gama MMP-12 [31]
IL1B Interleukin-1 beta MMP-1, -2, -3, -9, -14 [133–135]
MAG Myelin-associated glycoprotein MMP-2, -7, -9 [136]
MBP Myelin basic protein MMP-1, -2, -3, -7, -8, -9, -10, -12, -14, -15, 

-16, -17, -24, -25
[64, 66, 67, 69, 118, 137–139]

SNAP25 Synaptosomal-associated protein 25 MMP-7 [140]
SNCA Alpha-synuclein MMP-1, -2, -3, -9, -14 [141, 142]
TAC1 Substance P of Protachykinin-1 MMP-8, -9 [143, 144]
TJP1 Tight junction protein ZO-1 MMP-9 [139, 145]
TNF Tumor necrosis factor MMP-1, -2, -3, -7, -9, -12, -14 [133, 137, 146–149]
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MMP-12 that translocates to the nucleus during infection 
by coxsackievirus type B3 (CVB3) or respiratory syncytial 
virus (RSV). MMP-12 then bound the IκBα promoter upon 
virus entry into the cells and was essential for antiviral IFNα 
expression and secretion. In infected mice lacking Mmp12, 
IFNα is not secreted, resulting in more than 30% death rate 
in otherwise nonlethal viral infections by CVB3 or RSV. 
Furthermore, extracellular functions of MMP-12 during 
viral infections include a negative feedback loop; MMP-
12 was demonstrated to cleave IFNα, but not IFNβ, at the 
C-terminal binding site to its receptor (IFNαR2), leading to 
the termination of the IFNα pathway and reductions in inter-
feron systemic toxicity [131]. Thus, MMP-12 controls IFNα, 
but not IFNβ responses, through bona fide intracellular tran-
scription regulation and extracellular proteolytic processing 
resulting in an effective protective anti-viral IFNα response.

CVB3 infection in Mmp9−/− mice resulted in elevated 
myocardial injury and foci of infection in comparison 
with wild-types; in contrast, no difference was observed 
in Mmp8−/− mice [159]. Elevated immune infiltrate along 
with increased levels of IFNβ1 and IFNγ was observed in 
Mmp9−/− mice in comparison with their wild-type counter-
parts [159]. In addition, Nelissen et al. [132] demonstrated 
that MMP-9 cleaves and inactivates IFNβ in the context of 
multiple sclerosis. Minocycline, a tetracycline antibiotic, 
was demonstrated to reduce the risk of conversion from 
clinically isolated syndrome to multiple sclerosis [160] 
through the downregulation of MMP-9 activity [107, 108], 
which prevented MMP-9 processing of IFNβ in experimen-
tal autoimmune encephalomyelitis (EAE), a murine model 
of multiple sclerosis [106, 108]. Alternatively, neutraliz-
ing antibodies to IFNβ down-regulated the expression of 
MMP-9 without affecting TIMPs expression [161]. In an 
EAE model in Lewis rats, treatment with the broad-spec-
trum metalloprotease inhibitor BB-1101 reduced the clinical 
scores through the inhibition of the release of tumor necrosis 
factor (TNFα) [94], though this was later interpreted to be 
due to reduced ADAM17 activity, the well characterized 
TNFα sheddase. Taken together, the combination of MMP-9 
inhibitors and lower formulations of IFNβ may indicate a 
more efficacious way of inhibiting multiple sclerosis and 
certain viral infections. The precise mechanisms of action 
have not been fully investigated and will most likely reveal 
novel roles of MMP-9 in diverse pathologies.

Basal IFNα and IFNβ production are required for syn-
ergistically regulating IFNγ activity. IFNγ can enhance its 
own expression in natural killer (NK) cells [162], enhance 
IFNα/IFNβ signaling in a feedback loop through the phos-
phorylation of STAT1 [163], and work in tandem with TNFα 
to promote inflammation [164]. In contrast to IFNβ, IFNγ 
exacerbates multiple sclerosis symptoms in humans [165, 
166] and induces CNS demyelination in mice [167]. Dan-
dekar et al. demonstrated a role for IFNγ in demyelination 

by the activation of macrophages/microglia [168]; however, 
the post-translational role of IFNγ was not characterized. 
Dufour et al. recently demonstrated that MMP-12 cleaves 
the C-terminal end of IFNγ at two sites to remove the IFNγ 
receptor binding peptide leading to a reduction of the JAK-
STAT1 pathway [31]. Processing of both human and murine 
IFNγ terminated the pSTAT1-Y701 and decreased the total 
STAT1 levels after 24 h. Genetic ablation of Mmp12 in the 
mouse led to a general increase of total IFNγ levels and an 
IFNγ pro-inflammatory protein signature (S100A8, S100A9, 
iNOS, and STAT1) in a model of acute peritonitis. In two 
animal models of autoimmunity, Mmp12−/− mice suffered 
from increased systemic inflammation and elevated IFNγ, 
iNOS, and MHCII in their joints, lymph nodes, and kidneys. 
In human lupus nephritis, MMP12 levels were decreased 
and IFNγ were increased in patients with increasing sys-
temic lupus erythematosus disease activity index (SLEDAI) 
scores. MMP-12’s proteolytic truncation of IFNγ has a pro-
found effect on the resolution of inflammation and cytokine 
signaling in autoimmune disease.

MMP therapeutic perspectives: 
beyond the matrix

Both beneficial and detrimental roles of MMPs have been 
demonstrated and these physiological functions are dis-
ease, tissue, and microenvironment dependent. This duality 
in their functions may partially explain why so few MMP 
inhibitors are now used in the clinic. Should we entirely 
give up on MMP inhibitors, although they have profound 
impact on most inflammatory diseases? Using unbiased 
global approaches such as proteomics and N-terminomics, 
a plethora of novel MMP substrates have recently been iden-
tified [4, 126, 138–140]. As an alternative, targeting the sub-
strates of MMPs may be an indirect approach to controlling 
MMPs’ biological roles without inhibiting their benefits [32, 
169]. Considering short-term treatments could be another 
way to circumvent interfering with the beneficial roles of 
MMPs as not all MMPs are expressed at the same time and 
in the same tissue/cells. MMPs play detrimental roles in 
many more pathologies than cancer and rheumatoid arthritis 
(e.g., viral infections, MS, SLE) and may still be considered 
as potential drug targets, although usage of MMP activity as 
disease indicators seems more realistic in a clinical setting.

In the movie the Matrix, the main character is faced with 
a dilemma between a red pill that will show him the truth 
about the Matrix and a blue pill that would return him to 
his former life. In the MMP field, we are currently facing a 
similar dilemma and are at a comparable crossroad: do we 
‘ingest the red pill’ to adopt a novel view of MMPs’ bio-
logical roles that predominantly extend beyond mere matrix 
degradation or do we ‘choose the blue pill’ and repeat our 
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past mistakes by overlooking that most MMP substrates 
may not be always associated with the matrix? As demon-
strated by Yong, Metz and colleagues [170, 171], ‘choosing 
the red pill’ can be beneficial; for example, Minocycline, 
a broad spectrum tetracycline antibiotic, reduced the risk 
of conversion from a clinically isolated syndrome to multi-
ple sclerosis [171] through the downregulation of MMP-9 
activity in an indirect manner [107, 108]. Therefore, control-
ling MMP activity is feasible through indirect means and 
should be considered in the context of interferon signaling. 
Novel inhibitor programs for the control of MMP activity 
or the regulation of the non-proteolytic roles of MMPs may 
potentially see the light in the next years, as we are cur-
rently changing our initial views of this protease family. In 
addition, a more profound understanding of the repertoire 
of MMP substrates might reveal novel functions in immune 
processes of the CNS. We can benefit from reprogramming 
our understanding of the roles of MMPs within the Matrix 
and make the investigation of their functions within the CNS 
even more fascinating as we are unraveling new connections 
of biological, metabolic and signaling pathways regulated 
by MMP activity.
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