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Abstract
Group 2 innate lymphoid cells (ILC2s) are a subset of innate immune cells that do not express antigen receptors. ILC2-
mediated type 2 responses, which are mainly characterized by the production of interleukin (IL)-5 and IL-13, play key roles 
in inducing inflammation, protecting against infection, and maintaining tissue homeostasis. Although recent years have 
largely enhanced our understanding of the transcriptional networks and soluble mediators that regulate ILC2 development 
or function, emerging evidence suggests that ILC2s express a variety of cell-surface molecules and interact with themselves 
or other immune cells. These cell–cell interactions are essential in the modulation of ILC2 number and their type 2 cytokine 
production during ILC2-driven allergic inflammation. In this review, we summarize the extensive array of cell-surface mol-
ecules on ILC2s that mediate cell–cell interactions and their role in regulating ILC2 generation or function in the context of 
ILC2-induced allergic inflammation.
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Introduction

Group 2 innate lymphoid cells (ILC2s) are now recognized 
as an important subset of innate immune cells that parallel 
CD4+ Th2 cells in function [1]. In contrast to Th2 cells, 
ILC2s lack antigen-specific receptors and respond rapidly 
to local cytokines, such as IL-33, IL-25, and thymic stromal 
lymphopoietin (TSLP) [2–4]. ILC2s were first found to pro-
mote type-2 immunity in gut-associated tissues of mice in 
2010 [5–7], and subsequently discovered at other mucosal 
barrier sites and other sites, including lung, skin, liver, bone 
marrow, kidney, visceral adipose tissue, and blood. Interest-
ingly, ILC2s are positioned to be tissue-resident cells, as 

they develop and proliferate locally [8, 9], though ILC2s 
could migrate from one tissue to another in the context of 
type 2 inflammation [10].

The development or function of ILC2s has been exten-
sively and thoroughly studied over the past decade. In gen-
eral, ILC2 develops from common lymphoid progenitors 
(CLPs) in the fetal liver or adult bone marrow [11, 12], 
which is followed by early innate lymphocyte precursors 
(EILPs) that have the potential to differentiate into all ILC 
subtypes, containing ILC1, ILC2, ILC3, and NK cells [13]. 
EILPs then develop into a common helper-like ILC pro-
genitors (CHILP) that can further give rise to ILC2 lineage-
restricted progenitors, which turn into mature ILC2s. The 
development of ILC2 is mainly controlled by GATA3 and 
RORα [4, 12]. Much work has been done in ILC2 regulatory 
network, including transcriptional factors and soluble media-
tors, as excellently reviewed elsewhere [4, 14, 15]. Func-
tionally, upon activation, ILC2s can produce a large amount 
of IL-5, IL-13, IL-9, and amphiregulin (Areg), which play 
an important role in protecting against helminth infection, 
allergic inflammation, and tissue repair [4]. Of note, emerg-
ing evidence suggests that ILC2s express a variety of cell-
surface molecules, through which they can interact with 
themselves or other immune cells, such as regulatory T cells 
(Treg) and Th2 cells. This crosstalk is essential in regulating 
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ILC2 responses in the context of lung inflammation. Here, 
we will focus on the role of cell-surface molecule-mediated 
cell–cell interactions in the regulation of ILC2 level and 
function, and address their effect on ILC2-driven allergic 
inflammation.

Cell‑surface molecule‑mediated ILC2–cell 
interactions in the context of allergic 
inflammation

ILC2s act early in immune responses and are key players 
in the induction of allergic inflammation. Although IL-33, 
IL-25, and TSLP have been recognized as type 2 alarmins 
that can activate ILC2s [4, 16, 17], in recent years, various 
cell-surface molecules that mediate cell–cell interactions 
have been found to serve as important ILC2 regulators, and 
play critical roles in ILC2-driven allergic inflammation. 
Based on their role in ILC2 responses, these cell-surface 
molecules can be classified into two groups: costimulatory 
molecules and coinhibitory molecules (Fig. 1).

Costimulatory molecules

ICAM‑1: LFA‑1

Intercellular cell adhesion molecule-1 (ICAM-1 or CD54), 
which mainly binds to leukocyte function-associated mol-
ecule (LFA)-1, is an Ig-like transmembrane protein that 
is typically expressed on endothelial cells and leukocytes 
[18]. ICAM-1: LFA-1 is required not only in cell migra-
tion, but also in cell–cell interactions and can serve as an 
important pair of T-cell costimulatory molecules [19, 20]. 
Notably, they have been shown to play an important role in 
the pathogenesis of allergic airway inflammation [18, 21, 
22]. Interestingly, we and others recently found that ILC2s 
express both ICAM-1 and LFA-1 [10, 23]. We showed that 
ICAM-1 is required for the development and function of 
ILC2, as loss of ICAM-1 in mice results in fewer ILC2s in 
bone marrow and peripheral tissues and less severe allergic 
lung inflammation than that of wild-type mice after aller-
gen challenge. ICAM-1-deficient CLPs cannot efficiently 
differentiate into ILC2s both in vivo and in vitro. Of note, 

Costimulatory molecules

Coinhibitory molecules
ILC2

ILC2

Skin

ILC2

TL1A

Th2

APC

Th2

EC

APC

iTreg

Fig. 1   Cell-surface molecule-mediated cell–cell interactions regulat-
ing ILC2 responses in allergic inflammation. These molecules mainly 
include costimulatory molecules and coinhibitory molecules. Of note, 

all the cells that express ILC2 ligands or receptors may bind to their 
counterparts on ILC2s. EC endothelial cells; APC antigen presenting 
cells; iTreg induced regulatory T cell
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suppressing the interaction of ICAM-1 and LFA-1 using 
blocking antibodies significantly reduced lung inflammation 
in mice. We further showed that downregulation of extra-
cellular signal-regulated kinase (ERK) phosphorylation and 
resultant degradation of GATA3 protein may mediate the 
effects of ICAM-1 on ILC2 [23]. Besides these effects, one 
recent study found that β2 integrins (CD18), a subunit of 
LFA-1 that is highly expressed on ILC2s, is required for 
Alternaria-induced ILC2 trafficking from the circulation into 
the lung [10]. This study suggests that ILC2s are not only 
resident cells, but can also migrate from the circulation to 
the lung during helminth infection as described [24]. Moreo-
ver, several early studies have found that ICAM-1: LFA-1 
is also critical for Th2 responses [25–27], which can initi-
ate chronic lung inflammation. Thus, these findings suggest 
that disruption of ICAM-1 and LFA-1 binding might be a 
potential strategy to treat asthma.

ICOS: ICOS‑L

Inducible costimulator (ICOS), a costimulatory molecule 
belonging to CD28 superfamily, is typically expressed on 
activated T cells [28], and is essential for Th2 development 
and function [29–31]. It has been shown that both human 
and murine ILC2s express both ICOS and ICOS-ligand 
(ICOS-L), and their interaction is required for ILC2 sur-
vival and efficient function through the activation of STAT5 
and Bcl-2, an anti-apoptotic molecule [32]. Therefore, ICOS 
deficiency, or blocking ICOS caused a sharply decrease in 
ILC2 number and type 2 cytokine production in IL-33- and 
Alternaria-induced lung inflammation. Another two studies 
also found that ICOS signaling regulates ILC2 and loss of 
ICOS resulted in the amelioration of airway inflammation 
in mice [33, 34]. In addition, dendritic cells (DC) expressed 
a high level of ICOS-L [35, 36], suggesting that DC in the 
lung may also directly interact with ILC2s under inflamma-
tory conditions. Hence, ICOS: ICOS-L signaling pathway 
is an efficient modulator of ILC2 function and homeostasis, 
which provides new therapeutic approaches that target ILC2s 
to treat asthma.

TNFRSF: TNFSF

It is known that several tumor necrosis factor receptor super-
family (TNFRSF) members and their ligands (TNFSF) act 
as key co-stimulatory signals to T-cell proliferation or sur-
vival [37, 38]. Modulation of TNF superfamily signaling 
pathways is expected to have therapeutic benefit for treat-
ing autoimmunity, cancer, and infectious diseases [39, 40]. 
A number of recent studies showed that several TNFRSF: 
TNFSF provide co-stimulatory signals to ILC2s, and are 
discussed as below.

The tumor necrosis factor receptor superfamily, member 4 
(TNFRSF4), also known as CD134 or OX40, is an important 
co-stimulatory molecule in T-cell activation, while its ligand 
OX40L (TNFSF4) is expressed on many immune cells, espe-
cially on DC [41]. OX40: OX40L interaction is crucial for 
the expansion or survival of Th2 cells [42]. A recent study 
showed that lung ILC2s expressed high levels of OX40L 
upon exposure to IL-33 and provided tissue-restricted T-cell 
co-stimulation that was essential for Th2 and Treg (prefer-
entially GATA3+ Treg) cell responses in the lung; deletion 
of OX40L on ILC2s abrogated Th2 and Treg cell expansion 
and allergen-induced lung inflammation [43]. Of note, sev-
eral earlier studies also suggested that the ILC2 and T-cell 
crosstalk was indispensable for initiating type 2 immunity 
[44–48].

TNFRSF25 (also known as death receptor 3, DR3), a 
receptor that can engage with its cognate ligand TNFSF15 
(also known as TNF-like ligand 1A, TL1A), is constitutively 
expressed on ILC2s and is involved in ILC2 expansion, sur-
vival, and function in the lung [49, 50]. Interestingly, TL1A, 
which is highly expressed by activated myeloid cells, epi-
thelial and endothelial cells under lung and gut inflamma-
tion [51], alone is sufficient to activate ILC2s [50]. TL1A 
can also synergize with IL-25 and IL-33 to enhance ILC2 
effector function [50]. Moreover, a recent study further 
demonstrates that TL1A enhances the activation of DR3+ 
skin ILC2s, thus contributing to atopic dermatitis [52]. In 
addition, lung ILC2s also express a high level of glucocor-
ticoid induced TNFR-related protein (GITR, also known as 
TNFRSF18) [5, 33], which binds to GITR-L that is mainly 
expressed on antigen presenting cells (APCs) and endothe-
lial cells [53]. A recent report shows that GITR: GITR-L 
(DTA-1) signaling in ILC2s promotes autocrine IL-9-in-
duced IL-5 and IL-13 production in the context of papain-
induced lung inflammation [54]. Altogether, these findings 
show that TNFRSF: TNFSF signals are emerging as potent 
modulators of ILC2 responses to allergens, and suggest that 
interfering the above pathways may afford clinical benefit 
in allergic asthma.

NKp30

NKp30 (NCR3, CD337) is an activating type I immunoglob-
ulin-like transmembrane receptor that is mainly expressed 
on human NK cells, but not present in mice [55, 56]. A 
subset of ex vivo and cultured ILC2s express NKp30 that 
engages with its ligand B7-H6, which activates NF-κB sign-
aling in ILC2 to produce type 2 cytokines [57]. Of note, the 
expression of B7-H6 in lesional skin biopsies of patients 
with atopic dermatitis was significantly upregulated, sug-
gesting that NKp30: B7-H6 interaction may be involved in 
ILC2-driven skin inflammation [57].
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Other costimulatory molecules

A study reported that ILC2s express MHC-II and can 
interact with antigen-specific T cells to trigger a dialog in 
which IL-2 production from T cells enhances ILC2 pro-
liferation and IL-13 production [58]. Moreover, they also 
found that ILC2s express CD80 and CD86, and blocking 
antibodies targeting MHC-II or CD80 and CD86 inhibited 
ILC2 expansion and type-2 cytokine production [58]. Thus, 
MHC-II and the costimulatory molecules CD80 and CD86 
on ILC2s may also play an important role in mediating the 
crosstalk between ILC2 and T cells in the context of allergic 
inflammation.

Coinhibitory molecules

KLRG1

Killer cell lectin-like receptor G1 (KLRG1) is typically 
expressed on NK cells and T cells, and binding to E-cad-
herin suppresses cytokine production and proliferation 
of NK and CD8+ T cells [59–61]. Notably, KLRG1 is 
expressed on mature ILC2s from both mice and humans, and 
has been identified as a marker of mature tissue ILC2s [16, 
62]. KLRG1: E-cadherin interaction inhibits human ILC2 
proliferation and IL-5 and IL-13 secretion in response to 
IL-25 and IL-33 in vitro. Moreover, skin ILC2s from the 
patients with atopic dermatitis (AD) express higher levels 
of KLRG1 than that of healthy controls, whereas E-cad-
herin expression is downregulated in keratinocytes, sug-
gesting that reduced E-cadherin expression may enhance 
ILC2 responses and lead to disease pathogenesis [16]. In 
addition, in human asthma, an earlier study found that loss 
of E-cadherin on lung epithelium associates with asthma 
severity [63], further suggesting that KLRG1: E-cadherin 
interaction may be an important negative regulator of 
ILC2 homeostasis and function. Interestingly, four studies 
recently showed that sex hormones are important regulators 
of KLRG1+ ILC2 responses in the context of allergic air-
way inflammation [64–67]. Of note, lung ILC2s from male 
mice express higher levels of KLRG1 than that of female 
mice, though female mice have higher numbers of lung-
resident ILC2s [64, 65]. Moreover, a functional subset of 
KLRG1− ILC2s in females was observed after reproduc-
tive age, which contributes to the sex bias in lung ILC2s 
[65]. However, considering the interaction of KLRG1 and 
E-cadherin, whether KLRG1− ILC2s from female mice have 
a more potent function than KLRG1+ subset in male mice 
requires further investigation. Altogether, these studies sug-
gest that KLRG1 may be an important cell-surface molecule 
that negatively regulate ILC2 responses and is involved in 
sex bias in allergic inflammation.

ICOS‑L

It is known that ICOS-L on ILC2s can bind with ICOS+ 
ILC2s in cis or trans formation to promote ILC2 homeostasis 
and function [32, 34]. Intriguingly, induced Tregs (iTregs) 
also express ICOS and is necessary to suppress airway 
hyperreactivity (AHR) [68]. Investigators have shown that 
direct cell–cell contact is required for the Treg cell–ILC2 
interaction [69]. Specifically, ICOS on iTregs can bind with 
ICOS-L on ILC2s. Their interaction promotes iTregs to pro-
duce suppressive cytokines TGF-β and IL-10 that inhibit 
ILC2 responses in ILC2-dependent asthma [69, 70]. More-
over, the interaction between ICOS-L+ ILC2s and ICOS+ 
iTregs also restricts the interaction with ICOS on ILC2s, 
further leading to ILC2 suppression. Therefore, peripheral 
expansion of iTregs has the potential to become a promising 
therapeutic target against ILC2-dependent asthma.

PD‑1: PD‑L1

Programmed death protein 1 (PD-1), a cell-surface receptor 
that binds to its ligand PD-L1, is a crucial immune check-
point that can prevent autoimmune diseases via suppressing 
inflammatory T-cell responses [71, 72]. However, PD-1 and 
PD-L1 are a pair of important negative regulators in several 
cancers and immunotherapies targeting their interaction 
have been well established [72, 73]. Of note, the expres-
sion of PD-1 is enhanced on activated ILC2s [74]. Interest-
ingly, PD-1 has also been proposed to be an important nega-
tive regulator of KLRG1+ ILC2 function in both mice and 
humans [75]. An intrinsic defect in PD-1 signaling increased 
the number of KLRG1+ ILC2s by promoting STAT5 activa-
tion [75]. Whereas a study also found that lung ILC2s also 
express PD-L1 and upon interaction with PD-1 Th2 cells 
promotes the expression of GATA3 and production of IL-13 
by Th2 cells both in vitro and in vivo [76]. Thus, these stud-
ies suggest that PD-1 and PD-L1 are important modulators 
of ILC2 function and their functions in the context allergic 
inflammation require further studies.

Concluding remarks

Like Th2 cells, ILC2s can produce copious amounts of type 
2 cytokines upon activation, and thus play a pivotal role in 
inducing allergic inflammation. During the past decade, the 
transcriptional networks coordinating ILC2 development 
and function have been well documented using microar-
rays or RNA-Seq [77–80]. However, treating ILC2-driven 
allergic diseases by targeting their transcriptional factors is 
difficult due to their roles in other cells. Noteworthy, increas-
ing evidence shows that ILC2 responses are intricately reg-
ulated by multiple factors including cytokines, hormones, 
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lipid mediators, neuropeptides, and nutrients,as discussed 
[14, 15]. Moreover, similar to T cells, ILC2s express various 
important cell-surface molecules which mediate the inter-
action of ILC2s with other immune or stromal cells. Their 
interactions are crucial for ILC2 survival, proliferation, and 
cytokine production. These findings provide potential thera-
peutic strategies for tackling ILC2-induced allergic diseases, 
such as asthma and AD. Importantly, further studies are 
required to translate such findings into humans.

The following questions remain to be delineated. First, 
as shown in the above, ILC2s express both co-stimulatory 
molecules and co-inhibitory molecules, and how these 
receptors or ligands integrate to affect ILC2 homeostasis 
and function in different tissues under physiological and 
pathological conditions needs to be explored. Second, sev-
eral studies revealed that ILC2s display heterogeneity and 
plasticity [81–83]. ILC2s can be divided into conventional 
ILC2s (mainly stimulated by IL-33), and inflammatory 
ILC2s (mainly stimulated by IL-25) which have plasticity 
and can convert into conventional ILC2s [24, 84]. Moreover, 
two subsets of activated lung ILC2 (one producing IL-10 
[85] and the other producing IL-17 [86]) were recently found 
in the context of allergic airway inflammation. As such, it 
is important to determine whether ILC2 sub-phenotypes 
are regulated by the above co-signaling molecules. Third, 
although ILC2s are considered as resident cells [8, 9], sev-
eral lines of evidence suggest that ILC2s can be recruited to 
inflamed tissues via sphingosine 1-phosphate (S1P)-medi-
ated chemotaxis [24], or β2 integrins [10]. The trafficking 
of ILC2s is of particular interest, as it shows that ILC2s, 
like adaptive T lymphocytes, can be activated locally and 
exert their function distantly. Further investigation of ILC2 
trafficking will certainly provide novel therapeutic strate-
gies for treating ILC2-driven diseases. Finally, as most 
data are derived from mouse studies, these findings may 
be different in humans. A better understanding of the roles 
of cell-surface molecule-mediated cell–cell interactions in 
human ILC2s would definitely contribute to the development 
of novel therapeutic strategies for ILC2-mediated allergic 
inflammation.
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