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Abstract
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, 
and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and 
smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a vari-
able number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a 
variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which 
can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. 
In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play 
an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In 
addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this 
review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms 
involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for 
vascular diseases and shed new light on regenerative medicine.
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Introduction

Mesenchymal stem cells (MSCs) are cells with a great 
potential of differentiation into many types of cells, i.e., 
chondrocytes, adipocytes, fibroblasts, osteoblasts, smooth 
muscle cells, etc. MSC was first discovered by Freidenstein 
in 1968 [1], who proceeded and devoted his efforts in con-
firming the identity of the cells which were responsible for 
osteogenesis of transplanted marrow. In a series of studies 
[2–11], he characterized the development of fibroblast colo-
nies in monolayer cultures of guinea pig bone marrow and 
confirmed the capability of these cells in bone formation. 
Since then, many studies demonstrated that MSCs displayed 

a tri-lineage differentiation potential, i.e., osteogenic, chon-
drogenic, and adipogenic differentiation capacities, which 
can be isolated from human tissues, e.g., adipose tissue, skin, 
cartilage, heart, kidney, liver, lung, muscle, pancreas, spleen, 
thymus, umbilical cord, and peripheral blood [12–25]. Sci-
entific interest in MSCs is due to their self-renewability and 
to their potential to differentiate into one or more cell types 
of the organ from which they originate. Unlike embryonic 
stem cells, the use of MSCs for therapeutic application does 
not raise ethical issues, since these cells are derived from 
adult tissue samples without the need for destroying human 
embryos. The characteristics of MSCs derived from various 
tissues are summarized in Table 1. Interestingly, recent stud-
ies provided the evidence that vessel wall contains a vari-
able number of MSCs [26]. These cells are quiescent under 
physiological conditions, and can be activated by a variety 
of stimuli, e.g., increased lipid level or hyperlipidemia.

Hyperlipidemia is an established risk factor for the patho-
genesis of atherosclerosis [27]. Primary hyperlipidemia 
occurs either as a result of a single gene defect or multiple 
subtle genetic defects acting in combination with environ-
mental factors [28]. Familial hypercholesterolemia is caused 
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Table 1   Characterisation of MSCs derived from various sources

Tissue Literature Molecular characterisation Differentiation in vitro Differentiation in vivo

Adipose tissue Zuk [13] FVIII 24.9%, αSMA 29.2% 
(ECs, SMCs, pericytes)

ASO2 85.0%, vimentin 
63.2% (mesenchymal 
markers)

(IF)
Positive: CD29, CD44, 

CD71, CD90, CD105, 
SH3, CD49d

Negative: CD31, CD34, 
CD45

Adipogenic
Chondrogenic
Osteogenic
Neurogenic
Myogenic

Umbilical cord Romanov [14] (IF)
Positive: αSMA
Negative: CD31, vWF, 

CD34

Adipogenic

Synovial membrane Di Bari [15] (RT-PCR)
Positive: CD44, etc.
Negative: CD31, CD45, 

CD14, CD20, etc.

Adipogenic
Chondrogenic
Osteogenic
Myogenic

Periodontal ligament Seo [16] (IF)
Positive: Stro-1, CD146

Differentiation potential 
into cementoblast like 
cells and collagen form-
ing cells

Adipogenic

Cementum like tissue

Tendon Bi [18], Salingcarnbori-
boon [17]

Osteogenic
Adipogenic
Differentiation potential 

into tendon like tissues

Tendon-like tissues 
formed when cells were 
implanted into defects 
made in patella tendon 
in mice

Skin Toma [19] (IF)
Fibronection, vimentin, 

nestin

Neurons,
Glias,
SMCs
Cells with the phenotype 

of peripheral neurons and 
schwann cells

Cartilage Alsalameh [20] CD105 + 95%
CD166 + 5%
CD105 +/CD166 + 3.49%

Adipogenic
Chondrogenic
Osteogenic

Dental pulp Shi [22] Stro1 + selected cells: Posi-
tive: CD146, αSMA, 3G5

Adipocyte
Neural cells

Dental pulp like tissues

Spleen, muscle, kidney, 
lung, liver, brain, thy-
mus, aorta, vein

Da Silva Meirelles [23] (FACS)
CD29 +
CD44 +
CD117 −
CD49e, CD90.2: expres-

sion varied according to 
tissue origin,

Sca-1, CD34: decrease 
with passage

Adipogenic,
Osteogenic,
Chondrogenic

Blood Villaron [24] (FACS)
Positive: CD90, CD106, 

CD54, CD49b
Negative: CD105, CD56, 

CD34, CD133, CD104, 
CD62L, HLA-DR
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by a receptor that binds to low-density lipoprotein (LDL), 
which leads to slowing LDL clearance from blood [29]. 
Familial defective apoB100 is clinically indistinguishable 
from hypercholesterolemia, with subjects presenting with 
xanthomas. Concerning the molecular mechanism of hyper-
lipidemia, there are different proteins involved, e.g., LDL 
clearance defect due to mutations in the apoB100 molecule, 
which is reducing LDL receptor-binding affinity [30]. The 
most common primary dyslipidemia is familial combined 
hyperlipidemia, which is thought to account for 10–14% 
of cases of premature cardiovascular disease [31, 32]. It is 
also associated with the metabolic syndrome, which may 
be a subtype of patients at high risk of cardiovascular dis-
ease [33]. Familial hypertriglyceridemia is due to hepatic 
over-production of triglycerides and large very-low-density 
lipoprotein (VLDL) particles. Some meta-analyses of epi-
demiological data demonstrate an increased risk of familial 
hypertriglyceridemia for cardiovascular disease, independent 
of HDL [34]. Thus, the evidence-linking hyperlipidemia to 
the pathogenesis of atherosclerosis is so well established.

Atherosclerosis represents one of the greatest threats to 
human health worldwide. It is a complex chronic inflamma-
tory disease, which affects large- and medium-size arteries. 
The lesions are characterized by formation of necrotic cores, 
calcified regions, accumulated modified lipids, inflamed 
smooth muscle cells (SMCs), endothelial cells, leukocytes, 
and foam cells [35]. SMCs are the predominant cell type, and 
their accumulation and proliferation are crucial in determin-
ing the severity and characteristics of these advanced lesions 
[36]. Interestingly, it was found that the vascular adventitia 
contains stem/progenitor cells, which can differentiate into 
SMCs and endothelial cells in vitro and in vivo [37]. At the 
beginning of atherosclerosis, blood leukocytes first attach 
to the damaged or activated endothelial monolayer, and 
then migrate into the intima, where they mature into mac-
rophages, which could uptake lipid, yielding foam cells. As 
the progression goes on, SMCs in the media migrate towards 
the intima. The resident intimal SMCs (exclusively in human 
vessel) and media-derived SMCs proliferate and synthesize 
more extracellular matrix macromolecules such as collagen, 
elastin, and proteoglycans. However, recent findings indicate 
the presence of resident stem/progenitor cells or MSCs in 
the vessel wall, which could participate in the pathogenesis 

of atherosclerosis (see below). In short, during this process, 
the role of MSCs might be crucial, because they can migrate 
from either media or adventitia to the intima where they may 
differentiate into different cell types, further contributing to 
atherosclerosis development. This review provides a sys-
tematic evaluation of recent preclinical studies to evaluate 
the use of MSCs to atherosclerosis, especially in response to 
hyperlipidemia. It will conclude by highlighting the research 
efforts currently under way to apply MSCs to enhance the 
process for therapy of atherosclerosis in the near future.

The biology of MSCs

As with other stem cell types, MSCs have a high capacity for 
self-renewal while maintaining multipotency. MSCs acquire 
display multipotent differentiation potentials in vitro. The 
criteria of human MSCs are summarized in Table 1. Con-
cerning negative surface markers of the phenotype, CD45 
(cluster of differentiation 45), CD34, CD14 or CD11b, and 
CD79α or CD19 are used to exclude contamination of pan-
leukocyte, primitive hematopoietic progenitors, monocytes/
macrophages, and B cells in the culture, respectively [26]. 
Though the recent isolation techniques managed to define 
MSCs with phenotypic markers and avoid contamination of 
other cell populations, the criteria still could not uniquely 
identify all MSCs [38]. Other markers used for MSC char-
acterisation include Stro-1 [39], which can enrich CFU-Fs 
(colony forming unit fibroblasts) by approximately 100-
fold in human MSCs. Recent findings showed that Stro-1 is 
expressed in endothelial cells, but not MSCs in vivo, which 
can be induced under MSC culture conditions in vitro [40]. 
In addition, it is well documented that difference exists 
across tissue origins and between species [41]. Systemic 
isolation and evaluation of MSCs from different tissues 
represents an alternative approach [23]. The similar but not 
identical phenotype of MSCs originating from different tis-
sues reflects the similar origins but influences of different 
microenvironments. The proposed hypothesis that MSCs are 
tissue-resident stem cells led to further investigations of their 
perivascular origin [42], which has been suggested by other 
studies, as well [22, 43, 44]. In addition, it is demonstrated 
recently that MSCs might actually contain tissue-specific 

Table 1   (continued)

Tissue Literature Molecular characterisation Differentiation in vitro Differentiation in vivo

Cord blood Campagnoli [25] (FACS)
Positive: CD29, CD44, 

CD105, SH3, SH4
Negative: CD45, CD34, 

CD14, CD68, vWF, 
HLA-DR

Adipogenic,
Osteogenic,
Chondrogenic
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progenitors from different mesoderm derivatives [41]. As 
none of the above approaches provides a definite answer to 
the question whether MSCs in vivo have a unique identity, 
more investigation should be carried out to trace the origin 
during development and to clarify the in vivo function of 
MSCs.

Vessel wall‑resident MSCs

Since Hu et al. [45] reported the presence of vascular stem/
progenitor cells (MSC-like cells) in apoE-deficient mice, 
a large number of publications have been documented for 
the resident stem cells [46–48]. MSCs have been shown to 
be present in many different adult tissues that are related to 
vasculature. For instance, vascular MSCs such as Sca-1 + 
cells have been shown to be abundant in the adventitia [45]. 
It was showed that isolated adventitial Sca-1+ cells could 
differentiate in vitro into SMCs in response to Pdgf-β. In 
addition, the capacity In vivo of the adventitial Sca-1 + cells 
to migrate across the vessel wall and subsequently differen-
tiate into SMCs thus contributing to neointima formation 
was proved when Sca-1 + β-gal− cells carrying the SM22-
LacZ gene applied on the adventitial side of vein grafts in 
ApoE−/− mice were detected after 4 weeks differentiated into 
SMCs (β-gal+) in the neointima [45]. Furthermore, MSCs 
have been identified in the human adult vena saphena, which 
express a panel of MSC markers [49]. These cells displayed 
a role in promoting angiogenesis in ischemic tissues in a 
mouse model.

In the vessel wall of small artery in lung tissues, MSCs 
have also been identified, which can differentiate into SMCs 
in vitro [50]. Chronic hypoxia resulted in the increase of 
MSCs in vivo and participated in vascular remodeling [50]. 
Importantly, these MSCs have a great potential of prolif-
eration in response to inflammatory stimuli that enhance 
endothelial barrier function after lung injury [51]. In the 
media of the vessel wall, several reports indicate the pres-
ence of MSCs, which can differentiate into endothelial cells, 
SMCs, chondrocytes, adipocyte, and even neuron cells 
[52]. Very recently, Roostalu et al. [53] demonstrated that 
neointimal SMCs of femoral artery after endothelial injury 
were derived from adventitial MSCs, but not mature SMCs. 
This study used a combined cell linear tracking system to 
trace cell fate in vivo in mouse models. Traditionally, it was 
believed that mature SMCs from media are responsible for 
SMC accumulation in neointimal lesions; the recent study 
provides a concept novel role of MSCs within the vessel in 
vascular repair. Thus, these MSC-like stem cells exert their 
role in endothelial repair/regeneration (Fig. 1).

Bone marrow MSCs

With the diffusion chamber system in the 1990s, research-
ers managed to confirm the differentiation of bone mar-
row-derived MSCs to bone, cartilage, and fibrous tissue 
[54]. In the diffusion chamber with standard filters, cells 
were administered in the chamber remained inside as 
these cells could not pass through the filter to get mixed 
with host cells outside. Body fluids (nutrients, salts, and 

Fig. 1   Proposed roles for 
vascular wall resident MSCs 
in lesion formation. The 
adventitia is a dynamic layer 
in active communication with 
the other vessel wall layers, 
and it contains various cell 
types, including Sca1 + cells 
(red), mesenchymal stem cells 
(MSCs in green), macrophages 
(blue), fibroblasts (yellow), and 
pericytes (orange), amongst 
others. Vascular resident MSCs 
have the ability to migrate to the 
lesions and to differentiate into 
SMCs and other types of cells
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proteins) could pass freely through the filter. After trans-
plantation of the cells into the peritoneal cavity, within dif-
fusion chamber, cells are generated with high capacity for 
proliferation and differentiation, which serve as an in vivo 
incubator model [54–56]. Alternatively, Caplan and his 
group established a method using porous calcium phos-
phate ceramics loaded with marrow cells and implanted 
them subcutaneously, with the observation of predomi-
nant bone formation, which was slightly different from the 
mixture of bone, cartilage, and fibrous tissue formation 
in the diffusion chamber assay [56–58]. By manipulating 
the culture conditions [59], the cells could be differenti-
ated into either osteoblasts or adipocytes. Thus, it provides 
preliminary evidence for bone marrow-derived MSCs to 
differentiate into other cell lineages in vivo and in vitro. 
Subsequently numerous investigations have been carried 
out with a variety of differentiation conditions.

MSCs from other stromal tissues

Umbilical cord-derived MSCs have similar immunopheno-
typic characteristics and functional properties with MSCs 
derived from other tissues. However, source-dependent 
differences exist. Compared to MSCs derived from other 
tissues, umbilical cord-derived MSCs display higher pro-
liferation capacity, which is a significant advantage with 
regard to their application potential in tissue engineer-
ing [60–63]. Umbilical cord-derived MSCs grow faster 
than bone marrow MSCs at the early passages with a cell 
population doubling time of 24 h over 40 h of MSCs [62]. 
Furthermore, umbilical cord-derived MSCs demonstrate a 
better ability to form colony forming units in vitro, which 
is also a proof of their relatively better proliferation capac-
ity compared to bone marrow-nucleated cells [63].

Regarding the transcriptomic profile of umbilical 
cord-derived MSCs, most of the surface markers that 
they express are common mesenchymal markers. How-
ever, unlike in bone marrow MSCs, HLA-ABC is weakly 
expressed in umbilical cord-derived MSCs, indicating that 
these cells might be less immunogenic than bone marrow 
MSCs [64]. This immune privilege makes umbilical cord-
derived MSCs a good candidate for tissue engineering of 
vascular grafts, which will be grafted in vivo in the end. 
Adipose-tissue-derived MSCs present similar properties 
with MSCs derived from other tissues including bone mar-
row [23]. The main advantage of adipose-tissue MSCs 
over bone marrow MSCs is, perhaps, the abundance of 
adipose tissue which makes it readily available. Arguably, 
adipose-tissue MSCs are among the most promising MSCs 
for stem cell-based cell therapeutics and tissue engineer-
ing [65].

Hyperlipidemia‑induced alterations in MSCs

Lipid loading‑induced MSC migration

Atherosclerosis is a chronic inflammatory disease charac-
terized by endothelial dysfunction, lipid deposition, and 
inflammatory cell accumulation within the arteries. LDL 
deposited in the intima and cholesterol can be modified or 
oxidized, which leads to activation of vascular SMCs and 
macrophages. Modified LDLs have been also known to 
increase foam cell formation, influencing lesion develop-
ment; these molecules have been implicated in pro- and 
anti-atherosclerotic responses [66]. Adventitial progeni-
tor cells, including SCA1 + and MSCs, are believed to 
be important in vascular remodeling. In a recent study 
[67], Kokkinopoulos et al. used single-cell gene sequenc-
ing techniques to study MSCs derived from wild-type 
and ApoE-deficient mice. It was found that several genes 
related to cell migration and matrix protein degradation 
displayed a significant alteration. Among them, a group 
of genes have a role in MSC migration; some genes were 
crucial for endothelial regeneration and five genes were 
associated with leukocyte adhesion. Results demonstrated 
that modified LDL and free cholesterol are potent inducers 
of MSC migration, which inhibits their differentiation. At 
the same time, ApoE knockout stem cells show a higher 
migration toward the inner vascular wall in comparison 
with wild-type counterparts. Furthermore, they found that 
lipid loading resulted in increase in miRNA-29b produc-
tion, and led to sirtuin-1 and matrix metalloproteinase-9 
expression that enhance MSC migration [67]. All those 
results provide clarity of the migratory mechanisms of 
resident AdvSCA-1 + progenitors (Fig. 2).

It has been shown that ox-LDL induces secretion of 
chemokines such as monocyte chemoattractant protein-1 
(MCP-1) expression in macrophages [68], endothelial 
cells [69], and vascular SMCs [70]. This ox-LDL-induced 
MCP-1 plays an important role in monocyte transmigra-
tion into the subendothelial space [69, 71]. Study by 
Zhong et al. [72] indicates the inhibitory effect of cur-
cumin on ox-LDL-induced MCP-1 production, which is 
mediated by mitogen-activated protein kinase and NF-κB 
pathways in rat SMCs. Another study [73] demonstrated 
that ox-LDL induces MCP-1 release in vascular SMCs 
via urokinase receptor association with CD36 and TLR4. 
To determine whether hyperlipidemia affects SMC apop-
tosis, Murray et al. [69] conditionally induce SMC apop-
tosis in an animal model of SM22α-hDTR/ApoE−/− mice 
with high-fat diet, which increases serum IL-6, TNFα, 
and MCP-1. It was found that atractylenolide I inhibited 
ox-LDL-induced SMC proliferation and migration, and 
decreased the production of inflammatory cytokines and 
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the expression of MCP-1 [74]. MCP-1 or CCL2 has been 
detected in macrophage-rich areas bordering the lipid core, 
while the lesion size and plaque macrophage content were 
decreased by > 60% in mice-lacking CCL2 [75, 76]. Other 
studies have demonstrated that free cholesterol prevents 
macrophages from expressing inflammatory-response 
genes [77, 78], including Chemokine C-X-C motif Ligand 
9, IL-1β, and CXCL 10, and Toll-like receptors [79]. All 
these findings implicate that lipid accumulation affects the 
chemokines expression in SMCs and macrophages.

On the other hand, how can adventitial stem/progenitor 
cells cross the media and migrate to the intima? A recent 
work provides the first evidence that chemokines released 
by vascular SMCs play a key role in mediating resident stem 
cell migration from the adventitia to intima [67]. Sca1 + pro-
genitor cells cultivated from mouse vessels exhibited 
increased migration when co-cultured with SMCs, which 
was associated with elevated levels of chemokines, such as 
CCL2, CXCL1, CCR2, and CXCR2. The GTPases Cdc42 
and Rac1 were activated by both CCL2 and CXCL1 stimula-
tion; at the same time, p38 phosphorylation was increased. 

However, only Rac1 inhibition significantly reduced migra-
tion and p38 phosphorylation. Interestingly, migration of 
MSCs from the adventitia to the neointima can be signifi-
cantly inhibited or diminished in CCL2-deficient mice after 
wire injury of arteries. These results provide the evidence 
that SMC-released chemokines induce MSC migration from 
the adventitia to the neointima, which involves in signal 
pathways of CCR2/Rac1/p38 and CXCR2/Rac1/p38 (Fig. 2).

Role of MSCs in atherosclerosis

Atherosclerosis is started from focal intimal influx and 
accumulation of lipid deposition and vessel stiffness, which 
result in thickening of the vessel wall and narrowing of the 
lumen. Modified or oxidized-LDL can be removed by mac-
rophages via scavenger receptors [80]. During this process, 
foam cells can be formed via the receptor-mediated uptake 
of ox-LDL by the macrophages. If this process is repeated, 
free radicals and the excess of oxidized-LDL particles can 
lead to cell death to form the necrotic core [73]. It indicates 
that monocyte/macrophage recruitment to the intima is a 
key event, which is regulated by a multiplicity of endothelial 
adhesive cytokines and chemokines, e.g., MCP-1, which can 
be synthesized and released by injured endothelial cells and 
SMCs [81]. The previous studies have shown that hyper-
lipidemia result in endothelial damage that leads to inflam-
matory response [82]. Based on lowering lipid treatment, 
some endothelial repairing measures have shown some 
beneficial effects in preventing vascular complications [83, 
84]. Schober et al. [85] investigated the function of the 
CCL2/CCR2 axis in the early monocyte recruitment and 
macrophage infiltration to injured arteries. In addition, lipid 
accumulation can regulate commitment of MSCs towards 
adipogenic fate [86], mechanically involving the heme-oxy-
genase 1 expression and canonical Wnt signaling cascade.

MSCs, due to their capabilities of differentiation into 
multiple cell lineages such as mesodermal lineage and myo-
genic lineage [87, 88], have been explored as an attractive 
therapeutic target in various diseases, including myocardial 
infarction, acute lung injury, acute renal failure, ischemia, 
etc. [89–95]. Recent studies reveal the anti-inflammatory 
properties of MSCs as guardians of inflammation [96]. 
Moreover, the immunomodulatory capacity of MSCs has 
been increasingly appreciated. Several studies have inves-
tigated the capacity of MSCs to modulate both innate and 
adaptive immune responses [97–103]. For example, MSCs 
have been shown to reduce monocyte responses after myo-
cardial infarction [101] and to skew macrophages to an anti-
inflammatory IL-10-producing phenotype [98–101]. MSCs 
also inhibit the differentiation and maturation of dendritic 
cells [97], by reducing the expression of co-stimulatory 
molecules and pro-inflammatory cytokines (TNF-α and 
IL-12), while increasing the production of anti-inflammatory 

Lipid loading
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Fig. 2   Schematic illustration of the roles of CCL2 and CXCL1 
released from lipid loading cells in enhancing MSC chemotaxis. 
CCL2 and CXCL1 released by lipid loading cells into the medium 
bind to their corresponding receptors CCR2 and CXCR2 on MSCs. 
The GTPases Rac1 and Cdc42 become activated and then p38 is 
phosphorylated via Rac1, finally leading to increased migration, 
which induces expression of cytoskeleton related proteins paxillin, 
vinculin and phosphorylated FAK, which may also activate the Rac1 
or Cdc42 signalling pathways
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cytokines (TGF-β and IL-10) [104, 105], which indirectly 
suppresses T cell proliferation [104]. However, MSCs can 
also directly inhibit T-cell proliferation [104–106], by induc-
ing cell cycle arrest in all subsets, resulting in a quiescent 
state, and decreased proliferation [107], in which MSC treat-
ment not only affects inflammatory responses but also sig-
nificantly reduces dyslipidaemia in mice. Since the essential 
role of inflammation and immunomodulatory in the initia-
tion and progression of atherosclerosis, MSC transplantation 
has been broadly explored as a therapeutic approach to treat 
atherosclerosis.

MSCs differentiate into SMCs

MSCs derived from different tissues have a potential to 
differentiate into several cell lineages, including SMCs, 
as summarized in Table 2. The evidence is accumulating 
that adult MSCs can differentiate into SMCs in a variety 
of cardiovascular diseases, including restenosis, transplant 
arteriosclerosis, and atherosclerosis. A set of in vivo studies 
demonstrated that the origin of vascular resident MSCs gives 
rise to SMCs to form neointima, which may contribute to 
atherosclerosis and restenosis. The differentiation of MSCs 
towards SMCs is usually achieved through the manipulation 
of the cell culture condition including the addition of various 
biochemicals, the concentration of serum, and duration of 
differentiation. Numerous growth factors like TGFβ1, bone 
morphogenetic protein 4 (BMP4), angiotensin II [108], 
sphingosine 1-phosphate [109], and thromboxane A2 [110] 

could all be utilised to stimulate SMC differentiation [111]. 
Among these reagents, TGFβ1 is a potent stimulator for 
SMC differentiation from stem cells both in vitro and in vivo 
[112–114]. Furthermore, these factors could cooperate or 
interact with each other. The promotion of SMC differen-
tiation from human MSCs by sphingosine-1-phosphate was 
dependent on TGFβ1 signaling pathway [115]. Studies also 
showed that only when TGFβ1 was combined with BMP4 
could contractile SMCs be obtained [111, 116].

During the differentiation process, induction of extra-
cellular matrix proteins such as collagen I and elastin by 
TGFβ1 demonstrates the potential of these differentiated 
cells to be utilised in vascular graft engineering as produc-
tion of extracellular matrix proteins would help to increase 
the mechanical strength and bio-compatibility of the graft. 
This is consistent with the published results showing elas-
tin matrix enhancement in vascular SMCs upon stimulation 
of TGFβ1 and hyaluronan [117]. In vitro culture condition 
with high serum concentration induces SMCs to enter the 
proliferative synthetic phenotype, which is similar to SMC 
phenotypic switching during vascular injuries [118, 119]. 
The synthetic phenotype can be switched back to contrac-
tile phenotype upon serum deprivation as indicated by the 
increases in contractile markers [118]. In SMC differentia-
tion from stem cell sources such as pluripotent stem cells, 
bone marrow MSCs, and skin-derived precursors, contrac-
tile SMCs were acquired with lower serum concentration 
[125–127]. Although contradictory studies exist demonstrat-
ing that serum concentration in the culture medium does 

Table 2   MSC differentiation into SMCs

Stem cells Study Evidence of SMC 
differentiation

Result

Bone marrow nucleated cells Han [120] Staining of αSMA Bone marrow-derived cells are recruited in vascular 
healing as a complementary source of smooth mus-
cle-like cells when the media is severely damaged 
and few resident SMCs are available to affect repair

Bone-marrow transplantation of β-galactosidase 
expressing cells

Shimizu [121] Staining of αSMA Host bone-marrow cells are a source of donor intimal 
smooth-muscle—like cells in murine aortic trans-
plant arteriopathy

Bone marrow purified haematopoietic stem cells Sata [122] Staining of αSMA Haematopoietic stem cells differentiate into vascular 
cells that participate in the pathogenesis of athero-
sclerosis

Bone marrow transplantation of SM-LacZ β-gal 
expressing cells

Hu [123] SM-LacZ SMCs in transplant atherosclerotic lesions are 
originated from recipients, but not bone marrow 
progenitor cells

Sca-1 (+) adventitia cells Hu [45] SM-LacZ When Sca-1 (+) cells carrying the LacZ gene were 
transferred to the adventitial side of vein grafts in 
ApoE-deficient mice, β-gal (+) cells were found in 
atherosclerotic lesions of the intima, and these cells 
enhanced the development of the lesions

Adventitia fibroblast Li [124] – Adventitial fibroblasts seeded on the adventitia side of 
vascular balloon injury would migrate to neointimal 
site and take part in neointimal formation
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not affect SMC marker expression, these reports are few 
and isolated [128]. Thus, it could be concluded overall that 
serum concentration reduction or deprivation are in favour 
of functional SMC differentiation.

The SMC differentiation mechanism is a complex regu-
latory network. Exploration of novel miRNAs involved in 
the differentiation network could provide new therapeutic 
choices. It was confirmed that miR-145, a well-established 
contractile SMC differentiation enhancer, was also upregu-
lated in a time-dependent manner in the differentiation sys-
tem in MSCs [129, 130]. Exploration of miR-145-related 
SMC differentiation mechanism has mainly involved can-
didates lying upstream and downstream in the pathways. 
Apart from myocardin and SRF, it was revealed that miR-
145 could also be upregulated by TGFβ1 [129, 131, 132]. 
Smad-binding elements were characterized in an enhancer 
region of miR-145 and the binding of Smad4 on this region 
was confirmed by chromatin immunoprecipitation experi-
ments [132]. Jagged 1/Notch signaling pathway could also 
control the expression of miR-145. Downstream targets of 
miR-145 include Klf4 (Kruppel-like factor 4), Elk-1 (ELK1, 
a member of ETS oncogene family), and myocardin [129]. 
There are also reports in cancer cells showing that miR-
145 could target Smad3 to inhibit TGFβ1-induced epithe-
lial–mesenchymal transition and cancer invasion and target 
ROCK1 to inhibit proliferation and invasion of osteosarcoma 
cells [133, 134]. As Smad3 and ROCK1 are both compo-
nents of TGFβ signaling pathways, these imply a complex 
interaction between miR-145 and TGFβ signaling pathways.

After uncovering novel miRNAs whose expression is 
changed during MSC–SMC differentiation using miRNA 
array as mentioned above, miR-503, which is upregulated 
during the differentiation process and promotes MSC–SMC 
differentiation, as well as miR-222-5p, which is down-
regulated in the differentiation process and de-represses 
MSC–SMC differentiation, emerge to be two promising 
candidates. To further establish their roles in SMC differen-
tiation, similar approaches to the study of miR-145 involve-
ment were employed placing the exploration focuses on 
the upstream control of miRNA level and the downstream 
targets. More importantly, both upstream upregulation of 
miRNAs and downstream target explorations were tightly 
oriented within well-established TGFβ1 signaling pathways. 
Concerning the direct contribution of MSCs in miRNA-
mediated SMC differentiation, what is now widely accepted 
is that the origin and residency of these stem cells could be 
crucial. Using the models summarized in Table 2, it may be 
possible to elucidate detailed mechanisms of SMCs differ-
entiation from MSCs. It is well known that the complication 
of atherosclerosis, e.g., plaque rupture, is a key issue for 
the death of patients. If we could arbitrarily direct MSCs to 
differentiate into SMCs to stabilize the plaque, the compli-
cation of atherosclerosis might be reduced. Thus, new light 

might be shed on the pathological features behind differen-
tiation of vascular resident MSCs into SMCs, thus providing 
more opportunities for new therapeutic choices in cardio-
vascular diseases.

MSCs and macrophages

Macrophages regulate blood vessel structure and function 
in healthy and diseased state. The origins of tissue mac-
rophages are diverse [135]. It is known that microglia [136] 
and Langerhans cells [137] are derived from tissue-resident 
macrophage stem/progenitors cells. On the other hand, cur-
rent expert opinion seems also to agree the concept that 
resident macrophage turnover is owing to the self-renewal 
and proliferation of mature macrophages via keeping their 
functional differentiation [138]. Recently, two studies from 
Simari group have reported that the adventitia of postna-
tal murine arteries contains a hierarchy of hematopoietic 
progenitor or stem cells, comprising rare numbers of mul-
tilineage progenitor cells and a markedly enriched content 
of macrophage-dedicated progenitors [139, 140]. They also 
revealed that Sca1 + CD45 + adventitial macrophage progen-
itor cells were not replenished via the circulation from bone 
marrow or spleen; rather, adventitial macrophage progenitor 
cells were upregulated in hyperlipidemic ApoE−/− and LDL-
R−/− mice, indicating that hyperlipidemia influenced progen-
itor functions. These studies implicate that local MSCs or 
stem/progenitor cells may be a direct source of macrophages 
with the vessel wall.

In addition, MSCs also have an ability to influence func-
tion and phenotypes of macrophages, in which different 
biological processes of inflammation and atherosclerosis 
are crucial. Macrophages, especially M1 subset, are spe-
cialized phagocytes that engulf and digest dead cells and 
invading microbes [141, 142]. Since macrophages have 
the multifunctional roles in the diseases due to their high 
plasticity, they display different phenotypes such as a pro-
inflammatory M1 and anti-inflammatory M2 phenotype. The 
early work demonstrated that human MSCs antagonize the 
M1 phenotype and promote M2 polarization. In cell culture 
models, MSCs have been shown to influence macrophage 
phenotype between M1 and M2 lineages, which implicates 
the presence of soluble, MSC-derived factors that contribute 
to the cell polarization [142], as indicated by CD206 pro-
duction, increased IL-10 secretion and phagocytosis, and 
pro-inflammatory cytokine and nitric oxide release [143]. 
Furthermore, MSCs can also inhibit MHC class II and CD68 
expression of macrophages leading to reducing their stimu-
latory potency [144]. In vivo mouse model of an excisional 
wound repair, MSCs derived from human gingiva tissues 
can migrate to the wound site and polarize M2 for wound 
healing of the skin [145]. The regulatory effect of MSCs 
on macrophages is partially mediated through the secretion 
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of different immune modulatory molecules, e.g., PGE2, 
IL1RA, and IL-6. In addition, the presence of macrophages 
in damaged tissue and inflammation is essential for MSCs 
to exert their therapeutic function. One proposed mechanism 
is that multiple soluble factors are produced for MSCs to 
elicit M2 polarization. Prostaglandin E2 (PGE2) was found 
to be constitutively produced by human MSCs at levels able 
to suppress IL-6 and TNF-α expression in activated mac-
rophages [144]. Furthermore, neutralizing antibodies to 
GM-CSF and IL-6 revealed that these cytokines synergisti-
cally promote MSC-mediated promotion of the M2 pheno-
type in macrophages [145]. It has also been shown that mac-
rophage colony-stimulating factor-induced differentiation of 
bone marrow hematopoietic stem cells toward monocytes/
macrophages is regulated by TNFα that is released from 
MSCs under the influence of angiotensin II [146]. These 
findings suggest that MSCs can directly influence mono-
cyte/macrophage differentiation during the development of 
atherosclerosis in response to hyperlipidemia. Thus, regu-
lation of MSCs’ functions in situ might be indirectly influ-
ence macrophage behaviour and consequent inflammatory 
response in the vessel wall.

Summary and perspectives

This review provides an updated summary of recent research 
on MSCs and vascular disease in response to hyperlipi-
demia. There is a clear evidence that hyperlipidemia not 
only induces endothelial dysfunction and inflammatory 
response but also exerts its effect on MSCs. Especially, lipid 
overloading results in increase in MSC migration, which is 
a crucial event in atherosclerosis development. MSCs can 
differentiate into SMCs, macrophages, and possibly endothe-
lial cells that participate in vascular disease. In response to 
hyperlipidemia, MSCs can release cytokines that influence 
other cells’ behaviours in vascular diseases. However, there 
are several questions to be answered regarding the role of 
MSCs during hyperlipidemia. For example, it is unknown 
whether hyperlipidemia influences the fate of MSC differ-
entiation toward either endothelial or other cell types. It is 
also unknown whether hyperlipidemia is essential to activate 
MSCs in vivo. To answer these questions, further investiga-
tion is needed.

Accumulating evidence supports the protective role of 
MSCs in several models of atherosclerosis and MSC trans-
plantation represents a novel approach for efficient pre-
vention and treatment of atherosclerotic plaque rupture in 
animal models, because the MSCs can migrate from either 
media or adventitia to the intima where they may differen-
tiate into different cell types, such as SMC, macrophage, 
and then secrete a broad range of beneficial factors, which 
modulate the inflammation status and restore endothelium 

function. Recent findings elaborated how can adventitial 
MSCs or stem/progenitor cells cross the media and migrate 
to the intima and concerning their involvement in hyper-
lipidemia-induced atherosclerosis. However, most data are 
derived from animal models or in vitro studies, a large clinic 
trial on effects of MSCs on atherosclerosis development or 
treatment is needed.
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