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Abstract
Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell pro-
liferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling 
cascades at cell–cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail 
that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity 
of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ 
domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds 
to specific sites of cell–cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular 
characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its 
cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.

Keywords Cell adhesion · Dimerization · JAM-A · Junctional adhesion molecules · PDZ domain · Scaffolding protein · 
Signaling

Abbreviations
AA  Amino acid
AJ  Adherens junctions
aPKC  Atypical protein kinase C
BAR  Bin/amphiphysin/RVS
CAR   Coxsackie and adenovirus receptor
CASK  Calcium/calmodulin-dependent serine protein 

kinase
Cdc42  Cell division cycle 42
Csk  C-Src kinase
EMT  Epithelial-to-mesenchymal transition
FERM  4.1 protein and ERM
GEF  Guanine nucleotide exchange factor
IgSF  Immunoglobulin superfamily

JAM  Junctional adhesion molecule
LGL  Lethal(2) giant larvae protein homolog
LIN  Abnormal cell lineage protein
MAPK  Mitogen-activated protein kinase
MUPP1  Multiple PDZ domain protein 1
pAJs  Primordial, spot-like adherens junctions
Pals1  Protein associated with Lin-7
PAR  Partitioning defective
PATJ  Pals1-associated tight junction protein
PICK1  Protein interacting with C kinase 1
PMCA4B  Plasma membrane calcium-transporting 

ATPase 4
PDZ  PSD95–Discs large–ZO-1
RAC1  Ras-related C3 botulinum toxin substrate 1
RAPGEF  Rap guanine nucleotide exchange factor
SH  Src homology
Src  Sarcoma
TJ  Tight junctions
ZO  Zonula occludens
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Introduction

Cells use cell–cell adhesion receptors to sense their local 
environment allowing them to adapt to changes in the envi-
ronment. For example, when epithelial cells form new con-
tacts with other epithelial cells, as it occurs during devel-
opment or during wound healing, they stop proliferation 
and migration but instead start to develop new cell–cell 
junctions [1]. When male germ cells migrate across the 
seminiferous epithelium during meiosis, they sequentially 
undergo intimate interactions with Sertoli cells, which is 
required for their development from spermatogonia to 
spermatids [2]. Or when leukocytes transmigrate across 
the endothelium at sites of inflammation, they sequentially 
interact with endothelial cells through distinct adhesion 
receptors [3]. Rather than just strengthening the physical 
interaction between the cells, these interactions often serve 
to trigger intracellular signaling cascades which prime the 
cells for the next step in the respective chain of events.

Cell–cell adhesion receptors relay the information 
provided by cell–cell interactions through their cytoplas-
mic domains which frequently contain specific sequence 
motifs, such as phosphorylation consensus sites, PDZ 
domain-binding motifs, FERM domain-binding motifs, 
or proline-rich motifs. These interact with specific pro-
tein–protein interaction domains, such as SH2 domains, 
PDZ domains, FERM domains, or SH3 domains, respec-
tively, in cytoplasmic proteins [4]. By interacting with 
cytoplasmic proteins, cell–cell adhesion receptors recruit 
specific proteins resulting in the assembly of larger protein 
complexes at sites of cell–cell contacts and the initiation of 
signaling events at those sites. These interactions can also 
serve the opposite, i.e., the recruitment of cell adhesion 
receptors to pre-existing macromolecular complexes. This 
mechanism can localize the adhesion receptors to specific 
sites of cell contacts, where these may undergo trans-inter-
actions with other receptors of the opposing cell [5]. Once 
stabilized through these trans-interactions, the receptors 
can switch cytoplasmic partners thereby initiating new 
signaling cascades. Their interaction with cytoplasmic 
proteins must be considered as a highly dynamic process, 
which allows the cells to quickly respond to changes in the 
adhesive state [6].

Junctional adhesion molecule-A (JAM-A) is a mem-
ber of the JAM family of cell–cell adhesion receptors [7]. 
JAM-A was originally identified as the receptor of a mono-
clonal antibody that triggers the activation of platelets [8]. 
However, JAM-A is expressed by a variety of different 
cell types including various leukocyte subsets, epithelial 
cells and endothelial cells, Sertoli cells, hematopoietic 
stem cells, and cells of the nervous system such as glial 
cells and neuronal progenitor cells [9]. As expected from 

the diversity of these cell types and tissues, JAM-A is 
involved in a variety of physiological processes including 
the regulation of the epithelial barrier function [10–12], 
the regulation of immune homeostasis and inflammation 
[13–19], hemostasis [20–22], hematopoiesis [23], angi-
ogenesis [24], and the development of the central nerv-
ous system [25]. Interestingly, in some cases like platelet 
aggregation and hemostasis, JAM-A’s role is to inhibit 
intracellular signaling pathways [20–22] highlighting the 
diversity of JAM-A functions [9]. The cytoplasmic domain 
of JAM-A is rather short consisting of only 40 amino acid 
(AA) residues, which makes it unlikely that the multiple 
functions can be explained by interactions of the JAM-A 
cytoplasmic domain with many different proteins through 
independent regions. However, the cytoplasmic domain 
contains several potential phosphorylation sites, and, more 
importantly, it terminates in a PDZ domain binding motif 
(-SSFLV) [26]. All direct protein interactions hitherto 
identified are mediated by this short sequence motif. These 
observations thus suggest that the functional diversity of 
JAM-A can be explained to a large part by the molecular 
promiscuity of the C-terminal PDZ domain binding motif. 
In this review, we describe how this molecular promiscuity 
translates into functional diversity.

JAM‑A: structural organization 
and functional motifs

JAM-A consists of two immunoglobulin (Ig)-like domains, a 
transmembrane domain, and a short cytoplasmic tail. Several 
sequence motifs have been identified to be important for 
JAM-A functions. These include motifs in the extracellular 
domain, which regulate the adhesive activity of JAM-A, and 
motifs in the cytoplasmic tail, which regulate the interac-
tions with cytoplasmic proteins (Fig. 1).

The extracellular domain of JAM‑A

The membrane-distal V-type Ig-like domain (D1 domain) 
contains two motifs which mediate adhesive interac-
tions in cis and trans. The crystal structure indicates that 
JAM-A forms cis-dimers, and that the lateral association 
of two monomers is mediated by salt bridges between two 
oppositely charged AA residues (mouse JAM-A:  R58···E60, 
 E60···R58; human JAM-A:  R59···E61,  E61···R59;  E121···K63, 
 K63···E121) [27, 28]. The cis-dimerization motif of human 
JAM-A  (R59V60E61) is identical in all vertebrates, and a 
similar motif (consensus R[V,I,L]E) is conserved in JAM-B 
and JAM-C. Cis-dimer formation is a prerequisite for trans-
homophilic interactions, as suggested by the observations 
that a dimerization-deficient JAM-A mutant (JAM-A/
E61R_K63E) is diffusely localized in the membrane but not 
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enriched at cell–cell contacts [29]. The trans-homophilic 
interaction between two JAM-A cis-dimers on opposing cells 
is mediated by sequence motifs located at the opposite side 
of the cis-dimerization motif (Fig. 1b, c). Two motifs were 
identified by structure–function analyses,  N43N44P45 and 
 K97S98V99 [30], which are located within regions that were 
previously identified to mediate platelet aggregation [31]. 
Each of the two motifs is necessary for JAM-A enrichment 
at cell–cell junctions, but only the  N43N44P45 motif promotes 
the clustering of coated beads, suggesting that this motif is 
the predominant mediator of trans-homophilic binding.  N185 
seems to contribute to the trans-homophilic interaction of 
JAM-A as well [32]. This residue, however, is located in the 
membrane-proximal C2-type Ig-like domain (D2 domain), 
which is not involved in direct contacts between the two 
monomers [27, 28]. Since  N185 bears N-linked glycans, it 
is likely that glycosylation of  N185 stabilizes the protein in 
such a way that it more efficiently undergoes trans-homo-
philic interactions. This is in agreement with previous 
results obtained using recombinant proteins and biophysical 
methods [33]. The present data favor the following model: 
JAM-A forms cis-dimers prior to any adhesive interaction, 
probably during the passage through the secretory pathway 
[27]. JAM-A cis-dimers are diffusely localized at the surface 

of cells as long as cells are not engaged in contact forma-
tion. When cells form cell–cell contacts, trans-homophilic 
interaction of JAM-A dimers followed by lateral cluster-
ing results in a network of JAM-A molecules and in strong 
enrichment of JAM-A at intercellular junctions (Fig. 1b, c). 
Similar mechanisms of clustering at intercellular junctions 
have been proposed for nectins and cadherins [34–37].

The cytoplasmic domain of JAM‑A

The cytoplasmic domain of JAM-A contains a 
C-terminal class II PDZ domain binding motif 
(–S296F297L298V299–COOH) [26] which is conserved in 
JAM-A of all vertebrate classes. All proteins hitherto iden-
tified as direct binding partners interact with JAM-A through 
this motif, and all direct interaction partners contain at least 
one PDZ domain. These proteins (summarized in Fig. 2) 
include afadin [38, 39], zonula occludens protein-1 (ZO-
1) [38, 40, 41], ZO-2 [39], calcium/calmodulin-dependent 
serine protein kinase (CASK) [42], partitioning-defective 3 
homolog (PAR-3) [38, 43], multiple PDZ domain protein 1 
(MUPP1) [44], protein interacting with C kinase 1 (PICK-1) 
[45], Rap guanine nucleotide exchange factor 6 (RAPGEF6/
PDZ-GEF2) [46], and RAPGEF2/PDZ-GEF1 [39]. Besides 
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Fig. 1  JAM-A: structural motifs and functional interactions. a Princi-
pal organization of human JAM-A. The two Ig-like domains are indi-
cated by D1 (membrane-distal,  S28–K125, V-type) and D2 (membrane-
proximal,  P135–R228, C2 type). Disulfide bridges involve  C50–C109 
(D1) and  C153–C212 (D2). The cis-dimerization motif  (R59V60E61) and 
the motif involved in trans-homophilic interaction  (N43N44P45) are 
highlighted in rose. The single N-glycosylation site  (N185) is indicated 
by a symbol (filled circles). The two phosphorylation sites  (Y280, 
 S284) are highlighted in red. The type II PDZ domain binding motif 
 (F297L298V299) is highlighted in green. b Cis-dimerization of human 

JAM-A. Cis-dimerization is mediated by salt bridges (indicated by 
three magenta dots) between two oppositely charged AA residues 
 (E61···R59,  R59···E61). The AA residues involved in cis-dimerization 
were identified by X-ray crystallography. c Trans-homophilic interac-
tion of human JAM-A. Trans-dimerization is probably mediated pre-
dominantly by uncharged, polar residues (indicated by dotted lines) 
which are localized at the opposite face of the cis-dimerization motif 
in the D1 Ig domain. The trans-dimerization motif has been identified 
by structure–function analyses
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cytoplasmic scaffolding proteins, JAM-A interacts with the 
tetraspanin family member CD9 through its PDZ domain 
binding motif [47]. Since CD9 does not contain a PDZ 
domain in its three cytoplasmic domains, the requirement 
of the PDZ domain motif of JAM-A suggests an indirect 
interaction with CD9 that is mediated by a cytoplasmic PDZ 
domain protein. Together, these findings indicate a central 
role of the PDZ domain binding motif for the biological 
activities of JAM-A.

JAM‑A cytoplasmic interactors: PDZ 
domain‑containing scaffolds

All of the scaffolding proteins interacting with JAM-A 
are expressed by epithelial cells, and some of the proteins 
even co-localize at the same subcellular compartment. For 
example, ZO-1, ZO-2, PAR-3, and MUPP1 all co-localize 
at the tight junctions (TJ) of fully polarized epithelial cells 
[48]. These interactions, however, probably do not occur 
simultaneously but exist in a context-dependent manner. 
For example, some interactions might exist early during 
cell–cell contact formation, some might occur exclusively 
in fully polarized cells at the TJs, and some might exist only 
in migrating cells. In addition, the different interactions most 
likely occur with different affinities. PDZ domains were 
originally classified on the basis of COOH-terminal peptide 

motif binding specificities of their ligands [26, 49]. The two 
main (and one minor) specificity classes differed primar-
ily in the requirement of specific AA residues at the last 
three to four positions of their ligands [26, 49]. More recent 
evidence indicates that PDZ domain interactions with their 
ligands involve up to seven COOH-terminal AA residues of 
the ligand, and that 16 specificity classes of PDZ domains 
exist [50]. Also, protein sequences adjacent to the interact-
ing PDZ domain can influence the interaction with the PDZ 
domain ligand as well [38, 41]. Finally, binding of other 
proteins to the scaffold protein can influence the accessibility 
of its individual PDZ domain for their direct ligands [51]. 
Therefore, the interaction of JAM-A with a specific partner 
at a specific subcellular site is most likely influenced by a 
variety of parameters, including the relative abundance of 
the binding partner, the nature of the PDZ domain involved 
in the interaction, and the presence of proteins which allos-
terically regulate PDZ domain accessibility.

Afadin and guanine nucleotide exchange factors 
RAPGEF2 and RAPGEF6

Afadin (also called AF-6 [52]) is a multi-domain protein 
and exists in two major isoforms which differ in the pres-
ence of a C-terminal F-actin binding region [53] (Fig. 3). 
Afadin has been described to be localized at adherens junc-
tions (AJ) where it interacts with nectins [53, 54], but also 
at TJs where it can interact with ZO-1 [55]. Afadin interacts 
with JAM-A in a direct and PDZ domain-dependent manner 
[38]. In recently confluent Caco-2 cells, the localization of 
JAM-A at cell–cell contacts depends on the PDZ domain 
motif of JAM-A and correlates with the presence of afadin, 
suggesting a possible function of afadin in the recruitment of 
JAM-A [38]. This function is supported by the early locali-
zation of afadin at primordial, spot-like AJs (pAJs) [56], 
where it can interact with ZO-1 [55, 57] as well as with 
α-catenin [58, 59] (Fig. 4). Thus, the interaction of JAM-A 
with afadin probably helps to immobilize JAM-A at pAJs 
from where JAM-A promotes cell–cell contact formation 
through a PAR-3-dependent mechanism (outlined in detail 
below). 

More recent findings suggested a role of the JAM-A–afa-
din interaction during cell migration. Afadin contains two 
Ras-associating domains (Fig. 3), the first of which binds 
Ras family small GTPases like Ras and Rap1 [60]. JAM-A 
interacts with two guanine nucleotide exchange factors 
(GEF) for Rap1, RAPGEF6/PDZ-GEF2 [46] and RAPGEF2/
PDZ-GEF1 [39]. Assuming that individual monomers can 
interact independently with distinct cytoplasmic proteins, 
JAM-A cis dimers could place afadin-bound Rap1 in close 
proximity to one of its GEFs thus promoting Rap1 activa-
tion. Rap1 is known to regulate cell adhesion and migration 
by acting on cell–cell and cell–matrix adhesion receptors 
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Fig. 3  Afadin/AF-6 and guanine 
nucleotide exchange factors 
RAPGEF2 and RAPGEF6. a 
Afadin is a scaffolding protein 
that contains two Ras-associ-
ating domains, one Forkhead-
associated domain, one dilute 
domain, and one PDZ domain. 
The canonical isoform of afadin 
contains an F-actin interact-
ing region at its C terminus. b 
RAPGEF2 (PDZGEF-1) and 
RAPGEF6 (PDZGEF-2) are 
guanine nucleotide exchange 
factors with specificities for Ras 
and Rap small GTPases. FHA 
forkhead-associated, RA Ras-
associating, RGef Ras-GEF
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Fig. 4  Dynamic association of JAM-A with scaffolding proteins dur-
ing epithelial junction formation. a Migrating, non-contacting cells. 
In migrating cells JAM-A is evenly distributed in the plasma mem-
brane. b Primordial, spot-like adherens junctions. When cells become 
engaged in cell–cell contact formation, JAM-A is recruited to pAJs 
through its association with afadin and/or ZO-1. Afadin and ZO-1 
probably act in concert in recruiting JAM-A. Trans-homophilic inter-
actions between JAM-A on adjacent cells promotes JAM-A cluster-
ing at cell–cell junctions. JAM-A recruits Par3 and thus promotes the 
localization and activation of the Par3–aPKC–Par6 complex at pAJs. 
c Maturing junctions. The activity of the Par3–aPKC–Par6 complex 
promotes the maturation of cell–cell junction and the development 

of apico-basal polarity. JAM-A phosphorylation by aPKC is required 
for junction maturation. ZO-1 loses its association with afadin and 
interacts preferentially with JAM-A. Together with nectins, JAM-A 
supports the recruitment of MUPP1 and PATJ. d Mature junctions. 
In mature cell–cell junctions, TJs and AJs are formed and can be 
structurally distinguished (the TJ area is indicated by close mem-
brane appositions). JAM-A phosphorylation occurs specifically at 
the TJs, which is mediated by aPKC and antagonized by PP2A. At 
the TJs, JAM-A is associated with several scaffolding proteins, which 
link JAM-A to the actin cytoskeleton and which regulate Rap sign-
aling (see text for details). A fraction of non-phosphorylated JAM-A 
resides at AJs and is likely to be associated wit Afadin
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[61, 62]. In line with a regulation of Rap1 activity by JAM-
A, its downregulation reduces Rap1 activity and β1 integrin 
levels, and impairs cell spreading and cell migration [46, 
63]. Thus, by interacting with both the Rap1 scaffold afadin 
and the Rap1 GEF RAPGEF6 JAM-A triggers the activity 
of this GTPase at sites of cell–cell contacts. This regulatory 
role of JAM-A might be important during collective cell 
migration when cell–cell junctions are dynamically remod-
eled to coordinate the polarization and directed cell migra-
tion of individual cells [64].

The association of JAM-A with another Rap GEF, i.e., 
RAPGEF2/PDZ-GEF1, has been attributed to a role in 
maintaining the barrier function of epithelial cells [39]. 
The specific Ras family small GTPase regulated by JAM-
A-associated RAPGEF2 is Rap2c. In this case, however, 
the interaction of JAM-A with afadin seems to be indirect 
and bridged by ZO-2 [39] (Fig. 4d). RAPGEF2 could be 
associated not only directly with JAM-A but also indi-
rectly via ZO-2. The regulation of the barrier function by 
the JAM-A–ZO-2–afadin–RAPGEF2 module is mediated 
through inhibition of RhoA-mediated actomyosin contrac-
tility. Since suppression of actomyosin contractility is also 
required during collective cell migration [65], the inhibi-
tion of RhoA through Rap2c by the JAM-A–ZO-2–afa-
din–RAPGEF2 module could contribute to collective cell 
migration as well.

Zonula occludens proteins ZO‑1 and ZO‑2

ZO-1 and ZO-2 are members of the membrane-associated 
guanylate kinase (MAGUK) family of scaffolding proteins, 
which are characterized by one or several PDZ domains 
that are followed by one SH3 domain and one guanylate 

kinase (GuK)-like domain [66]. In some cases, additional 
protein–protein interaction domains such as L27 or WW 
domains are present, and in a few cases the stereotypical 
order of the PDZ, SH3 and GuK domains is changed, like 
in MAGUK with Inverted Domain Structure (MAGI) pro-
teins 1–3. The modular composition of MAGUK proteins 
of multiple protein–protein interaction domains makes them 
ideally suited to assemble protein complexes, and they are 
frequently found at sites of cell–cell contacts such as the TJ 
or synapses [66]. Importantly, the absence of ZO proteins 
in epithelial cells results in the absence of TJ strands and 
a complete loss of the epithelial barrier function, which is 
attributed to their role in assembling claudins at the TJs to 
allow their functional interaction and TJ strand formation 
[67].

Both ZO-1 and ZO-2 interact directly with JAM-A in a 
PDZ domain-dependent manner [38–41]. JAM-A interacts 
with PDZ domain 3 of ZO-1, and this interaction involves 
parts of the regions flanking the PDZ domain on both sides 
including the C-terminally localized SH3 domain [38, 41]. 
JAM-A interacts with PDZ domain 2 of ZO-2 [39], which 
is surprising since the overall organizations of ZO-1 and 
ZO-2 are very similar (Fig. 5), with exactly the same dis-
tance between the SH3 domain and PDZ domain 3, i.e., 14 
AA in the linear sequence.

Similar to its interaction with afadin, the interaction 
of JAM-A with ZO-1 could occur early during cell–cell 
contact formation. ZO-1 is among the early proteins 
localized at nascent cell–cell junctions [68] (Fig. 4b). 
It interacts with α-catenin [69–71] and could, therefore, 
be recruited to E-cadherin-based early contacts through 
E-cadherin-associated α-catenin [72]. Since its binding to 
α-catenin is mediated by the GuK domain, PDZ domain 
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3 would still be free for interacting with JAM-A (Fig. 5). 
As pointed out above, the JAM-A scaffold afadin also 
interacts with both ZO-1 and α-catenin, opening the pos-
sibility that ZO-1 and afadin act in concert in recruiting 
JAM-A (Fig. 4b). The interaction of JAM-A with ZO-1 
could be in particular important during the step follow-
ing the formation of pAJs, i.e., the development of TJs 
separate from AJs. This process is triggered by ZO-1 
and requires the interaction of ZO-1 with α-catenin [71]. 
Before the formation of TJs, ZO-1 is preferentially associ-
ated with afadin. When TJs form, ZO-1 dissociates from 
afadin and interacts with JAM-A [73] (Fig. 4c). These 
findings suggest that afadin might be more important in 
recruiting JAM-A to pAJs during early phases of cell–cell 
junction formation, whereas ZO-1 may be important for 
recruiting JAM-A to developing TJs. In line with such a 
role for ZO-1 in regulating JAM-A recruitment and locali-
zation at TJs are the observations that pAJs but not TJs do 
form in the absence of ZO-1, and that JAM-A is lost from 
cell–cell contacts in the absence of ZO proteins [67, 74].

The interaction of JAM-A with ZO-2 most likely occurs 
at the TJs, where it serves to recruit Rap2c through afadin 
to form a functional JAM-A–Rap2c–RAPGEF2 complex 
(Fig. 3), which suppresses actomyosin contractility [39], 
as described above. However, given the partial redun-
dancy of ZO-1 and ZO-2 functions [67, 75] and their sim-
ilar interaction partner profile (Fig. 5), it is possible that 
the JAM-A–ZO-2 interaction regulates certain aspects of 
cell–cell contact formation as well.

The interaction of JAM-A with ZO-1 and/or ZO-2 
could also serve to link JAM-A with the cytoskeleton. 
ZO-1 and ZO-2 both contain an F-actin-binding domain 
in the C-terminal part of the protein (Fig. 5). Both are 
not only linked to the F-actin cytoskeleton but regulate 
the assembly and dynamics of the cortical actin cytoskel-
eton [76]. The observation that JAM-A–ZO-1 complexes 
can be co-immunoprecipitated preferentially from Tri-
ton X-100-insoluble fraction [40] suggests that JAM-A 
is linked to the F-actin cytoskeleton through ZO-1. The 
relevance of the association with the actin cytoskeleton is 
still unknown. Interestingly, in endothelial cells JAM-A 
redistributes from cell–cell junctions to the apical mem-
brane domain in response to pro-inflammatory stimuli 
[77–79], probably to make JAM-A available at the apical 
membrane domain for transient interactions with leuko-
cyte-specific αLβ2 integrin [80, 81]. This redistribution 
occurs via macropinocytosis, a mechanism of endocy-
tosis that requires a dynamic reorganization of the actin 
cytoskeleton [82]. The association of JAM-A with the 
actin cytoskeleton through ZO-1 could thus help to inter-
nalize and redistribute JAM-A during inflammation.

Cell polarity protein PAR‑3

PAR-3 is a highly conserved cell polarity protein which 
forms a functional complex with PAR-6 and aPKC, the 
PAR–aPKC complex [83, 84] (Fig. 6). This complex regu-
lates various aspects of cell polarity including the cortical 
polarization of the C. elegans zygote, axon formation in 
developing neurons, front-to-rear polarity in migrating epi-
thelial cells, and apico-basal polarity in epithelial cells [85]. 
The regulation of apico-basal polarity in epithelial cells by 
the PAR–aPKC complex is mediated by mutual antagonistic 
interactions between the PAR–aPKC complex and PAR-1 
kinase. In polarized epithelia, PAR-3 phosphorylation by 
membrane-associated PAR-1 and PAR-1 phosphorylation by 
membrane-associated aPKC result in cytoplasmic sequestra-
tion of PAR-3 and PAR-1, respectively, through a protein 
14-3-3-dependent mechanism [86–89]. This biochemical 
mechanism allows the formation of distinct membrane 
domains without a physical intramembrane barrier.

JAM-A directly interacts with PDZ domain 1 of PAR-3 
[43, 90] (Fig. 6). The JAM-A–PAR-3 interaction most likely 
occurs at pAJs. As pointed out above, JAM-A is localized at 
pAJs together with E-cadherin, afadin, ZO-1 and α-catenin. 
The PAR–aPKC complex is not present at pAJs [90–92]. 
Shortly after the formation of pAJs, the inactive PAR–aPKC 
complex is recruited to pAJs by binding to JAM-A (Fig. 4). 
The local activity of Rho family small GTPases results in 
aPKC activation and the dissociation of the PAR-6–aPKC 
module from JAM-A-bound and Ser827-phosphorylated 
PAR-3 [93, 94]. Through the phosphorylation of PAR-1 
[86, 87], Numb [95], Lgl [96] and JAM-A [92] (see below 
in more detail), aPKC promotes the maturation of cell–cell 
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junctions and apico-basal membrane polarity [97]. In the 
absence of aPKC activity, pAJs still form but do not develop 
further into TJ and AJs [91, 97]. The interaction of PAR-3 
with JAM-A thus serves to precisely localize the PAR–aPKC 
complex to pAJs to regulate its activation at the correct sub-
cellular site.

In addition to its role in recruiting the PAR–aPKC com-
plex, JAM-A could also be involved in its activation. As 
pointed out before, the cytoplasmic PAR–aPKC complex 
is inactive and requires the interaction of Rho family small 
GTPases like Rac1 and Cdc42 with PAR-6 for activation 
[98, 99]. Recent observations indicate that JAM-A can acti-
vate Cdc42 during mitosis [100], suggesting that JAM-A 
might cooperate with other cell–cell adhesion receptors 
such as E-cadherin [101–103] and Nectins [104] in activat-
ing Cdc42 and/or Rac1 at pAJs and thus in the activation of 
the PAR–aPKC complex at pAJs.

The multi‑PDZ domain scaffolding proteins MUPP1 
and PATJ

MUPP1 and PATJ are scaffolding proteins with multiple 
PDZ domains (Fig. 7). Both are localized at TJ of polar-
ized epithelial cells [44, 105]. They contain a L27 domain at 
their N terminus which mediates the interaction with PALS1 
[105]. PATJ is part of the Crumbs3 (CRB3) complex, which 
consists of the transmembrane protein Crumbs3 (CRB3) and 
the two scaffolding proteins Pals1 and PATJ. The Crumbs 
complex is required for the development of apico-basal 
polarity in epithelial cells both in invertebrates and verte-
brates [106, 107].

JAM-A interacts with both MUPP1 and PATJ in a PDZ 
domain-dependent manner [44, 108]. The interaction with 
MUPP1 can be mediated through both PDZ domain 3 and 9, 
the interaction with PATJ is mediated through PDZ domain 
3 [44, 108]. Since PDZ domain 9 of MUPP1 is not con-
served in PATJ [108], the interaction is probably predomi-
nantly mediated by PDZ domain 3. Both MUPP1 and PATJ 
interact with several other proteins including integral mem-
brane proteins like nectins, claudins, and the JAM-A-related 

coxsackie and adenovirus receptor (CAR) [108, 109], and 
with other scaffolding proteins localized at TJs, like PALS1 
and ZO-3 [105, 110] (Fig. 7).

The functions of the interactions of JAM-A with MUPP1 
and PATJ have not been characterized in detail. During 
junction formation, MUPP1 and PATJ appear later than 
JAM-A at nascent cell–cell contact sites, and JAM-A- or 
nectin-1/-2-binding-deficient mutants of MUPP1 and PATJ 
do not efficiently accumulate at developing cell–cell junc-
tions [108]. These findings suggest that JAM-A cooperates 
with nectins in recruiting MUPP1 and PATJ at early phases 
during cell–cell contact formation (Fig. 4). The absence of 
PATJ in epithelial cells abrogates the development of func-
tional TJs affecting both the paracellular diffusion of ions 
and the intramembrane diffusion barrier of proteins [108, 
111, 112], which is most likely due to its role as part of the 
CRB3–PALS1–PATJ complex and the connection of this 
complex with the PAR–aPKC complex [113]. The absence 
of MUPP1, surprisingly, does not impair the development 
of functional TJs [108], suggesting that MUPP1 may only 
have an auxiliary role in cell–cell contact and TJ formation 
of epithelial cells and may be more important in assembling 
protein complexes at other subcellular sites known to be 
enriched in large protein assemblies such as synapses in neu-
rons [114, 115]. The functional relevance of the association 
of JAM-A with MUPP1 and PATJ in epithelial cell–cell con-
tact and TJ formation is still largely unexplored.

The MAGUK protein CASK

Calcium/calmodulin-dependent serine protein kinase 
(CASK) is a member of the MAGUK family of scaffolding 
proteins [66] (Fig. 8) with a central role in the assembly of 
protein complexes at synapses in neurons [116]. In epithe-
lial cells, CASK localizes to the basolateral surface [117], 
where it interacts with the PDZ domain protein LIN-7 and 
with the MAGUK family member Dlg [118]. The absence of 
CASK in epithelial cells disturbs the basolateral localization 
of LIN7 and of the Dlg–Scribble polarity complex without 

Fig. 7  MUPP1 and PATJ. 
MUPP1 and PATJ are structural 
paralogues with a highly similar 
organization. Both are scaffold 
proteins that consist almost 
exclusively of PDZ domains. 
PDZ domains in MUPP1 which 
are absent in PATJ are indicated 
by red asterisks. Note that two 
PDZ domains in MUPP1 which 
are not conserved in PATJ inter-
act with JAM-A and CAR. CAR  
coxsackie and adenovirus recep-
tor, Cld claudin, Nec nectin
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affecting apico-basal polarity, suggesting that CASK may 
have redundant functions in polarized epithelia [118].

JAM-A directly interacts with CASK through its PDZ 
domain motif and the CASK PDZ domain [40]. During 
cell–cell contact formation induced by  Ca2+-depletion/
repletion  (Ca2+-switch), CASK appears significantly later 
than JAM-A and other scaffolding proteins associating with 
JAM-A, such as afadin or ZO-1 [40]. CASK might, there-
fore, interact with JAM-A only in fully polarized epithelial 
cells, which might involve a fraction of JAM-A molecules 
that are localized basally to the TJs [92, 119]. The functional 
relevance of the JAM-A–CASK interaction in epithelial cells 
is still unclear. A JAM-A–CASK interaction has also been 
identified in sperm [120]. CASK interacts with JAM-A as 
well as with PMCA4B [121], a ten transmembrane domain-
containing  Ca2+ efflux pump, through its PDZ domain, and 
these interactions occur in the sperm flagellum. The absence 
of JAM-A increases CASK binding to PMCA4B, which 
inhibits PMCA4B activity, and as a consequence results in 
unbalanced intracellular  Ca2+ levels and impaired sperm 
motility [120, 122]. The interaction of JAM-A with CASK in 
sperms thus serves to sequester CASK away from PMCA4B 
to allow functional activity of its  Ca2+ efflux pump.

The scaffolding protein PICK1

Protein interacting with C kinase 1 (PICK1) is a scaffolding 
protein containing one PDZ domain and one Bin/amphiphy-
sin/Rvs (BAR) domain which mediates homo-dimerization 
[123] (Fig. 9). Its PDZ domain can interact with integral 
membrane proteins, cytoplasmic proteins and with mem-
brane-associated phosphoinositide lipids. More than 40 
ligands of different classes for this PDZ domain have been 
identified [123], indicating that the PDZ domain of PICK1 

is highly promiscuous. PICK1 is strongly expressed in the 
brain, where it is involved in synaptic plasticity by regulat-
ing the trafficking of glutamate receptors [124]. In epithelial 
cells PICK1 localizes to the basolateral membrane com-
partment, where it interacts with ErbB2 and EphB1 [125, 
126] and regulates the stability of cell–cell junctions [126]. 
PICK1 also interacts with several Nectin family members as 
well as with JAM-A, JAM-B, and JAM-C [45].

The interaction of PICK1 with JAM-A is most likely 
direct and PDZ domain dependent [45]. Since PICK1 local-
izes to the basolateral membrane compartment in polar-
ized epithelial cells, the interaction with JAM-A most 
likely occurs at the basal part of cell–cell contacts and thus 
involves the fraction of JAM-A molecules that is localized 
basally to the TJs. Apart from the observations that JAM-A 
exists with PICK1 in a protein complex as evidenced by 
co-immunoprecipitation [45], no additional information on 
the JAM-A–PICK1 interaction is available. The functional 
relevance of this interaction is, therefore, unclear.

JAM‑A lateral interactors: tetraspanins 
and integrins

CD9 is a member of the tetraspanin (Tspn) family which 
contains 33 members in mammals [127]. Tspns are type 
II proteins characterized by two extracellular loops, four 
transmembrane domains, and three cytoplasmic domains 
(Fig. 10). Some structural features distinguish Tspns from 
other proteins with four transmembrane domains like clau-
dins or MarvelD. These include a number of AA residues 
which are conserved in Tspns but not other proteins. These 
comprise in particular amino acids present in the small intra-
cellular loop as well as the CCG motif and two additional 
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Cys residues in the large extracellular loop, which are 
involved in the formation of disulfide bonds [128] (Fig. 10). 
One of the most distinctive functional features of Tspns is 
their ability to form lateral associations with partner pro-
teins both through their extracellular domains, which medi-
ate interactions in particular integrins and Ig superfamily 
members, and through their transmembrane domains, which 
mediate Tspn–Tspn associations. These properties com-
bined with their ability to bind specific cytoplasmic proteins 
through their cytoplasmic domains highlight the principal 
function of Tspns, i.e., the formation of a platform for pro-
teins to allow their physical and functional interaction [129].

JAM-A interacts with tetraspanin CD9 in platelets and 
in endothelial cells [47, 130]. The interaction with CD9 
requires the PDZ domain motif of JAM-A [47]. CD9 does 
not contain a PDZ domain in its cytoplasmic domains to 
which JAM-A could bind, but contains a C-terminal type 
III PDZ domain motif (–R225E226M227V228–COOH) [131] 
suggesting that the interaction is mediated by a cytoplas-
mic PDZ domain protein. The interaction between JAM-A 
and CD9 is stable in the presence of detergents like Tri-
ton X-100, which disrupts Tspn–Tspn interactions [132], 
strongly suggesting that the putative PDZ domain protein 
directly connects JAM-A with CD9.

In endothelial cells, the interaction of JAM-A with CD9 
most likely serves to assemble a ternary complex consist-
ing of JAM-A, CD9 and αVβ3 integrin, which regulates 
p44/42 MAPK activation in response to bFGF signaling 
[47, 133]. How JAM-A, which dissociates from CD9 and 
αVβ3 integrin in response to bFGF [47, 133], mediates this 
activity is still unclear. In the absence of JAM-A or CD9, 
cells fail to respond to bFGF [24, 47] suggesting that an 

intact ternary JAM-A–CD9–αVβ3 integrin complex and the 
release of JAM-A is necessary for bFGF to mount a proper 
MAPK activation. One potential mechanism would be that 
the release of JAM-A, which is predominantly present as 
a monomer in the complex [47], allows the formation of 
a functional and signaling-active JAM-A dimer. A similar 
mechanism has been described for the JAM-A-related pro-
tein JAML [134].

JAM‑A phosphorylation

The cytoplasmic domain of human JAM-A contains two 
tyrosine residues and eleven serine or threonine residues 
(Fig. 11). Mass spectrometry analyses identified phospho-
rylation of Y280 in different cell types including lung cancer 
cell lines, epithelial cells, and endothelial cells [135–137], as 
well as phosphorylations of S284, S287 and S296 in HeLa 
cells, HEK293 cells, liver cells, and platelets [138–141]. 
Two of these phosphorylations, i.e., Y280 and S284, have 
so far been identified to be functionally important. Y280 is 
phosphorylated in endothelial cells and in platelets by as 
yet unidentified kinases [21, 133]. S284 is phosphorylated 
by a conventional PKC isoform (PKCα) in platelets [142], 
and by an atypical PKC isoform (aPKCζ) in epithelial cells 
[92] (Fig. 11).

JAM‑A phosphorylation at Tyr280

The evidence suggesting a role for Tyr280 phosphoryla-
tion has been obtained from ectopic expression studies. As 
pointed out before, bFGF fails to mount a p44/42 MAPK 
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response in endothelial cells which lack JAM-A expression 
[47, 133]. Both a JAM-A mutant that lacks the cytoplasmic 
domain and a JAM-A mutant that lacks Tyr280 (JAM-A/
Y280F) act in a dominant-negative way in this assay sug-
gesting that phosphorylation of Tyr280 is involved in 
JAM-A’s signaling activity during bFGF-mediated p44/42 
MAPK activation in endothelial cells (as described above).

More direct evidence for JAM-A Tyr280 phospho-
rylation and in particular its functional role has been 
obtained in platelets, in which JAM-A is associated with 
αIIbβ3 integrin [21, 130]. As analyzed using P-Tyr-specific 
antibodies, αIIbβ3 integrin-associated JAM-A is tyrosine 
phosphorylated in the absence of stimulation [21]. Tyr-
phosphorylated JAM-A binds c-Src kinase (Csk), a kinase 
that negatively regulates the activity of c-Src [143]. Since 
the cytoplasmic tail of JAM-A contains only two tyrosine 
residues (Fig. 11), and since experimental evidence sup-
porting tyrosine phosphorylation exists only for Tyr280 
[135–137], it is likely that Csk binds to the P-Tyr280 resi-
due of JAM-A, possibly through its SH2 domain [144]. 
Platelet stimulation with agonists such as fibrinogen 
or thrombin results in reduced Tyr phosphorylation of 
JAM-A and its dissociation from αIIbβ3 integrin [21, 22]. 
Interestingly, in resting platelets as well as in fibrinogen-
stimulated platelets JAM-A is associated with the tyros-
ine-protein phosphatase non-receptor type 1 (PTPN1), and 
specific inhibition of PTPN1 prevents fibrinogen-stimu-
lated JAM-A dephosphorylation [22], strongly suggesting 
that PTPN1 is responsible for JAM-A dephosphorylation 
in response to platelet activation. These observations thus 
suggest that JAM-A tyrosine phosphorylation in platelets 
prevents premature platelet activation in the absence of 
agonists by linking Csk to αIIbβ3 integrin-associated c-Src 
[145]. In line with this model, the absence of JAM-A in 

mice results in platelet hyperreactivity, enhanced throm-
bosis and atherosclerosis [19, 22, 146].

JAM‑A phosphorylation at Ser284

In platelets, Ser284 (Ser285 in mice, Fig. 11) of JAM-A is 
phosphorylated by PKCα (or other conventional PKC iso-
forms) in response to agonists such as thrombin or collagen 
[142]. Phosphorylation is rapid and peaks 1 min after throm-
bin stimulation. The kinetics of Ser284 phosphorylation 
correlates with the accumulation of JAM-A as well as the 
translocation of PKC isoforms to sites of cell–cell contact in 
platelet aggregates [142], suggesting that Ser284 phospho-
rylation occurs at platelet–platelet contact sites. The specific 
function of JAM-A Ser284 phosphorylation in platelets is 
not known yet.

In epithelial cells, Ser284 of JAM-A is phosphorylated 
by aPKCζ [92]. This phosphorylation occurs early during 
cell–cell contact formation and correlates with the localiza-
tion of the PAR–aPKC complex at pAJs. Given the function 
of JAM-A in recruiting PAR-3 to pAJs [90], this suggests 
that JAM-A serves both as positional cue for the localization 
of the PAR–aPKC complex and as substrate after aPKC has 
been activated at pAJs. Ser284 phosphorylation is important 
for junctional maturation and TJ formation as indicated by 
the delay in cell–cell contact formation and impaired bar-
rier formation, respectively, in cells expressing a JAM-A 
S285A mutant. In fully polarized epithelial cells, Ser284 
phosphorylation of JAM-A is restricted to TJ, suggesting 
that continuous Ser284 phosphorylation is required for the 
maintenance of the epithelial barrier [92]. JAM-A Ser284 
phosphorylation at TJs is antagonized by PP2A, a phos-
phatase localized at TJs. Interestingly, PP2A also directly 
interacts and dephosphorylates aPKC as well as other TJ 
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proteins, and ectopic expression of its catalytic subunit 
results in TJ disassembly and increased paracellular perme-
ability [147, 148]. These observations suggest that JAM-A 
phosphorylation at Ser284 is balanced by the aPKC–PP2A 
module. It is, therefore, possible that JAM-A phosphoryla-
tion not only regulates TJ formation, but that JAM-A phos-
phorylation is altered during pathological conditions which 
are associated with a loss of the epithelial barrier function, 
such as epithelial-to-mesenchymal transition (EMT) [149], 
hypoxia [150], or the presence of pathogens [151, 152].

Phosphorylation of JAM-A at Ser284 has recently been 
described to be involved in the function of JAM-A as mecha-
nosensor in endothelial cells. When mechanical forces are 
applied on JAM-A, or, alternatively, when endothelial cells 
are exposed to shear stress, the cells respond by increasing 
the activity of RhoA [153], suggesting that JAM-A acts as 
a force sensor which transmits mechanical force-triggered 
signals to RhoA. The increased RhoA activity elicited by 
either of the two mechanical stimulations depends on phos-
phorylation of JAM-A at Ser284. Interestingly, the force-
on-JAM-A-triggered JAM-A Ser284 phosphorylation is 
preceded by activation of aPKCζ, and force-on-JAM-A-
triggered RhoA activation is abolished after inhibition of 
aPKCζ [153]. These observations not only illustrate a novel 
role of JAM-A as mechanosensor in endothelial cells but 
also highlight the importance of aPKCζ-mediated Ser284 
phosphorylation during this process.

Conclusions

JAM-A is a cell–cell adhesion molecule which is expressed 
by a variety of cell types and which has adopted a variety of 
physiological functions in vertebrates [9]. In light of these 
pleiotropic functions the structural organization of JAM-A 
appears rather simple. Its first Ig domain contains two motifs 
which regulate cis-dimerization and trans-homophilic 
interaction. Its cytoplasmic tail with only 40 AA residues 
contains four phosphorylation sites and a C-terminal PDZ 
domain binding motif. From the four sites of phosphoryla-
tion that have been experimentally identified so far, evidence 
for a functional relevance of these phosphorylations exists 
for two, i.e., Tyr280 and Ser284. Kinases that are respon-
sible for the phosphorylations have only been identified 
for Ser284. Therefore, it will be important to identify the 
kinases responsible for the three other sites of phosphoryla-
tion. With respect to Tyr280, which is a possible binding site 
for Csk, it is tempting to speculate that its phosphorylation 
in platelets is mediated by c-Src, as a mechanism of phos-
phorylation by c-Src to generate binding sites for Csk has 
been described in endothelial cells for VE-cadherin Tyr685 
[154]. The C-terminal PDZ domain binding motif is surpris-
ingly promiscuous. At least eight different proteins directly 

interact with JAM-A through this motif. This molecular 
promiscuity explains in part the functional pleiotropy of 
JAM-A. Many interactions have not been studied in enough 
detail to understand their functional relevance. It is also pos-
sible that phosphorylations influence the binding specificity 
of the PDZ domain binding motif thereby contributing to 
its promiscuity. In particular, Ser296 at position minus 3 
from the COOH terminus (the COOH-terminal Val299 being 
defined as position 0 in the PDZ domain motif nomenclature 
[26] (Fig. 1), which has been identified to be phosphorylated 
in HEK293T cells by mass spectrometry [141], is likely to 
contribute to the interaction of JAM-A with PDZ domains 
[50]. It is to be expected that more molecular mechanisms 
which regulate the physiological functions of JAM-A will 
be revealed in the future.
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