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Abstract
Experimental evidence for a direct role of lipids in determining the structure, dynamics, and function of membrane proteins 
leads to the term ‘functional lipids’. In particular, the sterol molecule cholesterol modulates the activity of many membrane 
proteins. The precise nature of cholesterol-binding sites and the consequences of modulation of local membrane micro-
viscosity by cholesterol, however, is often unknown. Here, we review the current knowledge of the interaction of cholesterol 
with transmembrane proteins, with a special focus on structural aspects of the interaction derived from nuclear magnetic 
resonance approaches. We highlight examples of the importance of cholesterol modulation of membrane protein function, 
discuss the specificity of cholesterol binding, and review the proposed binding motifs from a molecular perspective. We 
conclude with a short perspective on what could be future trends in research efforts targeted towards a better understanding 
of cholesterol/membrane protein interactions.
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Introduction: transmembrane proteins 
and their functional lipids

The biological membrane plays a vital role in a variety of 
biological processes, including transport, cellular recogni-
tion, adhesion, energy production, and signaling cascades. 
The membrane properties, which influence these processes, 
are a result of a complex interplay between the protein 
and the lipid components [1]. While it is nowadays well 
accepted that lipid–protein interactions are essential for 
the aforementioned cellular processes, only little is known 
about their physicochemical nature as well as their actual 

role in these processes [1, 2]. This is because lipids and 
proteins can influence one another in multiple ways [3–5]. 
Membrane proteins influence the structure and dynamics 
of lipids, such as acyl chain order, membrane thickness and 
elasticity, permeability, lipid-domain formation, lipid head-
group orientation, and acyl chain dynamics [6]. In addition, 
in turn, the physicochemical nature of the membrane pro-
foundly impacts the structure and dynamics of membrane-
embedded proteins and peptides [7], and thereby modulates 
their function [6, 8, 9].

According to the fluid mosaic model, cellular membranes 
were originally thought to primarily serve as solvents for 
membrane proteins [10]. This view changed when the func-
tional raft hypothesis was developed [11], and was further 
strengthened through the discovery of lipid molecules that 
act as secondary messengers [12, 13]. Nowadays, there is 
strong evidence that lipids play a direct role in determining 
the structure, dynamics, and function of membrane proteins 
[14], leading to the formulation of the term “functional 
lipids”.

The activity of a variety of ion channels, including the 
members of all major ion channel families, is affected by 
changes in membrane cholesterol levels [15]. Consistent 
with a functional importance of cholesterol and other lipids, 
crystal structures of ion channels and different membrane 
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protein classes revealed bound lipids [16]. For example, 
nonan-1-ol and diacylglycerol molecules were observed in 
complex with the K+ channel KcsA [17]. In addition, phos-
phatidylglycerol and cardiolipin influence oligomerization 
of the voltage-dependent anion channel (VDAC) [18], which 
is the major ATP gate in the outer mitochondrial membrane 
and plays an important role in apoptosis [19]. The mem-
brane-lipid composition also modulates the interaction of 
VDAC with tubulin [20], as well as the gating properties of 
the VDAC channel [21].

A very important lipid is cholesterol, because it influ-
ences the function of many membrane proteins. Robust and 
accurate experimental information on the precise nature of 
cholesterol-binding sites in membrane protein structures, 
however, is often lacking. Molecular flexibility of both 
protein structures and cholesterol molecules adds to the 
complexity of studying the interaction of cholesterol with 
transmembrane proteins. In addition, technical difficulties 
have to be overcome, such as the insolubility of cholesterol 
in polar environments.

Cholesterol–protein interaction motifs

X-ray crystallography [22, 23], electron spin resonance 
[24–27], cryo-electron microscopy [28–30], binding assays 
employing site-directed mutagenesis [31–33], docking and 
molecular dynamics simulations [34–36], and nuclear mag-
netic resonance (NMR) [37] spectroscopy have been used 
to characterize the interaction of cholesterol with transmem-
brane proteins (Fig. 1). Based on these studies, different 
cholesterol-binding motifs in transmembrane proteins have 
been proposed. These include the cholesterol recognition 
amino acid consensus (CRAC) motif and its inverted variant, 
the CARC motif, the cholesterol consensus motif (CCM) 
motif, and so-called “tilted peptides” [38, 39]. In addition, 
other specific or non-universal motifs were suggested [26, 
30, 34, 39–41]. The interaction of cholesterol with soluble 

proteins has also been studied in detail and was summarized 
in a recent review based on the analysis of crystal struc-
tures of proteins containing cholesterol molecules [42]. 
The analysis showed that the hydroxyl group of cholesterol 
preferentially interacts with Asn, Gln, and/or Tyr residues, 
whereas the hydrophobic part of cholesterol makes contacts 
with Leu, Ile, Val, and Phe residues. Moreover, the hydroxyl 
group likes to form hydrogen bonds with residues in protein 
α-helices, while cholesterol’s hydrophobic core often inter-
acts with residues in β-strands or regions that do not fold into 
regular secondary structure [42]. As we summarize below, 
there appear to be commonalities with respect to protein/
cholesterol interactions between soluble and transmembrane 
proteins, that is similar residue types and protein secondary 
structure elements contribute to binding to the polar and 
hydrophobic parts of the cholesterol molecule.

An often discussed cholesterol-binding motif is CRAC 
[32, 38, 39], which follows the sequence composition (from 
N- to C-terminus): apolar leucine or valine residue, fol-
lowed by one to five residues of any type, then a mandatory 
aromatic residue (tyrosine), followed by another segment 
of one to five residues, and then “capped” by a final basic 
lysine or arginine residue, i.e., (L/V)-X1–5-(Y)-X1–5-(K/R). 
Since cholesterol does not display any structural and chemi-
cal variations, the looseness in the definition of the CRAC 
motif is surprising and raised some skepticism about its pre-
dictive value [43, 44]. Sequence analysis identified CRAC 
motifs in a number of transmembrane proteins, which are 
known to bind cholesterol, including G-protein-coupled 
receptors [45–47] and the ion-channel large-conductance 
Ca2+-sensitive voltage-gated K+ channels (BK), nicotinic 
acetylcholine receptor (nAChR), and Kir2.1 [39], as well 
as the translocator protein TSPO [32, 48]. Consistent with 
the importance of the CRAC motif, single mutations within 
this sequence motif, such as substitution of the central tyros-
ine residue, attenuated cholesterol binding [44, 49, 50]. In 
addition, it was suggested that binding of cholesterol to 
the CRAC motif is energetically favorable if the motif is 

Fig. 1   Illustration of the 
complex interplay of choles-
terol (black) with membrane 
environment (pink) and proteins 
(green). Selected techniques 
used to study protein–lipid 
interactions are listed
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located within the transmembrane region, whereas binding 
to CRAC motifs outside of the membrane would be ener-
getically unfavorable [38]. For example, measurements of 
cholesterol-dependent channel activity in combination with 
computational studies suggested that the membrane-adjacent 
CRAC motif, V444—Y450—K453, from a total of seven 
CRAC motifs that are present in the cytosolic domain of 
the BK channel, contributes to the sensitivity of the chan-
nel to cholesterol [51]. In addition, CRAC motifs of the ion 
channels nAChR and Kir2.1, which are located outside of 
the membrane bilayer, were suggested to be energetically 
less favorable for cholesterol binding [41, 51]. Experimen-
tal confirmation of cholesterol binding to CRAC motifs of 
transmembrane proteins was, however, obtained in only a 
few cases [31].

Very similar to the CRAC motif is the sequence motif 
called CARC. CARC represents an “inverted CRAC” motif 
with the amino acid composition (K/R)-X1–5-(Y/F)-X1–5-
(L/V) [52]. The definition of CARC is even less restrictive 
than that of CRAC by including either tyrosine or phenyla-
lanine in the central position. Due to the “snorkeling” effect 
[53], which is attributed to the burial of the side-chain of 
lysine (or arginine) in the hydrophobic part of the membrane 
and emergence of its cationic group at the membrane surface 
[52], the presence of the basic residue allows location of 
the CARC motif at the polar–apolar interface of a trans-
membrane domain. CARC motifs are present in the trans-
membrane domains of transient receptor potential vanilloid 
1 channels (TRPV1) [31], nAChR [38], and Kir2.1 [41]. In 
TRPV1, the sequence motif R579—F582—L585 is located 
in transmembrane helix 5. Mutations of these three charac-
teristic CARC residues affected the sensitivity of TRPV1 
to cholesterol in measurements of capsaicin-induced cur-
rents [31]. AChR has sequence stretches, which fit to the 
CARC definition, in transmembrane helices 1, 3 and 4 [38]. 
Kir2.1 contains CARC motifs in both the cytosolic and 
transmembrane domain, with two of them located at the 
interface between the transmembrane and cytosolic region 
[41]. Substitution of V77 by isoleucine in the CARC motif 
R67—F73—V77 abolished Kir2.1’s sensitivity towards 
cholesterol, while mutation of R67 and F73 resulted in non-
functional channels. Conversely, mutation of all three resi-
dues within a second potential CARC motif, R82—F88—
L90, did not affect the cholesterol-sensitivity of Kir2.1 [41]. 
Experimental structural data for cholesterol binding to the 
proposed CARC sequence motif are currently lacking.

The third cholesterol-binding motif, the so-called cho-
lesterol consensus motif (CCM), was proposed on the 
basis of the crystal structure of cholesterol bound to the β2-
adrenergic receptor [22]. The CCM motif is predominantly 
found in GPCRs (Fig. 2) [22]. Unlike the proposed CRAC 
and CARC motifs, which include residues from one continu-
ous segment of the protein, the CCM is a three-dimensional, 

experimentally validated binding motif that includes resi-
dues from adjacent helices, i.e., (W/Y)-(I/V/L)-(K/R) on one 
helix, and (F/Y/R) on a second helix. Notably, the residue 
types contributing to the CCM are similar to those in the 
CRAC and CARC motifs.

Peptides that insert in membranes or snorkel at the mem-
brane surface have also been suggested to interact with 
cholesterol. Characteristic features of these peptides are 
their folding into helical structure upon membrane interac-
tion and perturbation of membrane organization [38]. The 
distribution of hydrophobic residues within these proposed 
cholesterol-binding peptides is asymmetric and induces a 
45° tilt with respect to the membrane plane [54]. One poten-
tial example of a tilted peptide is the Alzheimer’s β-amyloid 
peptide, of which residues 22EDVGSNKGAIIGLM35 bind 
with high affinity to cholesterol [55]. Peptide sequences with 
asymmetric distributions of hydrophobic residues are also 
present in viral fusion proteins, which require cholesterol 
for membrane insertion [56], suggesting that tilted peptides 
evolved to acquire cholesterol-binding properties to facilitate 
biological functions [38]. Indirect support for tilted peptide 

Fig. 2   Cholesterol-binding motif (CCM) of the β2-adrenergic receptor 
(PDB code: 3D4S). Phenylalanine from one helix, and arginine, iso-
leucine, and tryptophan from another transmembrane helix contribute 
to cholesterol (green) binding
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cholesterol-binding sites was furthermore provided by lipid-
mixing assays and leakage of T-cell-like liposomes, and was 
consistent with molecular modeling predictions [57]. In 
addition, the protein α-synuclein, which plays an important 
role in Parkinson’s disease, potentially through formation of 
oligomeric pores in neuronal membranes [58–60], has been 
discussed in the context of tilted peptides. An isolated pep-
tide corresponding to the α-synuclein sequence 67GGAVVT-
GVTAVA78 is toxic for cultured neurons [56] and has been 
suggested to bind cholesterol in a tilted orientation [61].

Besides the four cholesterol-binding motifs discussed 
above, transmembrane proteins might have developed other 
ways to interact with cholesterol. Examples thereof are the 
two putative non-annular-binding sites in the ion channel 
Kir2.1 [39, 41], as well as cholesterol interaction sites in 
VDAC [34, 40]. In case of Kir2.1, a combination of docking 
studies, all-atom molecular dynamics simulations, and func-
tional assays on channels with site-directed mutagenesis lead 
to the proposition of two binding sites. The two proposed 
binding sites are located in the hydrophobic center of the 
membrane. In addition, a weaker cholesterol-binding site is 
potentially present at the interface between the cytosolic and 
the transmembrane domain of Kir2.1. Binding of cholesterol 
to Kir2.1 was suggested to depend on van der Waals interac-
tions with atoms located in-between-helices [41].

The description above highlights that direct and conclu-
sive evidence for a given cholesterol-binding site is lacking 
in many cases and the proposed cholesterol-binding motifs 
can currently at best act as a general guide to help in the 
design of further experiments. The strongest experimental 
evidence for cholesterol/transmembrane protein interactions 
is currently available from X-ray crystallography and cryo-
electron microscopy. However, even for these very power-
ful techniques, it is often not possible to work with lipid 
environments that faithfully mimic a biological membrane. 
Indeed, many membrane-mimetic environments, which are 
used for structure determination of membrane proteins, can 
differ substantially in their physico-chemical properties 
from those of native membranes, such as hydrophobicity, 
monomeric concentrations of amphiphiles, dielectric proper-
ties, water concentration, and lateral pressure profile [62]. 
These differences can compromise the tertiary structure 
of transmembrane proteins, whereas the structural stabil-
ity of individual transmembrane helices might be enhanced 
[62]. In addition, crystallization can potentially change pro-
tein and cholesterol conformations, crystal-lattice effects 
might affect cholesterol binding and crystallization does 
not capture the dynamic nature of cholesterol/transmem-
brane protein interactions. To mimic the natural environ-
ment of a membrane, NMR and EPR studies focusing on 
cholesterol/transmembrane protein interactions are best 
done in liposomes or small unilamellar vesicles, increasing 
the challenge of obtaining high-quality data. Docking and 

molecular dynamics simulations still lack exact force fields 
or suffer from other computational limitations. Functional 
or biophysical studies, on the other hand, are indirect and by 
themselves only provide circumstantial evidence.

Annular and non‑annular sites 
for cholesterol interaction

A further classification of cholesterol-binding sites is based 
on their accessibility: (i) annular sites that are located 
directly at the transmembrane surface of the protein, and (ii) 
non-annular sites that are located between transmembrane 
helices and occluded from membrane phospholipids [39].

Annular lipids are lipids that are in direct contact with the 
hydrophobic surface of a membrane protein [16]. The inter-
action between annular lipids and transmembrane proteins 
occurs through hydrogen bonds, π–π and cation–π interac-
tions, electrostatic, and van der Waals forces [63] and results 
in transient immobilization of the lipid. Annular-binding 
sites have been observed for various lipids of the cellular 
membrane [2]. For example, Marsh and Barrantes detected 
a population of immobilized lipids in the form of a two-
component electron spin resonance spectrum in the vicinity 
of nAChR [24]. The immobilized lipids included fatty acids, 
steroids, and several kinds of phospholipids, suggesting 
that transient lipid binding was not specific [24, 64]. Subse-
quently, a combination of complementary surface pressure 
measurements suggested that nAChR interacts preferentially 
with sterols [65, 66]. Functional studies further revealed that 
increasing cholesterol levels enhance nAChR-mediated ion 
flux and functional activity of nAChR [67–69]. In case of the 
receptor serotonin1A, coarse-grained molecular dynamics 
simulations pointed to multiple ‘hot-spots’ for transient cho-
lesterol binding [47]. High-occupancy sites, but with a high 
rate of exchange of cholesterol, were designated as annular-
binding sites and were observed in both the extracellular and 
the intracellular side of the receptor [47, 70]. In addition, 
atomistic molecular dynamics simulations pointed to a large 
number of transient annular and non-annular-binding sites 
in the A2A adenosine receptor [71] and the β2-adrenergic 
receptor [72, 73]. Notably, cholesterol binding was not only 
found to be transient in these studies, but also the cholesterol 
molecules remained mobile in the bound state, stressing the 
dynamic nature of cholesterol/protein interactions.

The concept of non-annular-binding sites was devel-
oped on the basis of the observation that cholesterol does 
not displace annular phospholipids in nAChR [74]. In 
addition, electron spin resonance experiments suggested 
that sterols are immobilized between the transmembrane 
helices of nAChR [24, 74]. Non-annular cholesterol-bind-
ing regions were also proposed for the Ca2 + -ATPase of 
sarcoplasmic reticulum [75] and the β-adrenergic GPCR 
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[22, 76]. Moreover, a cholesterol molecule is positioned 
within a groove formed by three transmembrane helices 
(Ia, V, and VII) of the dopamine receptor [77]. A cho-
lesterol-binding site was furthermore identified in the 
5-HT2BERG receptor [78]. In case of the human A2A 
adenosine receptor, three cholesterol-binding sites were 
observed in its crystal structure [79].

Non-annular cholesterol-binding sites were revealed by 
X-ray crystallography in several G-protein coupled recep-
tors (GPCRs) (Fig. 3) [80]. For example, two cholesterol 
molecules were observed between the transmembrane 
helices of two adjacent molecules (helices I and VII in 
one molecule and helix I in the adjacent molecule) of 
the proton pumping rhodopsin ARII [81]. In addition, a 
cholesterol molecule was also seen in between the trans-
membrane helices of two μ-opiod receptors [82], and two 
putative non-annular cholesterol-binding regions were 
proposed in Kir2.1 channels [41]. Cholesterol-binding 
sites have also been identified in TSPO [32, 37, 48] and 
VDAC [34, 40]. Out of the 103 protein data bank (PDB) 
entries, which contain bound cholesterol molecules, 30 
entries with a sequence similarity of less than 90% are 
listed in Table 1. Some of these proteins have cholesterol 
close to CRAC and CARC motifs. Many others, however, 
contain CRAC and/or CARC motifs, but cholesterol is 
bound to a different site. In addition, several proteins do 
not contain CRAC and/or CARC motifs although they 
are able to accommodate cholesterol in their structure 
(Table 1).

Importance of cholesterol–protein 
interactions

Direct binding to protein versus modulation 
of membrane properties

Cholesterol is known to regulate the activity of ion channels 
and other transmembrane proteins [39, 83]. From a mecha-
nistic point of view, two scenarios for cholesterol—mem-
brane protein interaction have been proposed. In the first 
model, cholesterol directly binds to the protein as a ligand 
and thus influences membrane protein function. In contrast, 
in the second scenario, cholesterol does not specifically 
bind to the protein but regulates its activity by altering the 
physical properties of the surrounding membrane [39, 84]. 
Notably, a direct interaction does not rule out the possibil-
ity that membrane properties have also been altered due to 
hydrophobic mismatch or change in bilayer thickness [39]. 
Since the physical properties of membrane bilayers can also 
be affected by the presence of other sterols, it is difficult 
to identify the specificity of cholesterol-mediated effects in 
such cases. The existing studies are, therefore, going into 
two directions, assessing whether (i) the regulatory effect of 
cholesterol is specific and (ii) whether cholesterol directly 
binds to the channel. The former typically involves the use 
of enantiomers of cholesterol, whereas the latter is based on 
direct binding essays using radiolabeled cholesterol.

Direct binding of cholesterol has been shown for the 
transmembrane receptor nAChR, although binding might 
be unspecific [85]. nAChR–cholesterol interactions stabilize 
the channel in the resting state, while cholesterol-induced 

Fig. 3   Structural representations 
of non-annular cholesterol-
binding sites in two transmem-
brane proteins. The cholesterol 
molecule is shown in green and 
a few residues in close proxim-
ity to cholesterol are shown in 
blue. PDB codes are: a 5TCX 
(human tetraspanin) and b 
selected region of 5L7D (human 
smoothened protein)



2142	 G. Jaipuria et al.

1 3

changes in membrane thickness facilitate transitions 
between the uncoupled and coupled states of nAChR 
[86]. In addition, cholesterol was found to be required for 

agonist-induced opening of the GABAA receptor, up-reg-
ulating it both specifically and non-specifically [87]. Con-
versely, the volume-regulated anion channel (VRAC) was 

Table 1   Proteins with cholesterol (PDB code: CLR) bound to their structure

Included proteins have less than 90% sequence similarity (date of analysis: 29th September 2017). Cholesterol-like molecules have not been 
included into the search
PC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, PE 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, PG 1-palmitoyl-2-ole-
oyl-sn-glycero-3-phosphoglycerol, DDM n-dodecyl-β-d-maltopyranoside, LMNG lauryl maltose neopentyl glycol
a Total number of cholesterol molecules bound per structure
b CRAC motifs per chain
c Cholesterol motif present within 7 Å radius of one of the three defining residues of a CRAC or CARC motif

PDB ID Protein/lipid/detergent used during purification/crystal-
lization

Bounda CRAC​b motifs CARC motifs Binding 
CRAC/
CARC​c

X-ray diffraction
 1LRI Fungal elicitor cryptogein 1 None None No
 5XRA CB1/ monoolein 1 None None No
 2RH1 β-2 adrenergic receptor/ monoolein 3 None None No

Na+/K+ ATPase/PC
2ZXE α subunit 1 5 12 No

β subunit 3 7 Yes
3WGU​ α subunit 6 4 14 No

β subunit 5 9 Yes
4XT1 Human chemokine CX3CL1/1-oleoyl-R-glycerol 2 3 3 No

μ-opioid receptor/monoolein
4DKL 1 None None No
5C1M 1 3 2 No
4XP9 Dopamine transporter/DDM, PE 1 4 11 No
1N83 Nuclear receptor ROR-alpha 1 1 2 Likely
5LWE Chemokine receptor type 9/DDM 1 3 6 Yes
5I6X Human serotonin transporter/PC, PE, PG 1 6 5 No
5L7D Human smoothened protein/DDM 1 None None No
3N9Y Human CYP11A1 2 7 6 No
5JQH β-2 adrenoceptor/ monoacylglycerol 2 None None No
4XNV P2Y purinoceptor 1/DDM 1 None None No
5IU4 A2A adenosine receptor 4 None None No
5X93 Endothelin B receptor/ LMNG 1 None None No
5WVR OSH1 OSBP-related domain 1 8 8 Yes
1ZHY Oxysterol binding protein Osh4 1 3 11 Yes
5TCX Human tetraspanin CD8/monoolein 1 1 5 No
3GKI N-terminal domain of Niemann-Pick C1 protein 1 None 4 No
4BOE Tick lipocalin japanin 1 4 4 Yes
4OR2 Metabotropic glutamate receptor 1/monoolein 6 None None No
4IB4 Chimera of 5-HT2B-BRIL/monoolein 1 None None No
3AM6 Proton pumping rhodopsin AR2/monoolein 8 2 3 No
4PXZ P2Y12 receptor/monoolein 1 None None No
Electron microscopy
 5SY1 STRA6 receptor/ lauryl maltose neopentyl glycol 2 3 10 No
 3JD8 Niemann-Pick C1 protein 1 6 18 No

Small angle neutron scattering
 3K2S High density lipoprotein/POPC 20 5 4 No
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shown to be non-specifically down-regulated by cholesterol 
[88], presumably by the effects on lipid packing around the 
channel [89]. Cholesterol also down-regulates the activity 
of inwardly rectifying K+-channels (KIR), by a direct and 
non-stereospecific interaction with the receptor [90, 91]. 
Several studies furthermore revealed an inhibitory effect 
of cholesterol on the activity of BK channels via specific 
protein–sterol interactions [39, 92–94]. An inhibitory effect 
of cholesterol as a result of stereoselective binding was also 
observed for TRPV1 [31]. Notably, direct evidence for cho-
lesterol binding through biochemical methods has so far only 
been obtained for a small number of channels [95–98], mak-
ing it often difficult to distinguish between a direct and indi-
rect effect of cholesterol on transmembrane protein activity.

Cholesterol and mitochondrial membrane proteins

Disorders in lipid metabolism and transport play an impor-
tant role in human disease [99]. Changes in the lipid profile 
of a cell drastically affect the cellular metabolism and signal 
transduction [99, 100]. In the particular case of cancer, an 
up-regulation of lipid metabolism is often observed during 
early stages of neoplasia and is a recognized hallmark of 
many types of cancer [100]. Changes in the mitochondrial 
phospholipid membrane composition, especially in choles-
terol, can be triggered by external interventions (e.g., diet) 
and by a range of biological events (apoptosis, disease, and 
aging) [101].

Cholesterol is the sole precursor of steroids, whose syn-
thesis at the inner mitochondrial membrane (IMM) requires 
translocation of cholesterol from the outer mitochondrial 
membrane (OMM) to the IMM [102]. Improper storage and 
targeting of cholesterol can be toxic for cells [102]. Choles-
terol translocation involves various proteins. One of the first 
identified cholesterol-binding proteins was the sterol carrier 
protein-2 (SCP-2). SCP-2 plays a role in intracellular trans-
fer of cholesterol, including the pathway from lysosomal to 
mitochondrial membranes [103]. Cholesterol, successfully 
imported via the plasma membrane or accessed through lipid 
droplets, is transported to the OMM, where it remains segre-
gated until translocation to the IMM. The latter step is rate-
limiting for steroidogenesis, and is thought to involve the 
mitochondrial translocator protein TSPO, previously known 
as the peripheral-type benzodiazepine receptor [102, 104]. 
A study employing TSPO ligands demonstrated that ligand 
binding to TSPO influences cholesterol translocation from 
the OMM to the IMM [105]. Subsequently, the role of TSPO 
in cholesterol translocation was supported by experiments 
using a bacterial TSPO-expression system [106]. In addi-
tion, cholesterol was associated with allosteric conforma-
tional changes in TSPO [37]. Because TSPO is preferentially 
located at mitochondrial contact sites, it was furthermore 
suggested that TSPO does not function alone, but TSPO 

function is modulated through interactions with other pro-
teins [102]. One of these proteins is VDAC, which binds 
cholesterol in vivo [107, 108] and in vitro [109], and influ-
ences cholesterol distribution in mitochondria [110]. Choles-
terol is also important for VDAC gating [109], enhances the 
structural integrity of isolated VDAC, aids channel insertion 
into membranes [107, 111, 112], and promotes uniformly 
open channel conductance [107, 112]. In addition, choles-
terol might affect VDAC’s interaction with other proteins 
[113]. VDAC function could thus be modulated during can-
cer, as well as aging and disease [101], when the content of 
cholesterol in the OMM increases [114, 115].

Insights into cholesterol–protein interactions 
through NMR spectroscopy

X-ray crystallography, NMR and electron spin resonance, 
and more recently cryo-electron microscopy [116], Fourier 
transform infrared spectroscopy [117], and femtosecond 
crystallography [118] have been used to study membrane 
protein structures and their interactions with lipids. In addi-
tion, mass spectrometry-based chemical photoaffinity labe-
ling [119] and molecular dynamics simulations [120] were 
employed to characterize cholesterol binding and the impact 
of cholesterol on membrane protein activity.

Progress in sample preparation techniques, and methodo-
logical and technological advances have established NMR 
as an excellent technique to probe the interaction of two 
interacting species and provide atomic details of biomo-
lecular interactions [121]. Based on these advances, detailed 
studies of the orientation of cholesterol and its derivatives 
in membrane environments have been performed by NMR 
[122]. NMR spectroscopy nowadays provides an important 
tool to study the impact of cholesterol on membrane protein 
structure and function.

Solution‑state NMR studies of protein–cholesterol 
interactions

GPCRs form an important class of membrane proteins 
reported to bind cholesterol. Several GPCRs have been co-
crystalized with cholesterol and structurally characterized by 
X-ray crystallography [80]. Cholesterol is known to impact 
the function of the GPCR β2AR, both by direct binding and 
indirectly by influencing the lateral pressure and order of the 
bilayer [123]. To obtain insight into the interaction of cho-
lesterol with β2AR, Gater et al. performed saturation transfer 
difference NMR experiments on lipid cubic phase samples 
containing cholesterol and β2AR [124]. In addition, NMR 
spectroscopy supported the finding that micelle-solubilized 
cannabinoid receptor CB2 is structurally stabilized by cho-
lesterol hemisuccinate, a derivative of cholesterol [125].
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To gain insight into the interaction of cholesterol with 
the C-terminal domain of the amyloid precursor protein 
(C99), Barrett et al. performed solution-state NMR titra-
tions in combination with alanine scanning mutagenesis for 
C99 solubilized in DHPC/DMPC bicelles [126]. To this end, 
C99 residues ranging from 690 to 710 were replaced by ala-
nine, followed by titration with increasing concentrations of 
cholesterol to detect chemical shift changes in 2D 1H–15N 
correlation spectra. Chemical shift perturbations indicated 
that cholesterol binds to the GXXXG motif of C99, which is 
known for its ability to promote homodimerization of trans-
membrane helices [127].

Hiller and coworkers investigated the interaction of cho-
lesterol with VDAC using solution-state NMR spectroscopy 
[109]. VDAC, which was solubilized in lauryldimethyl-
amine oxide micelles, showed chemical shift changes in the 
presence of cholesterol for nine backbone amide residues 
belonging to β-strands 7, 8, and 11 [109]. In addition, dock-
ing and molecular dynamics simulations suggested a total 
of five possible binding sites for cholesterol in VDAC, with 
cholesterol molecules primarily located in grooves defined 
by ridges of hydrophobic and sometimes aromatic residues 
[34]. Melissa and coworkers furthermore investigated the 
interaction of VDAC with cholesterol using photoaffinity 
labeling in combination with mass spectrometry [119]. 
Based on these studies, it was suggested that the cholesterol-
binding pocket of VDAC is localized at the functionally rel-
evant E73 [128] and T83 residues [119].

Solid‑state NMR of membrane proteins 
embedded into cholesterol‑containing membrane 
environments

Solid-state NMR spectroscopy is a powerful method to study 
the interaction between lipids and membrane-embedded pro-
teins. Luo and coworkers used solid-state NMR to probe the 
effect of membrane environment on the dynamic properties 
of the Influenza A M2 peptide [129]. By recording 1H–15N, 
1H–13C, and 13C–15N dipolar couplings and 2H quadrupo-
lar couplings, they showed that uniaxial diffusion of this 
transmembrane peptide is slowed down by two orders of 
magnitude (< 103 s−1) in cholesterol-rich virus envelope-
mimetic membranes. In addition, the structure and dynamics 
of full-length influenza A M2 proteins’ were shown to be 
membrane-dependent [130]. Two-dimensional carbon–car-
bon correlation spectra of DMPC-embedded full-length 
AM2 showed β-strand chemical shifts for its serine, alanine, 
and leucine residues. In contrast, chemical shifts character-
istic for α-helical secondary structure were observed in a 
cholesterol-rich membrane environment [130]. In agreement 
with the influence of cholesterol on the structural proper-
ties of transmembrane peptides and proteins [131], residues 
7–11 of the human immunodeficiency virus fusion peptide 

convert from α-helical to β-strand conformation upon inter-
action with cholesterol [132].

In a recent elegant study, cholesterol binding to influenza 
M2 has been directly observed by high-resolution solid-state 
NMR using chain-fluorinated and sterol-deuterated choles-
terol [133]. 13C to 19F distance measurements showed that 
two cholesterol molecules bind to each M2 tetramer [133]. 
In addition, deuterium NMR spectra of the sterol-deuterated 
cholesterol provided information about the orientation of 
cholesterol in the lipid bilayer and were used together with 
protein–cholesterol distances to derive a structural model 
of the protein/cholesterol complex [133]. This approach is 
particularly important, because it overcomes the problem, 
that chemical shift differences in the absence and presence 
of cholesterol can come from either direct interaction with 
cholesterol or cholesterol-induced changes in transmem-
brane protein structure.

Solid‑state NMR of membrane‑embedded TSPO

The translocator protein TSPO is preferentially expressed in 
tissues that synthesize steroids [134] and has been suggested 
to play an important role in cholesterol translocation from 
the OMM to the IMM [102]. In vitro, liposome-embedded 
TSPO binds cholesterol with nanomolar affinity [49]. It is, 
therefore, of high interest to understand how TSPO interacts 
with cholesterol, to which site in TSPO cholesterol binds and 
how cholesterol binding influences the structure and dynam-
ics of TSPO. In addition, an open question is if and how 
TSPO contributes to translocation of cholesterol from the 
OMM to the IMM and how synthetic TSPO-specific ligands 
[135], which are used for diagnostics [135] or therapy [136], 
influence cholesterol binding.

To gain insight into TSPO/ligand interactions, we deter-
mined the three-dimensional structure of TSPO from mouse 
using solution-state NMR [48, 137, 138]. TSPO was solu-
bilized in the detergent fos-choline-12 and structurally 
stabilized through binding of the radioligand (R)-1-(2-
chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline 
carboxamide ((R)-PK1115). The three-dimensional structure 
of the TSPO/PK1115 complex revealed a tight bundle of five 
transmembrane helices. PK1115 is bound to a hydrophobic 
pocket, which is located in the interior of the structure on 
the cytosolic side of the lipid bilayer. The C-terminal half 
of transmembrane helix 5 contains a CRAC motif (resi-
dues A147–S159) and mutation of the central tyrosine in 
the CRAC motif abolishes cholesterol binding in vitro [49]. 
Side-chains of CRAC-defining residues are pointing away 
from the TSPO core, suggesting that these side-chains are 
accessible for binding to membrane-embedded cholesterol 
in an annular manner [48].

To obta in  ins ight  in to  the  TSPO/choles-
terol interplay, we reconstituted the protein into 
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1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 
liposomes [139]. Similar to mouse TSPO in fos-cho-
line-12 micelles [48], a radioligand—in this case N-(2,5-
dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide 
(DAA1106)—increased the structural stability of the pro-
tein. A large number of high-resolution solid-state NMR 
experiments in combination with site-directed mutagenesis 
demonstrated that mouse TSPO populates a concentration-
dependent monomer–dimer equilibrium in DMPC liposomes 
(Fig. 4). Dimer formation at high protein concentrations is 
mediated by 83GXXXG87 in transmembrane helix 3—a com-
mon motif for dimerization of transmembrane helices [140].

To study the interaction of TSPO with cholesterol, addi-
tional NMR samples were prepared, in which the DMPC 
liposomes contained cholesterol. Because of the known abil-
ity of cholesterol to cluster [141], i.e., to make sure that there 
are a sufficient number of cholesterol molecules, which are 
able to interact with TSPO, a tenfold excess of cholesterol 
over protein was used. Moreover, DAA1106 was used to 
stabilize the TSPO fold. Comparison of solid-state NMR 
spectra in the absence and presence of cholesterol showed 
chemical shift changes in different parts of the protein. The 
affected residues belong to the CRAC motif in helix 5, its 
neighboring helix 2, as well as the dimerization interface in 
transmembrane helix 3 (Fig. 5). In addition, quantification of 
monomer/dimer species by NMR signal intensities indicated 
that the presence of cholesterol favors TSPO monomeriza-
tion [37].

To further support a potential cross-talk between the 
CRAC motif and the dimerization interface in transmem-
brane helix 3, residue Y152 within the CRAC motif was 
mutated to serine. This mutation resulted in an overall 
decrease of NMR spectral quality. Yet, unlike wild-
type TSPO, Y152S-TSPO showed no evidence for pro-
tein dimerization. Vice versa, mutation of G87V in the 

dimerization interface caused chemical shift changes 
for residues in the CRAC motif, further strengthening 
the communication between the CRAC motif and the 

Fig. 4   Schematic representation of the concentration-dependent monomer–dimer equilibrium of TSPO in DMPC liposomes. The presence of 
cholesterol favors TSPO monomers

Fig. 5   Residues that experience chemical shift perturbation upon 
addition of cholesterol are colored white. TM-II undergoes major 
chemical shift perturbation
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dimerization interface of TSPO and suggesting allosteric 
effects due to cholesterol-binding [37].

Outlook

Through a combination of different experimental tech-
niques, the interaction of cholesterol with transmembrane 
proteins has been characterized at increasing resolution in 
recent years. Cholesterol can interact with membrane pro-
teins either at annular or non-annular sites in a specific as 
well as non-specific manner. In addition, cholesterol changes 
the physical properties of the membrane and thus is able to 
indirectly—without specific binding to the protein—modu-
late the function of membrane proteins. Important aspects 
of both these mechanisms are cholesterol-mediated changes 
in the oligomerization of membrane proteins.

The variety of reported cholesterol/protein interactions 
and the influence of cholesterol on membrane proteins, how-
ever, suggest that general rules with respect to protein/cho-
lesterol interactions and their functional consequences are 
difficult to define. Instead, detailed studies are required that 
identify cholesterol-binding sites at high resolution and con-
nect it to changes in the structure and dynamics of individual 
membrane proteins and functional assays with cholesterol. 
An important aspect of these studies could be the direct and 
indirect effect of cholesterol on the interactions between dif-
ferent membrane proteins. We believe that NMR spectros-
copy, in particular solid-state NMR, can play an important 
role in this endeavor, because it can simultaneously probe 
the direct binding of cholesterol and cholesterol-induced 
changes in the structure and dynamics of peptides and pro-
teins embedded in near native-like membrane environments. 
In addition, lipid-protein nanodiscs offer a new possibility 
to structural biologists to study lipid–protein interactions by 
NMR [142, 143]. An understanding of cholesterol/protein 
interactions on an atomic-scale level would not only provide 
more profound insight into physiological and pathophysi-
ological signaling processes related to health and disease, 
but could also turn out to be valuable for the identification 
of new treatment strategies.
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