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Abstract

Alzheimer’s disease (AD) is a multifactorial age-related brain disease. Numerous pathological events run forth in the brain
leading to AD. There is an initial long, dormant phase before the clinical symptoms become evident. There is a need to
diagnose the disease at the preclinical stage since therapeutic interventions are most likely to be effective if initiated early.
Undoubtedly, the core cerebrospinal fluid (CSF) biomarkers have a good diagnostic accuracy and have been used in clini-
cal trials as end point measures. However, looking into the multifactorial nature of AD and the overlapping pathology with
other forms of dementia, it is important to integrate the core CSF biomarkers with a broader panel of other biomarkers
reflecting different aspects of pathology. The review is focused upon a panel of biomarkers that relate to different aspects
of AD pathology, as well as various studies that have evaluated their diagnostic potential. The panel includes markers of
neurodegeneration: neurofilament light chain and visinin-like protein (VILIP-1); markers of amyloidogenesis and brain amy-
loidosis: apolipoproteins; markers of inflammation: YKL-40 and monocyte chemoattractant protein 1; marker of synaptic
dysfunction: neurogranin. These markers can highlight on the state and stage-associated changes that occur in AD brain with
disease progression. A combination of these biomarkers would not only aid in preclinical diagnosis, but would also help in
identifying early brain changes during the onset of disease. Successful treatment strategies can be devised by understanding
the contribution of these markers in different aspects of disease pathogenesis.

Keywords Diagnosis - Neurofilament light - Neurodegeneration - Synaptic dysfunction - Neurogranin - Fatty acid-binding
proteins - Neuroinflammation

Introduction dormant phase where neuropathological changes are accu-
mulating but the person has normal cognition [2]. Numer-
ous biochemical pathways have been described to explain
the pathogenesis of AD. Starting with the identification

of amyloid beta (Af) in 1985, as the main component of

Alzheimer’s disease (AD) is a neurodegenerative dis-
ease whose pathology starts decades before the clinical
symptoms appear [1]. The preclinical stage represents a
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amyloid plaques [3], our understanding of Ap and amyloid
precursor protein (APP) metabolism, and tau pathology
(neurofibrillary tangles and neuropil threads) has improved
with time. Thorough research has been carried out to
understand other aspects of AD pathogenesis and there-
after, numerous hypotheses have been put forth. AD may,
therefore, be considered a result of a number of pathologi-
cal changes in the brain, such as amyloidosis, neurode-
generation, inflammation, synaptic dysfunction, disruption
of neuronal signaling and neuronal membranes, oxidative
stress and mitochondrial dysfunction [4]. These changes
direct the trajectory of preclinical AD to AD dementia and
make AD a multifaceted disease.

Several AD drug trials have failed, probably because the
treatments are initiated at an advanced stage where dam-
age is too severe, and the drug is not able to demonstrate
a clinical benefit because the brain is too compromised to
benefit from a treatment [5-7]. It is imperative to initiate
an early treatment and ensure that the correct patient popu-
lation is included in the clinical trials. Therefore, there
is an urgent need to diagnose AD and initiate treatment
at the preclinical stage, so as to obtain a clinical benefit.
The first step in devising successful treatment strategies is
to identify biomarkers for accurate diagnosis of AD, and
thereafter develop therapeutic strategies. It is essential to
find an ideal biomarker that should also help in monitoring
the mechanism of action and the biochemical effects of
the treatment drug [8]. As per the regulatory bodies such
as Food and Drug Administration (FDA) and European
Medicine Agency (EMA), exploration and validation of a
biomarker should be integrated with drug development to
accelerate the journey towards development of an effec-
tive therapeutic intervention [9]. Clinical trials that aim
at evaluating the effectiveness of therapeutic strategies
can come up with reliable results when the therapeutic
effect of these agents is monitored using markers that
reflect over the molecular changes of the disease. As far
as AD is concerned the promising markers in this context
are the cerebrospinal fluid (CSF) markers [8]. The CSF
biomarkers are the potential candidates to facilitate early
diagnosis of AD because the AD pathological hallmarks
start decades before the appearance of cognitive symp-
toms [10]. The core CSF biomarkers [CSF Ap-42, total tau
(T-tau) and phosphorylated tau (P-tau)] have been exten-
sively studied and validated in relation to AD pathology,
conversion and progression. There is a further need to
explore and evaluate additional CSF biomarkers, which
can aid in early and accurate diagnosis of AD, as well
as in monitoring the downstream effects of a therapeutic
intervention. As seen from the high failure rate of AD
drug trials, it is extremely essential to explore additional
CSF biomarkers which reflect on individual pathologies,

@ Springer

meet the regulatory qualification and can help to enrich the
clinical trial populations.

The CSF biomarkers as a part of AD
diagnostic criteria

The biomarkers of AD have been divided into three main
categories: the biomarkers of amyloid deposition (A), tau
pathology (T) and neurodegeneration (N) (A/T/N) [11].
The biomarkers of amyloid accumulation include abnormal
tracer retention on amyloid positron emission tomography
(PET) imaging and CSF Ap-42. The biomarkers of tau
pathology include CSF P-tau or tau PET. The biomarkers
of neurodegeneration include CSF T-tau and '®F-2-fluoro-2-
deoxy-p-glucose positron emission tomography (FDG-PET)
and brain atrophy via magnetic resonance imaging (MRI).
The brain imaging techniques have been used as end points
in clinical trials [12]. However, the limited accessibility, lack
of molecular specificity, exposure to radioactivity and cost
factor involved in neuroimaging markers particularly Ap
imaging, restricts their use in routine analysis [13]. There-
fore, the CSF is being extensively studied worldwide, in AD
biomarker research. The CSF is in direct contact with the
brain and the biochemical changes occurring in the brain
are reflected in it [14]. The CSF biomarkers have a causal
relation to AD pathology and may provide an insight into
the different aspects of AD pathogenesis. The core CSF
biomarkers (decreased CSF Ap-42 and elevated T-tau and
P-tau) have shown a high specificity and sensitivity for
AD diagnosis [15]. CSF Ap-42 correlates well with Ap
pathology [16], whilst the correlation of the tau markers
with pathology is less clear; recent data indicate that CSF
T-tau and P-tau may be markers of a neuronal reaction to
Ap pathology, which with time will translate into full-blown
pathology (neurodegeneration and tangle pathology) [17]. In
any case, these markers are quite specific for identifying an
individual with preclinical AD [18].

In the recent years, with the advances in our understand-
ing of AD pathophysiology, it has become evident that the
relation between clinical symptoms and disease pathology
varies, and the cognitive impairment evolves gradually. As
aresult, in 2011 the National Institute on Aging (NIA) and
the Alzheimer’s Association (AA) revised the diagnostic and
research criteria for AD and included the CSF biomarkers
in addition to the imaging markers [19]. In 2014, the Inter-
national Working Group (IWG) reanalysed the pathological
and topographical biomarkers of AD. Diagnostic changes
were proposed for typical, atypical, mixed and preclinical
AD. According to this, the pathological markers such as
decreased CSF Af-42 and elevated T-tau and P-tau were
considered as specific makers of disease pathology [18].
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The need of additional CSF biomarkers

The research on core CSF biomarkers (CSF Ap-42, T-tau
and P-tau) began nearly 2 decades ago. Reduced CSF A
and elevated T-tau and P-tau were found in the CSF of
AD patients. [20, 21]. This created a pathway for further
research to look over into the diagnostic potential of these
biomarkers, which reflect upon brain amyloidosis and neu-
rodegeneration. Today, these biomarkers are extensively
used in diagnosis and clinical trials. They have a high
enough diagnostic accuracy and reflect upon the neuro-
pathological hallmarks of AD: the neurofibrillary tangles
and amyloid plaques [22]. Additional biomarkers are still
needed to complement the core biomarkers for early diag-
nosis and prognosis of AD and get a better insight into
the different pathogenic pathways associated with the AD.

The core CSF biomarkers are relatively stable in clini-
cal AD and, therefore, do not serve as good markers in
studying disease progression [23, 24]. The CSF Ap-42 is
sharply reduced in the preclinical phase of AD while the
levels are found to be constant in the subsequent phases
[25]. The altered levels of these core markers do not pre-
dict the rate of cognition decline as they do not correlate
with the Mini Mental Status Examination (MMSE) [26]. In
another multi-center longitudinal study, it was found that
there was lack of association between the changes in CSF
biomarkers and the rate of change or decline in cognition
over a period of 4 years [27]. In addition, these markers do
not perform well enough in differentiating AD from other
forms of dementia due to partially coinciding pathologies
[28]. The therapeutic strategies that aim at reducing amy-
loid load have failed to show a clinical benefit in spite of
clearing AP [29]. Studies have shown that the reduced
levels of CSF Ap negatively correlate with the brain amy-
loid load [30]. However, this association does not match
with the clinical diagnosis of AD. The discordance has
been found mainly in the cognitively normal participants,
which have reduced CSF A but are amyloid negative as
seen by PET. Therefore, CSF A levels are altered in the
preclinical stage [31-34]. This has led to the contamina-
tion of cohort groups due to the inclusion of CSF AP posi-
tives in the control group. This necessitates the need for
exploration and evaluation of additional or novel biomark-
ers that aid in accurate diagnosis, correlate with cognitive
function, but also help in better understanding the disease
progression and different aspects of AD pathology.

AD is a multifaceted disease, and AD dementia is a
result of a number of pathological changes in the brain
(Fig. 1). Numerous proteins or other biomolecules play
significant roles in these pathological pathways. A reduc-
tion or elevation of their levels in the CSF is associated
with a pathological change, which can directly highlight
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Fig.1 Alzheimer’s disease: a multifaceted disease

upon the extent of damage, or can occur as a protective
response against the damage. A detailed understanding
of disease pathogenesis at molecular level through CSF
biomarkers can help in designing new efficacious chemi-
cal entities for treatment. In addition, biomarkers can
serve as targets for therapeutic agents aimed to combat
the associated pathological change. In context of a clinical
trial, a biomarker can serve as a surrogate end point. The
time consuming end points associated with the ongoing
trails in AD can be reduced with the application of addi-
tional makers [35, 36]. An early diagnosis aided through
CSF biomarkers would ensure cohort uniformity through
recruitment of correct patient population. This would help
in improving clinical trial design and interpretation [37].
The clinical stages of AD are well defined and understood,
but it is important to identify and understand the differ-
ent pathophysiological stages of AD. CSF biomarkers
would help in understanding and identifying these stages.
To bring advancement in the field of AD biomarker and
therapeutic research, it is of utmost important that new
biomarkers in relation to AD pathogenesis be explored in
the CSF and their potential to diagnose AD at preclinical
stage be evaluated in well-established cohorts.

This review highlights upon the various CSF biomarkers
that reflect upon different aspects of multifaceted AD, and
also highlights upon the different studies conducted on these
biomarkers in the past. Each biomarker helps to track differ-
ent pathological events. An assessment of the levels of these
markers in CSF might reveal an independent information or
might unfold the association between individual pathologies.
Altogether, the CSF measure of the biomarkers that relate to
individual AD pathologies such as brain amyloidosis, neuro-
degeneration, synaptic dysfunction and neuroinflammation
can help in better understanding the disease pathogenesis,
accurate diagnosis and prognosis and thereby help in devis-
ing effective treatment strategies (Fig. 2).
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Fig.2 CSF biomarkers for Alz-
heimer’s disease (AD) diagnosis
and understanding different
aspects of pathology
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Role in AD pathogenesis

In the CNS, it is mainly expressed by astrocytes and to
some extent by the microglia [39, 40]. It is a constituent
of lipoproteins, and in the CNS it is mainly confined to
the HDL (high-density lipoproteins) [41]. In the brain,
apoE plays a vital role in regulating cholesterol metabo-
lism and transport [42]. ApoE plays a significant role in

ApoE is a glycoprotein, which is highly expressed in  AD pathogenesis by affecting amyloid and tau pathology,

Fig. 3 Role of apoE in the
pathophysiology of AD (AD
Alzheimer’s disease, ApoE
apolipoprotein E, Af amyloid
beta)
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(Fig. 3). Genome wide association studies (GWAS) have
revealed that APOE locus, on chromosome 19, with &4
variant as the major genetic risk for late onset Alzhei-
mer’s disease (LOAD) [43, 44]. In response to neuronal
injury, the expression of apoE is upregulated [45]. The
three isoforms of apoE (E2, E3, E4) differentially affect
cholesterol transport, metabolism and synaptic plasticity,
repair and neurite growth. The E4 isoform is least effec-
tive in regulating cholesterol transport, efflux and synaptic
plasticity [46, 47].

ApoE mediates clearance of Af in an isoform-depend-
ent manner, through endocytosis of Ap lipoprotein com-
plexes, by affecting proteolytic degradation of Af and
its transport across BBB. Lipidated apoE binds to Af to
form Ap lipoprotein complexes [48] and facilitates endo-
cytosis of these complexes. ApoE binds with its recep-
tors, low-density lipoprotein receptor (LDLR) and lipo-
protein receptor-related protein (LRP1), and mediates the
endocytosis of lipoproteins [49]. The three isoforms bind
differentially with Ap (E2>E3 > E4), and differentially
influence the lipidation of AP and hence the endocytosis
[50]. ApoE also regulates proteolytic degradation of AP,
and among the isoforms E4 isoform is the least efficient
in promoting the degradation [51]. ApoE also influences
AP clearance by regulating its transport across BBB, in
an isoform-dependent manner. The E2 and E3 isoforms
mediate faster clearance of Af through the BBB as com-
pared to E4 [52]. This could be attributed to the effect of
apoE on the integrity of tight junctions in BBB, which is
impaired in the apoE4-BBB model and apoE4 knock-in
mice [53]. ApoE also affects accumulation of AP by pro-
moting formation of AP filaments [54]. The presence of
apoE is essential for Ap accumulation, which is isoform
dependent. The E4 isoform promotes much higher accu-
mulation than E2 and E3 [55, 56]. No amyloid deposits
were found in APOE‘"7) transgenic mice (APPY7!7F+/7),
that overexpresses the amyloid precursor protein, as com-
pared to APOE /%) and APOE *'*) [55]. Significant dif-
ferences in Ap deposition have been found in PDAPP mice
(which develop age-dependent Af accumulation), accord-
ing to the apoE isoform expressed. The amyloid load in
hippocampus was two times higher in E4 mice compared
to E3 and 4.6 times higher than E2 mice [56].

Neurodegeneration in AD is also influenced by apoE.
ApoE affects neuroinflammation, and tau-mediated neuro-
degeneration. ApoE4 exacerbates neuronal death and modu-
lates microglial activation [57], and overexpression of apoE4
results in tau hyperphosphorylation [58]. Higher tau levels
have been found in P301S/E4 tau transgenic mice compared
with P301S/E2 and P301S/E3 mice. The brain atrophy and
neuroinflammation were much more in E4 mice as com-
pared to E2 and E3 [57]. Recent data also suggest intriguing
interactions between apoE isoforms and the activation state

of disease-associated microglia, which may be part of the
disease-promoting effect of apoE4 [59].

CSF biomarker studies pertaining to ApoE

ApoE is a major apolipoprotein found in the CSF [60].
Numerous studies have evaluated the levels of apoE in the
CSF, so as to establish it as a potential marker (Table 1). To
evaluate the CSF levels, researches have used methods such
as enzyme-linked immuno sorbent assay (ELISA), mass
spectrometry, multiplex assays and flow cytometry. Stud-
ies on CSF levels of apoE in AD show inconsistent results,
with either decreased [61-64] or elevated [65—-67] levels as
compared to controls. As per some studies APOE genotype
may influence CSF ApoE levels. Higher CSF levels of apoE
have been reported in individuals having APOE €4 alleles
[68]. Strong positive correlations have been found between
CSF apokE levels and CSF tau in AD patients as compared to
controls [65]. The correlation between CSF apoE levels and
CSF tau are also APOE genotype dependent [69]. The cor-
relation between the two markers suggests that altered apoE
levels in CSF could be attributed to the neurodegeneration in
AD or vice versa. ApoE binds to protein tau in an isoform-
dependent manner [70]. The association of apoE CSF levels
with genotype, and genotype-dependent correlation between
ApoE and CSF Tau, suggests that neurodegeneration is iso-
form influenced.

Thus, quantification of apoE levels can highlight upon
state of amyloid and tau pathology in AD brains. Owing
to the significant role of apoE in AD pathogenesis, further
studies should be conducted in well-established cohorts to
establish apoE as a potential CSF diagnostic and theragnos-
tic biomarker. There have been inconsistencies with regard
to CSF apoE levels. However, these inconsistencies could be
attributed to a number of factors such as sample variability,
variability in method or technique of analysis or unequal
gender distribution in study groups.

Clusterin
Role in AD pathogenesis

Clusterin also called apolipoprotein J is a stress-induced
chaperone glycoprotein which can stabilize stressed pro-
tein structures. It does so by binding to the hydrophobic
surfaces of the partially unfolded proteins [77, 78]. In the
brain, it is highly expressed by astrocytes [79]. It plays
varied roles in AD pathology. Genome wide association
studies (GWAS) have revealed that single nucleotide
polymorphisms (SNP’s) associated with clusterin (CLU)
gene are associated with AD [80]. Genetic variations have
been located by resequencing of CLU-coding exons. These
variations can lead to non-synonymous substitutions,
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Table 1 (continued)

Analysis method

Association with APOE genotype/core mark-

ers

CSF levels in AD/study groups

Study groups

Study

ELISA

Significantly reduced in AD as compared

10) and controls

AD (n=11), FTD (n

(n=10)

Blennow et al. [62]

to the controls and FTD group. Also,

significantly reduced in FTD as compared

to controls

insertions or deletion in B chain of clusterin affecting its
further processing and functioning [81].

Clusterin affects amyloid pathology in multiple ways.
It interacts with the A peptides to form complexes. The
antibodies specific to clusterin strongly stain the amyloid
deposits in AD brain [82]. This interaction keeps A solu-
bilized and prevents its fibrillation, and also regulates its
transport across the BBB [83—-85]. The binding of clusterin
with A increases its clearance through BBB. A study on
mice models has shown that Ap clearance is increased by
83%, when bound to clusterin [85]. Another study con-
ducted on Tg6799 mouse has found reduction in amyloid
plaques and severity of cerebral amyloid angiopathy, upon
intravenous administration of clusterin [86]. Clusterin lev-
els are increased in response to Ap accumulation. Higher
intracellular clusterin levels were found upon exposure of
Ap in APP/PSEN1 mice and hippocampal neurons [87].
The levels are significantly increased in frontal cortex and
in the hippocampus in AD [88]. The elevated levels are
localized to the regions abundant in AP [89]. This could be
attributed as a protective response to combat the excessive
Ap deposition within the brain tissue. It likely suppresses
Ap deposition in conjunction with ApoE. This is evident
through the results obtained from a study conducted on
PDAPP transgenic mice, to look at the influence of apoE
and clusterin on AP accumulation. AP accumulation was
higher and early in apoE‘~™ and clusterin~~) mice. In
addition, the Ap levels were elevated in CSF and brain
interstitial fluid, in such mice [90].

It acts as a neuroprotectant by combating oxidative
stress and apoptosis [91]. It prevents the mitochondrial
transfer of activated Bcl-2-associated X (Bax) protein,
a member of Bcl-2 protein family, which is known to
accelerate apoptosis. Clusterin is also involved in double-
stranded DNA break repair [92-94]. Clusterin also influ-
ences inflammation and immune response. The expression
of clusterin by astrocytes is increased on treatment with
Interleukin 2 [95]. It inhibits the membrane binding of
membrane attack complex and regulates the nuclear fac-
tor kappa light chain enhancer of activated B cell (NF-xB)
pathway [96, 97]. NF-xB is a transcription factor, whose
activation causes reactivation of astrocytes, increases the
expression of inflammatory mediators such as cytokines
and free radicals [97]. Therefore, NF-xB is an inducer of
neuroinflammation. Clusterin inhibits the NF-kB activity
by stabilizing inhibitors of NF-kB (IkBs) [98].Therefore,
clusterin plays varied roles in AD pathology and serves
as neuroprotectant by combating apoptosis, regulating
inflammation and immune response and preventing aggre-
gation of AP (Fig. 4). It can certainly serve a potential
stage and state AD biomarker.

@ Springer



1840

K. Dhiman et al.

Fig.4 Varied roles of clusterin
in AD pathology (Bax protein
Bcl-2-associated X protein,
BBB blood brain barrier, DNA
deoxyribonucleic acid, NF-kB
nuclear factor kappa light chain
enhancer of activated B cells,
IxBs inhibitors of NF-kB).
Yellow circle in the figure
represents clusterin
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CSF biomarker studies pertaining to clusterin

Numerous studies have evaluated the diagnostic potential
of clusterin in CSF using different methods such as ELISA,
mass spectrometry and multiplex assays. Most of the stud-
ies have reported that clusterin is significantly increased
in CSF of AD patients (Table 2). The increased levels of
clusterin could be attributed as a defence against neurode-
generation. CSF clusterin levels correlate well with the core
CSF biomarkers (T-tau and P-tau, and Ap-42), and are also
significantly associated with CSF tau/Ap ratio [99-101].
CSF clusterin levels were found to be associated with the
entorhinal cortex atrophy rate among CSF Ap-42-positive
individuals. [102]. These correlations very likely suggest
that CSF clusterin levels are elevated in relation to the patho-
logical changes in the brain. Elevation in CSF levels of clus-
terin and the correlation with core biomarkers suggest that
elevated levels of clusterin could be attributed as a protective
response to the amyloidosis and increased neurodegenera-
tion in the AD brain. Looking at the role of clusterin in AD
pathogenesis, a further exploration of its role as an AD bio-
marker is needed in the CSF.

AB oligomers (ABOs)

Role in AD pathogenesis and biomarker studies
Neurodegeneration is a result of self-association of Ap mole-
cules and not just caused by the presence of Ap. The oligom-

ers of AP can be even more toxic than fibrillar Ap aggregates
[107]. They affect synapse composition, shape and density,

@ Springer
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thereby play a significant role in synaptic degeneration in
AD [108]. Administration of cell-derived APOs inhibit
long-term potentiation of synaptic transmission, induced
in rats [109]. The CSF levels of ABOs have been quanti-
fied in AD. Using a sensitive assay, it has been found that
CSF levels of APOs significantly increase in AD patients as
compared to aged controls [110]. Lower levels of CSF APOs
have been reported in AD patients as compared to those with
other forms of dementia [111]. In another study the ratio of
APOs/AB-42 was found to be significantly elevated in AD
as compared to the non-AD group [112]. The diagnostic
potential of ABOs in AD should be further explored using
well-established cohorts.

Biomarkers of neuroinflammation
YKL-40/chitinase-3-like protein 1 (CHI3L1)
Role in AD pathogenesis

YKL-40 is a glycoprotein belonging to the family of 18
glycosyl hydrolases. It is also called human cartilage
glycoprotein-39 (HC gp-39) or chitinase-3-like-1 pro-
tein (CHI3L1). It binds with chitin but does not have a
chitinase activity [113]. It is secreted by the chondro-
cytes, synovial cells, vascular smooth muscle cells, mac-
rophages and neutrophils [114, 115]. It is named based on
the first three terminal amino acids: tyrosine (Y), lysine
(K), and leucine (L) [115, 116]. YKL-40 plays a key role
in inflammation, therefore, influences AD pathology. In
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response to neuroinflammation, the expression of YKL-
40 is increased and is localized to astrocytes in the region
of inflammation [117]. It is expressed by the microglia,
and the expression of YKL-40 messenger ribonucleic acid
(mRNA) is increased in AD [118]. Microglia and astro-
cytes are associated with senile plaques in AD and play a
key role in immune response in the brain [119]. The micro-
glia are activated in response to neurodegeneration. The
plaque-associated activated microglia are large and mostly
phagocytic [120]. They constantly scavenge the plaques,
damaged neurons, infectious agents and promote inflam-
mation in damaged tissue [121, 122]. Af, either alone or
together with inflammatory mediators, sets up an activa-
tion cycle to activate the microglia and thereby generate an
immune response in the brain [123]. Microglial activation
thereby plays an important role in AD [124]. Therefore,
microglial-expressed protein YKL-40 is a potential marker
of neuroinflammation and plays a significant role in AD
pathogenesis.

CSF biomarker studies pertaining to YKL-40

The CSF levels of YKL-40 are elevated in AD. Through
numerous studies, it has been have found that increased
levels of YKL-40 in CSF have prognostic and diagnostic
utility as a biomarker for AD. YKL-40 aids in preclini-
cal AD diagnosis and discriminating cognitively normal
individuals from mild cognitive impairment (MCI) or AD
patients (Table 3). The role of YKL-40 is also seen in dif-
ferential diagnosis of dementia [125]. The levels of YKL-
40 have been found to significantly correlate with MMSE
scores [126]. Studies suggest YKL-40 is elevated early in
the AD continuum and can serve as a valuable neuroin-
flammatory marker to detect early pathological changes
and can even be used to study disease progression. The
association of CSF YKL-40 with CSF T-tau and P-tau
(Table 3) indicates that YKL-40 can help in tracking the
neuroinflammation associated to neurodegeneration. Being
a potential diagnostic and prognostic marker, it can serve
as a target to combat AD-associated neuroinflammation.
YKL-40 levels are consistently increased with age. This
suggests that neuroinflammation occurs normally with
aging. However, the still higher increase in €4 carriers
suggest that neuroinflammation is exacerbated with amy-
loidosis and neurodegeneration [127]. On the contrary,
a recent study also indicates that inflammation could
be driven by amyloidosis but, independent of the APOE
€4 status. In this study, the CSF levels were elevated in
Ap-positive individuals (low CSF Af), who were APOE
€4 non-carriers [128]. Therefore, YKL-40 can be used as
a potential marker to stage the neuroinflammation associ-
ated with AD.

@ Springer

Monocyte chemoattractant protein 1 (MCP-1)
Role in AD pathogenesis

Chemokines are low-molecular weight cytokines. They are
secondary inflammatory mediators induced by the primary
mediators such as interleukin-1. These act as chemoattract-
ants and direct leucocytes to the site of inflammation. They
express their action through guanine nucleotide-associated
protein (G protein)-coupled receptors. There are approxi-
mately 50 cytokines which are classified into four families;
CC cytokines (have 2 adjacent cysteine residues at the
N terminal), CXC cytokines (have two terminal cysteine
residues separated by one amino acid), C cytokines (have
2 cysteine residues in total, one at N terminal and other
at the downstream) and CX;C cytokines (have 2 cysteine
residues separated by 3 amino acids at the N terminal)
[134, 135]. Inflammation plays a significant role in AD
pathogenesis. The cytokines and chemokines, being
inflammatory mediators, are involved in AD pathogenesis.
They are released by the astrocytes, which play a role in
Ap generation and degeneration [136]. The production of
chemokines is increased in response to AP and plays an
important role in migration of astrocytes. The treatment
of neonatal astrocytes with A significantly increased the
production of MCP-1. In the same study, it was found that
astrocytes from adult mice migrate in response to MCP-1,
indicating the role of MCP-1 in astrogliosis and degrada-
tion of AP [137]. Deficiency of chemokine receptors in
transgenic mice models has shown to promote early AP
accumulation [138]. The astrocytes proliferate in response
to neurodegeneration and increase the deposition of toxic
AP [139]. Ap itself increases the expression of chemokines
and cytokines by astrocytes, by reactivating them. There
is a continuous cycle of activation and reactivation of
astrocytes leading to inflammation and neuronal injury.
[140, 141]. Therefore, the chemokines being mediators of
inflammation play a significant role in AD pathogenesis.

CSF biomarker studies pertaining to MCP-1

Many studies have demonstrated the role of CC chemokine,
MCP-1 or CCL2 in AD diagnosis. Studies have reported
elevated CSF levels of MCP-1 in AD (Table 4). MCP-1
levels in CSF are positively correlated with the decrease
in MMSE scores and higher baseline levels predict a faster
rate of cognitive decline in AD [142-144]. Therefore,
MCP-1 could serve as a marker of cognitive decline along
the AD continuum. MCP-1 plays an important role in AD-
associated neuroinflammation and can serve a potential
biomarker to track the same.
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Biomarker of synaptic dysfunction
Neurogranin
Role in AD pathogenesis

Neurogranin is a calmodulin-binding, postsynaptic pro-
tein found in the dendrites [149]. It plays an important
role in memory potentiation. It binds with calmodulin and
releases the same when intracellular concentration of cal-
cium increases. The released calmodulin binds with the
calcium ions and activates a signal transduction pathway
[150]. Synaptic dysfunction is linked to decline in cogni-
tion and occurs prior to neuronal degeneration [151, 152].
The brain levels of synaptic proteins including neurogra-
nin are reduced in AD at an early stage. The synaptic dys-
function in terms of reduction in synapses is also seen in
MCI which is higher in mild AD. Thus, synaptic dysfunc-
tion occurs early in AD and indicates disease progression
[153-157]. Neurogranin regulates the calcium-dependent
postsynaptic signaling triggered by calmodulin [158]. It
has been found that neurogranin [Ng™/*)] mice exhibit
greater intracellular calcium concentration as compared
to Ng™/) mice upon tetanic stimulation [159]. Expres-
sion of neurogranin reduces with aging [160]. Reduced
brain levels of neurogranin can cause a dysregulation of
post-synaptic signaling. Reduced neurogranin mRNA
expression has been reported in hippocampal and retros-
plenial regions of the brain in aged mice [160]. Therefore,
a reduction of synaptic proteins such as neurogranin in the
brain relates to synaptic dysfunction and the CSF levels of
such proteins can be used for disease diagnosis and moni-
tor the progression.

CSF biomarker studies pertaining to neurogranin

In the past few years, a number of researchers have evalu-
ated the diagnostic and prognostic potential of the bio-
marker neurogranin. A number of assay methods have
been developed to quantify neurogranin in the CSF and
have reported elevated neurogranin levels in AD (Table 5).
In a study conducted on various synaptic proteins includ-
ing neurogranin in post-mortem brain samples, it was
found that synaptic proteins discriminated dementia cases
from controls with over 90% sensitivity and specificity
[161]. The CSF neurogranin levels correlate with brain
atrophy and amyloid load and also help in predicting
decline in cognition. The CSF levels differ significantly
between stable MCI (sMCI) and MCI to AD converters
and between sMCI and AD [162-165]. Increased CSF lev-
els of neurogranin are specific to AD and not seen in other

neurodegenerative diseases [166, 167]. Therefore, it is a
promising biomarker for early AD diagnosis, predicting
progression and distinguishing AD from other forms of
dementia. It can act as a theragnostic marker, which can
help in monitoring biochemical effects of drugs used to
improve synaptic function. Since, synaptic dysfunction is
associated to cognitive decline, neurogranin can help in
staging the rate of cognitive decline along the AD con-
tinuum. However, large longitudinal studies are needed to
further validate the role of neurogranin in AD diagnosis
and prognosis.

Biomarker of altered microglial activity

Soluble ectodomain of triggering receptor
expressed on myeloid cells (STREM2)

Role in AD pathogenesis

Ectodomain of triggering receptor expressed on myeloid cells
(TREM2) is a transmembrane glycoprotein immune receptor
expressed in a number of cells such as dendritic cells, osteo-
clasts, tissue macrophages and the microglia. It contains an
ectodomain with three N-glycosylation residues, a transmem-
brane sequence and a short intracellular tail. Its functions are
mediated via DNAX-activating protein of 12 kDa (DAP12)
signaling [172, 173]. In the brain, it is expressed by the micro-
glial cells and regulates microglial-mediated phagocytosis and
clearance of apoptotic neurons [174, 175]. It plays an impor-
tant role in regulating immune responses in the brain and the
production of inflammatory cytokines [176, 177]. TREM2 is
upregulated in mice with mutant APP and amyloid deposi-
tion [178]. The mutations associated with the TREM?2 gene
are associated with an increased risk for AD. GWAS, next
generation sequencing, Sanger sequencing and genotyping
have revealed that R47H TREM?2 variant is a risk factor for
AD, which can increase the risk of developing AD by two- to
fourfold [179-182]. This can be associated to tau pathology,
since carriers of the risk variant were found to possess higher
levels of T-tau [183]. It has also been found that mutations in
TREM? reduce AP clearance [184]. TREM2 undergoes regu-
lated membrane proteolytic processing by ADAM 10 (A dis-
integrin and metalloproteinase domain-containing protein 10)
and y secretase, and releases the soluble ectodomain STREM?2
into the extracellular space [185]. The STREM2 is detectable
in the CSF and the levels have been quantified in different
neurological disorders such as AD, frontotemporal demen-
tia (FTD) and multiple sclerosis [186, 187]. Since, TREM2
regulates microgliosis, the soluble fragment of the protein,
STREM2, could play a role in regulating TREM2-mediated
microgliosis. The exact biological role of the soluble fragment
is unclear. However, using in vitro and in vivo models, Zhong

@ Springer
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et al. have shown that STREM?2 promotes microglial survival
and induces production of inflammatory cytokines [188].
In this study, it was found that administration of STREM2-
fc fusion protein increased the microglial viability, in both
TREM? knockout mice as well as wild type. Administration
of STREM?2 reduced the microglial apoptosis induced by
removal of granulocyte macrophage colony-stimulating fac-
tor (GM-CSF), in both knock out and wild mice. In addition,
it was found that sSTREM?2 treatment activates the microglia
by increased expression of inflammatory cytokines [188]. A
significant reduction in microgliosis as well as microglial clus-
tering around A plaques has been found in Trem2~~5XFAD
mice as compared to the controls [189]. Therefore, STREM2
likely plays a role in microgliosis, but further studies are
needed to affirmatively elucidate the exact role of STREM2.

CSF biomarker studies pertaining to STREM2

Numerous studies have revealed that CSF levels of sSTREM?2
are altered in AD (Table 6). The levels are elevated in domi-
nantly inherited AD cases years before the onset of symp-
toms [190], which highlights that microgliosis occurs prior
to the onset of symptoms and later to brain amyloidosis. The
Nasu-Hakola disease (NHD) TREM?2 mutation carriers have
lower CSF levels of sSTREM2 [187]. This signifies that there
is altered protein production in mutation carriers. Studied have
found the CSF levels of TREM?2 are increased in AD at early
stage and correlate well with the markers of neurodegeneration
and tau pathology. Therefore, microgliosis is most likely an
early event that occurs along the AD and occurs in response
to neurodegeneration. The CSF levels are lesser in AD as
compared to MCI who later developed AD (MCI-AD). Thus,
microgliosis increases from the preclinical AD to MCI-AD
and there after reduces in AD, probably due to reduction in
immune response [191]. Higher CSF levels in MCI patients
are associated to increased gray matter volume. This reflects
upon the protective response of microglia in response to neu-
rodegeneration [192]. The role of TREM?2 in regulating brain
immune response, microgliosis and inflammation needs to be
further explored. The CSF levels of STREM?2 can help in track-
ing the altered microgliosis along the disease trajectory and
can serve as a potential stage biomarker for identifying early
stages of AD and as theragnostic marker to monitor therapeu-
tic effects of drugs administered at an early stage.

Biomarkers reflecting neuronal membrane
disruption (neurodegeneration)

Fatty acid-binding protein 3 (FABP3) or heart-type
fatty acid-binding protein (HFABP)

Role in AD pathogenesis

The fatty acid-binding proteins (FABPs) are transport
proteins for fatty acids and other lipophilic biomolecules.
FABP3 is mainly expressed in the heart and skeletal mus-
cles but has also been isolated from the brain [196]. In
the brain, FABPs bind to long-chain polyunsaturated fatty
acids (PUFA), such as docosahexaenoic acid (DHA) and
arachidonic acid (ARA) and is involved in the transport of
these fatty acids. These fatty acids are indispensable for
maintaining neuronal membrane integrity, neurite growth
and synapse formation. The DHA and ARA modulate
neural membrane fluidity and permeability [197, 198].
The dietary supplementation of DHA has been found to
improve spatial memory and reduce A deposition in mice
[199]. DHA also prevents Ap-induced neuronal damage
in vivo and in vitro [200]. Since HFABP or FABP3 regu-
lates the transport of DHA and other fatty acids, it is likely
to be associated with AD pathogenesis. The brain levels
of FABP3 are reduced in such neurodegenerative diseases,
which could be associated to altered signal transduction
and membrane integrity [201]. FABPs are released fol-
lowing a cellular injury [202, 203]. Therefore, like other
FABP’s, HFABP is likely to be associated with cellular
dysfunction associated with AD. FABP3 is also associated
with dopaminergic system and changes in dopaminergic
system are likely to be associated with AD. It binds and
regulates the dopaminergic D, receptors, and overexpres-
sion of FABP3 promotes a-synuclein oligomerization
[204-206]. Catalepsy behavior induced by haloperidol
administration was found to be significantly increased in
FABP3 knockout mice as compared to the wild type, indi-
cating that FABP3 regulates D, receptors [204]. In the
same study, it was found that over expression of FABP3
increased D, receptor sensitivity [204]. The association of
FABP3 with dopaminergic system also signifies the role
of FABP3 in AD pathogenesis.

CSF biomarker studies pertaining to FABP3

The CSF levels of FABP3 are elevated in AD and is a
potential diagnostic marker for differential diagnosis of
neurodegenerative diseases (Table 7). The elevated levels
are significantly associated with brain atrophy in cases
with low AP-42 and reflect on lipid dyshomeostasis in
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the CNS [207]. Therefore, elevated FABP3 levels in CSF
might be associated to brain amyloidosis. The diagnostic
accuracy of the core CSF biomarkers has been found to be
increased in conjunction with FABP3. In addition, FABP3
and the ratio of FABP3/AB-42 are useful in predicting the
progression of MCI subjects to AD. [208, 209]. In a recent
study involving healthy aged individuals, the CSF levels
of FABP3 were significantly elevated in AB-positive indi-
viduals (low CSF Ap), compared to negative individuals
(high CSF Ap) [128]. Therefore, it is a good biomarker for
predicting disease progression in early stages of disease
and can help in identifying healthy aged individuals at
risk of developing AD. The elevated CSF levels correlate
with core markers of neuro degeneration (Table 7). The
elevated levels in AD could likely be associated to the
destruction of neurons.

Biomarkers of neuronal structure
and signaling disruption (markers
of neurodegeneration)

Neurofilament light chain protein (NFL): marker
of axonal degeneration

Role in AD pathogenesis

Neurofilaments are the proteins particularly found in neu-
ronal axons. They are 10 nm in diameter and are essential
for the axonal growth and the transmission of impulses
along the axons [213]. These are heteropolymers composed
of four subunits, namely neurofilament heavy, medium and
light polypeptides and a-internexin [214]. Being elastic and
fibrous, they maintain the shape of neurons and act as neu-
roskeletal supports [215]. NFL plays a role in protecting
neurites from dystrophy and regulates pathways generating
AP [216]. Significantly higher neocortical Ap deposition was
found in APP/PS1 NFL™"~) mice as compared to APP/PS1
NFL™* mice. The dystrophic neurites were also signifi-
cantly higher in NFL™'~) mice, in regions surrounding the
plaques. In addition, higher microgliosis was found in such
regions, in NFL™'™) mice as compared to NFL™* mice
[216]. Neurofilaments are likely to be released from neu-
ronal axons in response to neuronal damage in neurodegen-
erative diseases. NFL is mainly located in myelinated axons
and white matter changes are associated with increased NFL
levels in the CSF. Therefore, elevated levels of NFL in the
CSF reflect on axonal degeneration [217] (Fig. 5). NFL is
a specific biomarker of axonal degeneration, whose levels
have been found to be elevated in a wide range of neurode-
generative diseases including AD. It is not a disease-specific
biomarker but can aid in differential diagnosis of neurode-
generative disorders since its levels are elevated in FTD as

@ Springer

NFL: A neuroskeletal support
Associated with myelinated neurons

Whilte matter changes

Axonal degeneration

Increased NFL in CSF

Fig.5 Role of NFL in AD pathogenesis (NFL neurofilament light
chain, CSF cerebrospinal fluid)

compared to AD [218]. High CSF NFL levels predict high
hippocampal atrophy rate in cognitively healthy older adults
as well those at risk of AD [219]. In case of AD, it can help
in tracking the different dynamic changes along the disease
continuum.

CSF biomarker studies pertaining to NFL

The CSF levels of NFL are elevated in a wide range of neu-
rodegenerative diseases including AD as compared to nor-
mal controls (Table 8). NFL levels are significantly elevated
in AD compared to sSMCI, and higher CSF levels in AD
are associated with cognitive decline, white matter change,
brain atrophy, and lower FDG-PET. The change in CSF lev-
els and these associations are independent of A positivity
[168, 220]. Therefore, NFL reflects upon neuronal or axonal
degeneration independent of Ap pathology. Since the CSF
levels of NFL are significantly elevated in AD compared to
sMCI and associated to brain atrophy and cognitive decline,
it can be used as potential biomarker to study disease pro-
gression and severity along the AD continuum. In addi-
tion, the diagnostic performance of core CSF biomarkers
in differential diagnosis of early onset Alzheimer’s disease
(EOAD) and FTD is improved in conjunction with the CSF
levels of NFL [221]. Hence, it also has a potential to dif-
ferentially diagnose a range of neurodegenerative diseases.
But, the potential of NFL to identify individuals at risk of
developing AD or its potential to identify preclinical AD
needs to be further explored.

Visinin-like protein 1 (VILIP-1): marker of neuronal
injury

Role in AD pathogenesis

VILIP-1 belongs to a large family of calcium-binding pro-
teins called neuronal calcium sensors (NCSs) [224]. The
VIPIL-1 protein is encoded by the visinin-like 1 (VSNLI)
gene and contains 191 amino acids and weighs 22 kDa [225].
VILPI-1 is distributed in different regions of the brain [226].
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The calcium ions (Ca") are involved in neuronal signaling
and the NCSs mediate the action of these ions. In response
to a high intracellular concentration of Ca®*, VILIP-1 gets
reversibly translocated to the membrane components of
the cell. This reversible interaction of VILIP-1 modulates
signaling cascade in the neurons via activation of specific
membrane-bound targets [227, 228]. Therefore, VILIP-1
plays an important role in neuronal signaling. The VILIP-1
regulates neuron ion channels, neuronal growth, survival,
synaptic plasticity and activates cyclic adenosine monophos-
phate (cAMP) and cyclic guanine monophosphate (cGMP)
signaling pathways [225]. Neurodegenerative disorders such
as AD are associated with disturbed Ca** homeostasis in the
neurons, which affect neuronal signaling by causing exces-
sive activation of receptors, weakening the Ca** buffering
capacity of neurons and deregulating the Ca®* channels
[229]. AP modulates this disturbed Ca®* homeostasis by
increasing the influx of Ca** by forming channels [230]. The
NCSs such as VILIP-1 play a significant role in AD patho-
genesis. The intracellular expression of VILIP-1 is reduced
in AD brains as compared to controls. VILIP-1 has been
found to be associated with extracellular plaques and NFTs
in the brains of AD patients and its expression is associated
with enhanced hyper phosphorylation of tau protein and cell
death [231, 232]. In mild AD, there is a considerable loss
of neurons in the entorhinal cortex [233, 234]. The levels of
VILIP-1 are reduced in the entorhinal cortex of AD patients
[235]. Therefore, it is a marker of neuronal injury. Figure 6
depicts the role of VILIP-1 in AD pathogenesis.

This signifies that VILIP-1 is neurotoxic under a dis-
turbed Ca** homeostasis. In AD, its intracellular expression
is reduced. Increased expression promotes hyperphospho-
rylation and cell death which is reduced by calcium buffer
protein. A disturbed Ca?* balance causes the loss of vulner-
able neurons and thereby the release of VILIP-1 extracel-
lularly [225, 231, 232, 236].

CSF biomarker studies pertaining to VILIP-1

Numerous studies have been conducted to illustrate its role
as a potential CSF diagnostic, prognostic and a differential
biomarker. CSF levels of VILIP-1 aid in the early diagno-
sis of AD, distinguish AD from MCI, helps in identifying
the patients with MCI likely to progress to AD, and in dif-
ferentiating AD from other forms of dementia (Table 9).
When used in combination with the core CSF markers, the
diagnostic performance is improved [237]. VILIP-1 and
VILIP-1/AB-42 ratio negatively correlates with MMSE
[237, 238]. Baseline CSF levels of VILIP-1 are associated
with rate of whole brain and regional brain atrophy in AD.
VILIP-1 and the ratio of VILIP-1/AB-42 correlate signifi-
cantly with the brain amyloid load. Therefore, VILIP-1 and
the ratio of VILIP-1/Ap-42 help in predicting the future
cognitive decline. [239-243]. VILIP-1 can be used as a sur-
rogate marker of neurodegeneration but, larger longitudi-
nal studies are needed to validate the same. It can help in
tracking the protective effects of neuroprotective therapeutic
interventions.

Fig.6 The role of VILIP-1 in
AD pathogenesis (Af amyloid
beta, AD Alzheimer’s disease)

VILIP-1

Neuronal Ca**sensor protein
In response to intracellular Ca2* VILIP-1
translocates to membrane and
modulates neuronal signalling by
activating membrane bound targets
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/ & influx
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Conclusion

The multifaceted AD dementia is an amalgam of different
pathological changes in the brain. The different patho-
logical changes may represent a hierarchy of events that
occur one after another or may follow their own trajec-
tory, which ultimately leads to dementia due to AD. To
get a deeper insight into different aspects of disease patho-
genesis biomolecules/proteins involved in the associated
biochemical pathways need to be explored and evaluated
as disease biomarkers for disease diagnosis, prognosis
and therapy. The CSF biomarkers would serve as reliable
measures, to assess the time course of AD and the asso-
ciated pathological changes along the continuum of the
disease. A number of biomarkers in relation to different
AD-associated pathological changes have been discussed
in the current manuscript. They together or alone can aid
in an accurate AD diagnosis starting from the preclinical
phase and thereby can give a clear picture of the patho-
logical changes that occur across the disease continuum.
The use of multiple biomarkers can help in understand-
ing the association of individual pathologies [244], and
may provide an understanding about how one pathologi-
cal change influences the other. Hence, these biomarkers
in conjunction can improve the accuracy of diagnosis. It
has been found that a biomarker model consisting of the
biomarkers T-tau, NFL, neurogranin reflecting upon neu-
rodegeneration, axonal damage and synaptic dysfunction,
respectively, has a higher diagnostic accuracy (area under
the receiver-operating curve (AUC) 85.5%) in classify-
ing AD and controls [168]. The combination of CSF bio-
markers, including YKL-40 could distinguish cognitively
normal participants with clinical dementia rating (CDR)
score of 0 from those with CDR > 0 with AUC 0.896 [76].

The CSF levels of these biomarkers change likely with
the pathological change or event in the AD brain. The ele-
vated CSF levels of clusterin can highlight upon the role
of clusterin in binding with AP and preventing its fibrilli-
zation or its role in promoting the formation of soluble
toxic AP oligomers. An elevated CSF levels of biomarkers
YKL-40 and MCP-1 highlight upon neuroinflammation
as a protective response to brain damage. These proteins
are expressed by the astrocytes, which are activated in
response to neurodegeneration and thereafter release
inflammatory mediators. Elevated levels of STREM2 high-
light upon brain microgliosis as a response to phagocytise-
accumulated Af. Therefore, these novel biomarkers can
help in tracking inflammatory processes related to AD
neurodegeneration. They can help in tracking stage and
state-associated neuroinflammation in AD and combat-
ing the same with the therapeutic agents. Inflammation is
associated with a number of psychiatric disorders [245].

@ Springer

These biomarkers can help in understanding the associa-
tion of psychiatric disorders such as depression with AD.
The dynamic changes in levels of VILIP-1, a biomarker
of neuronal injury and NFL, a biomarker of axonal dam-
age can alone or in conjunction provide an insight into the
longitudinal cognitive changes associated with neurode-
generation. The cognitive decline associated with synaptic
degeneration can be well accounted via CSF measure of
neurogranin.

Hence, it can be concluded that the CSF biomarkers will
certainly benefit in diagnosing AD at an early stage with
much higher diagnostic accuracy either alone, together or
in conjunction with the core CSF biomarkers. This would
also aid in understanding the disease pathogenesis and
progression. They can account for the lag between preclin-
ical and clinical AD, and can act as indices of pathological
change. They can serve as end point measures in clinical
trials and accelerate the drug development process through
the design of new drug molecules that can be targeted
on the right individuals at the right stage. The complex
nature of AD definitely directs us toward a strong ration-
ale to use multiple biomarkers for understanding disease
pathogenesis, and for a successful and accurate preclinical
diagnosis, prognosis and treatment.
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