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Abstract
Nitrogen (N) is one of the most important essential macro-elements for plant growth and development, and nitrate represents 
the most abundant inorganic form of N in soils. The nitrate uptake and assimilation processes are finely tuned according 
to the available nitrate in the surroundings as well as by the internal finely coordinated signaling pathways. The NIN-like 
proteins (NLPs) harbor both RWP-RK, and Phox and Bem1 (PB1) domains, and they belong to the well-characterized 
plant-specific RWP-RK transcription factor gene family. NLPs are known to be involved in the nitrate signaling pathway 
by activating downstream target genes, and thus they are implicated in the primary nitrate response in the nucleus via their 
RWP-RK domains. The PB1 domain is a ubiquitous protein–protein interaction domain and it comprises another regulatory 
layer for NLPs via the protein interactions within NLPs or with other essential components. Recently, Ca2+–Ca2+ sensor 
protein kinase–NLP signaling cascades have been identified and they allow NLPs to have central roles in mediating the 
nitrate signaling pathway. NLPs play essential roles in many aspects of plant growth and development via the finely tuned 
nitrate signaling pathway. Furthermore, recent studies have highlighted the emerging roles played by NLPs in the N starva-
tion response, nodule formation in legumes, N and P interactions, and root cap release in higher plants. In this review, we 
consider recent advances in the identification, evolution, molecular characteristics, and functions of the NLP gene family in 
plant growth and development.
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Introduction

Nitrogen (N) is a major constituent of proteins, chlorophyll, 
nucleotides, and hormones, and thus it has profound effects 
on plant growth and productivity [1–4]. Huge amounts of N 
fertilizer are applied to soils to maximize crop yields to meet 
the high requirements for food due to the growing population 

worldwide [5, 6]. However, less than 50% of the applied 
N fertilizer is absorbed by plants, depending on the soil 
conditions and crop species [7–10]. The input of excess N 
causes severe environmental pollution and produces green-
house gases (such as N2O) that contribute to climate change 
[11–13]. Therefore, there is an urgent need to improve the 
N use efficiency (NUE) of plants to balance high crop yields 
with lower N fertilizer inputs [12, 14–16]. Among the vari-
ous methods that can be used for improving the NUE, trans-
genic approaches are considered the most promising ways 
for meeting the current demand for a high NUE in crops, 
but they require a comprehensive understanding of all the 
processes involved with N uptake and assimilation [5, 12].

Nitrate is one of the most abundant inorganic forms of 
N in aerobic soils but it is also the most readily leached 
form of N due to its chemical nature [17]. Recent research 
indicates that nitrate can act as a nutritional element but 
also as a signaling molecule in plants [8, 18–23]. The com-
ponents involved in the nitrate signaling pathway were 
identified in recent years [18–20]. In particular, the nitrate 
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assimilation-specific regulator NIT2, which contains the 
DNA-binding RWP-RK domain, was shown to regulate 
nitrate signaling in Chlamydomonas [18]. Further research 
demonstrated that the NIT2 protein is structurally similar 
to the NODULE INCEPTION (NIN) proteins from legume 
plants [18]. The first NIN gene was identified in the legume 
plant Lotus japonicus and it is functionally necessary for 
nodule formation [24]. The NIN protein also contains a con-
served RWP-RK domain but it has an additional Phox and 
Bem1 (PB1) domain, and it is considered the founding mem-
ber of the NIN-like proteins (NLPs) [25–27]. Phylogenetic 
analyses determined the specific NIN proteins in legumes, 
and other NLPs were identified in both legumes and other 
non-N fixing plants, such as rice, Arabidopsis, wheat, and 
maize [25, 27–29]. The NIN proteins in legumes are also 
considered to be NLPs based on the presence of the PB1 
domain [27]. In addition to the RWP-RK and PB1 domains, 
another conserved domain was identified in the N terminal 
regions of NLPs as the GAF domain [18, 27]. However, 
recent studies have disputed whether the GAF is a feature 
of NLPs because the folded GAF-related structure has not 
been confirmed in NLPs [30, 31]. Thus, this debate has led 
researchers to reconsider the conserved domain in the N 
terminal regions of NLPs.

Recently, several studies have contributed to our under-
standing of nitrate signaling-mediated N uptake and assimi-
lation, and many key components that facilitate this pro-
cess have been characterized [19, 32–35]. AtNLP6 and 
AtNLP7 were identified as having central roles in nitrate 
signaling, where the activities of AtNLP6/7 in nitrate sign-
aling are finely tuned by the post-transcriptional regulation 
of the phosphorylation state [32, 36]. The phosphoryl-
ated AtNLP6/7 remain in the nucleus to activate the genes 
involved in the primary nitrate response (PNR) via their con-
served RWP-RK domain in the presence of nitrate [32, 36]. 
Recently, several Ca2+-sensor protein kinases (CPKs) were 
identified (i.e., CPK10/30/32) that phosphorylate AtNLP6/7 
as intermediates between the NRT1/PTR FAMILY 6.3/ 
NITRATE TRANSPORTER 1.1 (NPF6.3/NRT1.1) which 
mediated Ca2+ signals and the retention of AtNLP6/7 in the 
nucleus in the presence of nitrate, thereby facilitating the 
central roles of NLPs in NPF6.3/NRT1.1-Ca2+-NLP-medi-
ated nitrate signaling [21, 32]. In addition, several essential 
components of this signaling pathway have been detected 
using genetic and molecular approaches in Arabidopsis, such 
as teosinte branched1/cycloidea/proliferating cell factor1-20 
(TCP20), NITRATE REGULATORY GENE 2 (NRG2), 
and NITRATE-INDUCIBLE GARP-TYPE TRANSCRIP-
TIONAL REPRESSOR 1 (NIGT1) [22, 34, 37, 38]. These 
findings enhance our understanding of the N uptake and 
assimilation processes mediated by Ca2+–CPK–NLP sign-
aling cascades in plants, as well as providing efficient candi-
dates and strategies for improving the NUE [39]. Moreover, 

the roles of NLPs in the N starvation response, nodule for-
mation, N and phosphate (P) interactions, and root cap cell 
release have been clarified in recent years [34, 38, 40, 41]. 
In this review, we focus on the NLPs in plants, including 
recent advances in their identification, evolution, molecular 
structure, and functions. This review provides timely infor-
mation about the roles played by NLPs in plant growth and 
environmental adaptation, as well as the underlying molecu-
lar regulatory mechanisms involved.

Identification and evolutionary history 
of NLPs in plants

The first NIN protein was identified in the legume species 
L. japonicus as a crucial regulator that controls N-mediated 
symbiotic root nodule formation [24]. Subsequently, nine 
and three NLPs were found by homologous analysis in the 
genomes of the non-N-fixing plants Arabidopsis and rice, 
respectively [25]. In recent years, due to increased avail-
ability of genome information, the genome-wide identifica-
tions of NLPs have been conducted in many plants, such as 
Physcomitrella patens, maize, Brassica napus, wheat, and 
Glycine max [29, 42–46]. However, compared with other 
well characterized gene families in plants [47, 48], little 
information is available regarding the members of this gene 
family in sequenced plants [25, 27].

Thus, to obtain a better understanding of the NLP gene 
family in plants, a comprehensive analysis was conducted 
of the NLP gene family in 81 plant species with genome 
sequences available in Phytozome (https​://phyto​zome.jgi.
doe.gov/pz/porta​l.html) according to the previous estab-
lished method [49]. In total, 587 NLP proteins with both 
RWP-RK and PB1 domains were identified in 74 plant spe-
cies (Tables S1 and S2). No NLP proteins were detected in 
seven algae species, including six green algae (Botryococcus 
braunii, Chlamydomonas reinhardtii, Chromochloris zof-
ingiensis, Coccomyxa subellipsoidea C-169, Volvox carteri, 
and Dunaliella salina) and one red alga (Porphyra umbili-
calis) (Table S1). However, one to three NLP proteins were 
detected in the other branch of green algae, specifically in 
Micromonas pusilla CCMP1545, Micromonas sp. RCC299, 
and Ostreococcus lucimarinus, which belong to Mamiel-
lales (Table S1). Interestingly, unlike other green algae, 
Mamiellales have reduced genomes [50, 51]. Similar results 
have been obtained for other gene families involved in leaf 
development, such as YABBY and GROWTH REGULAT-
ING FACTOR (GRF) [50]. These findings suggest that the 
ancestral NLP proteins originated from green alga and that 
they formed the basal toolkit during the evolutionary history 
of plants [52]. NLP proteins were not identified in some of 
the green algae but RWP-RK proteins (such as NIT2) were 
detected and they have similar functions to the NLP proteins 

https://phytozome.jgi.doe.gov/pz/portal.html
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in higher plants [18, 27]. In addition, the lowest and high-
est numbers of NLP proteins were found in Ostreococcus 
lucimarinus/Marchantia polymorpha (1) and Helianthus 
annuus (31), respectively (Table S1). Other plants found to 
contain relatively high numbers of NLP proteins comprised 
Daucus carota (with 21), Kalanchoe laxiflora (20), Gos-
sypium hirsutum (20), Populus trichocarpa (14), and Linum 
usitatissimum (14) (Table S1). The genomes of these plant 
species have undergone whole-genome duplication events 
or whole-genome triplication [53–57], which might have 
contributed to their higher numbers of NLP proteins.

In addition to the few studies that addressed the iden-
tification of NLPs, evolutionary analyses of NLPs have 
been conducted for a limited number of plant species [25, 
27]. In particular, a comprehensive phylogenetic tree was 
constructed using the 587 NLP proteins obtained from 74 
plant species to evaluate the evolutionary history of the 
NLP family (Fig. 1). Similar to a previous evolutionary 
analysis [25], the 587 NLPs were divided into three major 
groups with 235, 151, and 235 proteins in Group 1, Group 
2, and Group 3, respectively (Tables S1–S2 and Fig. 1). 
For instance, in Arabidopsis, AtNLP1–5 was assigned to 
Group 1, AtNLP8–9 to Group 2, and AtNLP6–7 to Group 
3 (Tables S1 and S2). Similar assignments were made in 
earlier studies [25, 26, 43, 58]. Interestingly, the members 
of Group 3 appeared to have originated from green algae, 
whereas the proteins from Group 2 originated from mosses 
(Table S1). The members of Group 1 probably appeared 
after the division of eudicots and monocots, and they are 
absent from Amborella trichopoda (Table S1), which is 

considered the most basal lineage in angiosperms [59]. 
These findings suggest three separate origins for NLPs in 
plants, but the ancestral NLPs might originate from green 
algae and they include the well-known proteins AtNLP6/7.

Molecular structure of NLPs in plants

The typical molecular structure of NLPs contains GAF, 
RWP-RK, and type I/II PB1 domains [26, 27, 43]. However, 
according to our analysis, none of the 587 proteins analyzed 
harbored the GAF domain (Table S1), which differs from a 
previous report that many NLPs carry a GAF domain [27]. 
The GAF domain was first described in NIT2 together with 
AtNLP3 based on a sequence alignment [18], and further 
studies confirmed the presence of this conserved domain in 
the N terminal regions of NLPs [27, 44, 58]. However, does 
the conserved domain correspond to the well-known GAF 
domain? Three hidden Markov models of GAF domains, i.e., 
GAF (PF01590), GAF_2 (PF13185), and GAF_3 (PF13492), 
were used to search for the possible GAF domains in the 587 
NLPs using HMMER software and they failed to detected 
any GAF domains in these NLPs [60]. In addition, using the 
protein sequence of NIT2 as a query to search against both 
Pfam and the NCBI’s Conserved Domain Database (CDD) 
[61] failed to detect any GAF domains. Previous studies have 
reported that the structurally characterized GAF domains 
can bind with low-molecular weight ligands, such as cGMP, 
2-oxoglutarate, nitric oxide, and nitrate, or serve as homodi-
merization modules [62–65]. However, no evidence suggests 
that the functions of NLPs are related to the GAF domain. 
Therefore, the conserved domains in the N terminal regions 
of NLPs might not be GAF domains [30], but further studies 
are required to confirm this hypothesis.

In several other recent studies, the conserved domain in 
the N terminal region of NLPs was designated as a nitrate-
responsive domain (NRD) according to features that could 
allow NLPs to receive nitrate signals via this domain [30, 
31]. Thus, the classical molecular structure of NLPs com-
prises three major domains, i.e., NRD, RWP-RK, and BP1 
(Fig. 2) [30, 31]. One evolutionarily conserved site (S205) 
has been identified as a phosphorylation site in the NRD, 
where it is phosphorylated by CPK10, CPK30, and CPK32, 
and it is essential for the retention of AtNLP7 in the nucleus 
to activate nitrate-induced gene expression in the presence 
of nitrate [32]. The NRD is highly conserved in NLPs, but 
partly conserved in the specific NINs of legumes [25, 30]. 
However, the differences between LjNIN and LjNLP1–4 
with respect to the NRD could have contribution to the loss 
of nitrate responsiveness by LjNINs, which may have been 
essential for the emergence of symbiotic N fixation in leg-
umes [58].

Fig. 1   Phylogenetic tree of NLPs in plants. The tree comprises 587 
NLPs from 74 plant species and it can be divided into three groups 
(i.e., Group 1, Group 2, and Group 3). Detailed information regarding 
the NLPs in these 74 plants is provided in Tables S1 and S2
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As a subfamily of the RWP-RK gene family, all NLPs 
carry the RWP-RK domain, which is the most highly con-
served region in NLPs [27]. The RWP-RK domain contains 
two α-helices and an amphipathic leucine zipper with the 
conserved sequence Arg–Trp–Pro–X–Arg–Lys, which might 
be involved in DNA binding [24, 25, 44]. The activity of the 
RWP-RK domain is not required for nitrate signaling [28], but 
it is essential for binding to nitrate-responsive cis-elements 
(NREs) in the promoter regions of target genes [66].

The PB1 domain is a protein–protein interaction domain 
and it contains either or both the type I and type II motifs 
[67]. NLPs contain both type I and type II PB1 domains (type 
I/II PB1 domain), which can interact with type I, type II, and 
type I/II PB1 domains [67, 68]. There are three glutamate or 
aspartate residues between β3 and β4 in type I, and they are 
found on the rear surface of the PB1 domain [68]. The type II 
motif is located on the front surface of the PB1 domain and it 
contains an invariant lysine residue in the β1 region [31]. The 
interaction between two PB1 domains occurs in a front-to-
back manner, with electrostatic interactions between the basic 
lysine residue in one PB1 domain and the acidic glutamate/
aspartate residues in the other [67, 68]. The homodimeriza-
tion of NLP–NLP is facilitated by the PB1 domains, and the 
core amino acid residues (i.e., K867, D909, D911, and E913) 
are essential for NLP homodimerization [31]. The homodi-
merization of NLPs is not required for the transactivation of 
nitrate-responsive genes, but it is essential for fully promoting 
nitrate-induced gene expression in the presence of nitrate [31]. 
The protein interactions between AtNLP6/7 and TCP20 in 
Arabidopsis, as well as between MtNIN and MtNLPs in Med-
icago truncatula also depend on the structure of PB1 [34, 69].

NLPs play central roles in the PNR

Plants can rapidly sense changes in the soil nitrate con-
centration without protein synthesis, but the abundances 
of hundreds of genes then change within minutes at the 

transcriptional level [70, 71]. This rapid response is defined 
as the PNR [71]. Plants have evolved sophisticated mecha-
nisms based on NLPs for nitrate signaling to transform 
the exogenous nitrate concentration signals into endog-
enous gene reprogramming events related to N transport 
and metabolism, which shape their morphological and 
physiological adaptation (Fig. 3) [19, 32, 34]. AtNLP6 and 
AtNLP7 have been identified as key transcription factors for 
PNR in Arabidopsis [31]. In addition, NPF6.3/NRT1.1 is 
characterized as a transceptor in Arabidopsis, where it func-
tions as both a transporter and receptor [72]. In Arabidopsis, 
the transport affinity of NPF6.3/NRT1.1 for nitrate is regu-
lated by the phosphorylation status of threonine residue 101 
via CALCINEURIN B-LIKE (CBL)-INTERACTING PRO-
TEIN KINASE 8/23 (CIPK8/23) depending on the nitrate 
concentrations in the soil, but the nitrate-sensing ability is 
independent of the transport activity, and it is determined by 
P492L between the 10th and 11th transmembrane regions 
of NPF6.3/NRT1.1 [72, 73]. After sensing via NPF6.3/
NRT1.1, the exogenous nitrate concentration signal can 
be transformed into changes in the cytosolic Ca2+ level in 
an NPF6.3/NRT1.1-dependent manner [21]. The nitrate-
induced accumulation of cytoplasmic Ca2+ depends on the 
activity of phospholipase C (PLC), which is responsible for 
increasing the concentration of inositol 1,4,5-trisphosphate 
(IP3) after nitrate induction [21]. The Ca2+ channels in the 
plasma membrane are essential components located down-
stream of IP3 and they allow the Ca2+ levels to increase in 
the cytoplasm or nucleus [21, 32]. Thus, Ca2+ is considered 
to be a second messenger in the nitrate signaling pathway 
[20, 21].

Subsequently, the nitrate-triggered Ca2+ signals are trans-
mitted to three downstream Ca2+ sensors and effectors com-
prising CPK10, CPK30, and CPK32 [32]. These three CPKs 
can phosphorylate AtNLP7 at the conserved site Ser205 to 
determine the retention of AtNLP7 in the nucleus [32]. A 
Ser205A mutant fails to retain AtNLP7 in the nucleus and 
to rescue the phenotypes of the nlp7 mutant [32]. AtNLP7 

RWP-RK PB1

α2α1 α1 α2

ALZ

Type I Type II
β1 β2 β3 β4 β5

NRD

Fig. 2   Molecular structures of NLPs in plants. NLPs contain three 
domains: nitrate-responsive domain (NRD), RWP-RK, and Phox and 
Bem1 (PB1). The site S205 in NRD is an essential phosphorylation 
site for the nuclear retention of NLPs. RWP-RK contains two α-folds 
(i.e., α1 and α2) and an amphipathic leucine zipper (ALZ), and they 

are involved in DNA binding. The PB1 domain contains both type I 
and type II, and it facilitates protein–protein interactions. Type I com-
prises β1 (including a K residue), β2, and α1, whereas β3, β4, α2, and 
β5 are located in type II region. K863, D909, D911, and E913 are 
required for the interactions by NLPs
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must remain in the nucleus to activate PNR genes [74]. The 
expression level of AtNLP7 is not regulated by nitrate, but 
the nuclear retention of AtNLP7 is determined by nitrate 
[36]. In addition to AtNLP7, AtNLP6 is the closest homolog 
of AtNLP7 and it has the capacity for nuclear retention in a 
nitrate-dependent manner to trigger downstream gene repro-
gramming events [34]. The retention of AtNLP6/7 in the 
nucleus activates hundreds of genes involved with nitrate 
transport and metabolism [36]. Studies indicate that all 
NLPs have the capacity to bind with the well-known NRE 
sequences, which are often found in the promoter regions 
of nitrate-inducible genes [28, 75]. However, the efficient 
activation of nitrate-inducible genes by AtNLP7 does not 
appear to require the entire NRE because subparts of the 
NRE are overrepresented in the whole motif [27].

The targets of AtNLP7 were characterized by hybridizing 
the immunoprecipitated DNA with a whole-genome tiling 
array (ChIP–chip) method [36]. In total, 851 genes are tar-
geted by AtNLP7 in Arabidopsis in response to nitrate sign-
aling and these genes are enriched in pathways implicated 

in N transport and metabolism, as well as the regulation 
of N responses in plants [36]. Several well-known genes 
involved in the nitrate signaling pathway, such as ARABI-
DOPSIS NITRATE REGULATED1 (ANR1), LATERAL 
BOUNDARY DOMAIN 37/38 (LBD37/38), CIPK8, and 
NPF6.3/NRT1.1 [72, 76–78], are targets of AtNLP7 in the 
response to nitrate [36]. Recently, the yeast one-hybrid net-
work method was employed for N-associated metabolism 
analysis, and AtNLP6 and AtNLP7 were identified as the 
first layer of transcription factors that bind directly to the 
genes encoding assimilation enzymes, such as COFACTOR 
OF NITRATE REDUCTASE AND XANTHINE DEHYDRO-
GENASE 2 (CNX2) and NITRITE REDUCTASE 1 (NIR1) 
[35].

The master roles of nitrate–Ca2+–NLP as the key compo-
nent of the nitrate signaling pathway have been determined 
[32, 74]. However, not all of the genes implicated in the PNR 
function in a nitrate–Ca2+–NLP-dependent manner, such as 
AUXIN SIGNALING F-BOX3 (AFB3) and NAC DOMAIN 
CONTAINING PROTEIN 4 (NAC4), thereby suggesting 

Fig. 3   Proposed model of 
NPF6.3/NRT1.1 mediated 
Ca2+-dependent and -inde-
pendent nitrate signaling 
pathways in plants. NPF6.3/
NRT1.1 acts as a nitrate sensor 
and changes in the exogenous 
nitrate concentrations leading 
to increase in the activities 
of PLC, thereby increasing 
the cytosolic IP3 levels. The 
increased IP3 concentration in 
the cytosol induces the open-
ing of Ca2+ channels and the 
accumulation of cytosolic Ca2+ 
([Ca2+]cyt). The signals due to 
the increased [Ca2+]cyt can be 
sensed by CPK10/30/32, which 
then phosphorylate NLP6/7. 
The phosphorylated NLP6/7 
is retained in the nucleus 
to activate primary nitrate-
responsive genes. Several other 
factors are key components of 
the Ca2+–CPK–NLP signal-
ing cascade, including TCP20, 
NRG2, and NIGT1s. In addition 
to the Ca2+-dependent nitrate 
signaling pathway, another 
Ca2+-independent nitrate signal-
ing pathway is mediated by 
NPF6.3/NRT1.1 via the TIR1/
ABF3-NAC4 module to pro-
mote root development through 
the auxin signaling pathway

Ca2+ NO3
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that another nitrate signaling pathway might be independ-
ent of Ca2+ signaling in plants [20, 21, 79]. In addition to 
AtNLP6/7, AtNLP3 was identified as the target of BASIC 
LEUCINE ZIPPER 1 (bZIP1) according to the cell-based 
transient assay reporting genome-wide effects of transcrip-
tion factors (TARGET) method [80]. AtNLP3 belongs to the 
category regulated by bZIP1 without binding and it func-
tions in a “hit-and-run” transcriptional manner to regulate 
the rapid response to nitrate [80].

Interestingly, a recent study proposed a model where 
AtNLP7 acts upstream of NPF6.3/NRT1.1 to regulate nitrate 
signaling by altering the expression of NPF6.3/NRT1.1 
via directly binding to the promoter of NPF6.3/NRT1.1 
in the presence of NH4

+ [23, 33]. The expression level of 
NPF6.3/NRT1.1 was found to be inhibited in the Arabidopsis 
nlp7 mutant supplied with NH4

+ and the nitrate-inducible 
capacities of NPF6.3/NRT1.1 were also impaired in the 
mutant [23]. Genetic studies suggest that NPF6.3/NRT1.1 
and AtNLP7 function in the same nitrate signaling path-
way, and that overexpression of the NPF6.3/NRT1.1 in the 
Arabidopsis nlp7 mutant completely or partially rescues the 
phenotypes of the Arabidopsis nlp7 mutant [23]. The roles 
of the NPF6.3/NRT1.1 signaling pathway in NH4

+ uptake 
and metabolism have also been demonstrated recently [81], 
but it is not known whether NLPs are implicated in this 
signaling pathway. These findings provide a molecular basis 
for the interaction between nitrate and NH4

+, which has been 
observed in many plants [82, 83].

Several other important factors have been implicated in 
NLP-mediated nitrate signaling or the response in recent 
years. For instance, TCP20 can interact directly with 
AtNLP6/7 via the histidine- and glutamine-rich domain of 
TCP20 and the type I/II PB1 domain of AtNLP6/7 [34]. The 
cellular location of AtNLP6/7-TCP20 heterodimers depends 
on the present of nitrate, and nitrate starvation leads to the 
retention of the heterodimers in the nucleus, whereas the 
opposite is observed when plants are supplied with nitrate 
[34]. Another study confirmed that AtNLP6/7-TCP20 het-
erodimers are essential for activation of the Cell-Cycle Pro-
gression Gene (CYCB1;1) and they promote root meristem 
growth in response to N starvation [34]. TCP20 functions 
in systemic nitrate signaling, whereas AtNLP7 acts as local 
nitrate signals independently of TCP20 [37]. These find-
ings demonstrate the other roles of AtNLP in the nitrate 
starvation response in addition to the PNR. Moreover, the 
bZIP transcription factor NITRATE REGULATORY GENE 
2 (NRG2) in Arabidopsis is characterized as a positive regu-
lator located upstream of NPF6.3/NRT1.1 in nitrate signal-
ing, where the disruption of NRG2 leads to a decrease and 
increase in NPF6.3/NRT1.1 and NPF7.2/NRT1.8, respec-
tively [22]. NRG2 can interact directly with AtNLP7 in 
the nucleus, but this interaction does not affect the nuclear 
retention of AtNLP7 in response to nitrate [22]. Genetic 

and molecular studies indicate that NRG2 and AtNLP7 
play important but nonoverlapping roles in nitrate signaling 
[22]. Recently, two genes from the BTB and TAZ DOMAIN 
PROTEIN (BT) gene family (BT1 and BT2) were identified 
as hub genes in the NUE regulatory network in Arabidopsis 
[84]. Subsequently, it was shown that these two genes act as 
negative regulators by repressing the expression of NRT2.1 
and NRT2.4, thereby inhibiting plant growth and decreas-
ing the NUE [84, 85]. However, the expression levels of the 
nitrate-inducible genes BT1 and BT2 are regulated directly 
by AtNLP7, thereby suggesting that BT1 and BT2 play roles 
downstream of NLP in the nitrate signaling pathway [85].

NLPs play crucial roles in integrating both N and P 
signals

More recently, NITRATE-INDUCIBLE GARP-TYPE 
TRANSCRIPTIONAL REPRESSOR 1 (NIGT1) was 
identified as a promoter of the expression of NRT2.1, but 
NIGT1 and AtNLP7 share different binding sites in the 
promoter region of NRT2.1 [38]. The AtNLP–NIGT1 cas-
cade regulates the coordinated expression of NRT2.1 and 
NRT3.1/NAR2.1 in response to nitrate, and several impor-
tant genes such as CYP735A2 and HY5-HOMOLOG (HYH) 
appear to act downstream of the AtNLP–NIGT1 cascade 
[38]. Thus, AtNLP–NIGT1 may function as another regu-
latory layer to antagonistically regulate the NLP-mediated 
central N signaling pathway [38]. Interestingly, PHOS-
PHATE STARVATION RESPONSE 1 (PHR1), which is the 
master regulator in P starvation [86], promotes the expres-
sion of members of the NIGT1 gene family to decrease the 
mRNA abundance of NRT2.1, thereby reducing the uptake 
of nitrate in Arabidopsis [38]. Moreover, the expression 
level of NIGT1/HRS1 is governed by the NPF6.3/NRT1.1-
AtNLP7 regulatory module in the presence of nitrate, and 
the repression of primary root growth by NIGT1/HRS1 
in response to P shortage depends on the nitrate signaling 
pathway [40, 87]. Thus, NIGT1 allows crosstalk between 
the N and P signaling pathways to coordinate the anabolic 
demands for both N and P in plants [38, 40, 87, 88].

Roles of NLPs in growth and development regulated 
by N nutrition

As the master regulator of nitrate signaling components, the 
roles played by NLP in shaping the plastic responses of plant 
to N availability have been investigated more extensively 
compared with their other functions. Studies of NLPs in 
Arabidopsis have demonstrated a requirement for NLPs to 
support normal growth and development in the response to 
nitrate availability.

The Arabidopsis nlp7 mutant forms a smaller rosette 
but the root fresh weight is unchanged, and thus the 
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plants have a lower shoot to root fresh weight ratio com-
pared with the wild type under full N supply conditions 
[89]. However, the Arabidopsis nlp7 mutant exhibits less 
impaired growth under limiting N conditions compared 
with those that receive a full N supply [89]. The Arabi-
dopsis nlp7 mutant also exhibits delayed flowering, with 
longer primary roots and a higher lateral root density com-
pared with the wild type under full nitrate condition [89]. 
The Arabidopsis nlp7 mutant exhibits impaired functions 
in the nitrate signaling pathway, thereby triggering the N 
starvation response in plants [89]. Indeed, the accumula-
tion of nitrate and the reductions in the amounts of amino 
acids suggest that AtNLP7 has essential roles in activating 
genes involved with the nitrate assimilation processes [89]. 
Interestingly, the Arabidopsis nlp7 mutant displays greater 
drought resistance with reduced leaf water losses under 
drought treatment, which might be related to the nitrate-
controlled opening of the stomata [89]. Similar phenotypes 
with enhanced drought resistance and a reduced stomatal 
aperture size were found in npf6.3/nrt1.1 mutants [90]. 
Considering the close relationship between AtNLP7 and 
NPF6.3/NRT1.1 in the nitrate signaling pathway, the simi-
lar drought resistance phenotypes of these two mutants 
suggest they might be involved with the same signaling 
pathway to regulate the plant water status in a nitrate-
dependent manner. Further experiments are required to 
confirm the validity of this hypothesis.

The overexpression of AtNLP7 in Arabidopsis also signif-
icantly improves the growth and NUE, with enhanced pho-
tosynthesis and carbon assimilation capacities under low- 
and high-nitrate conditions [39]. AtNLP7-overexpressing 
lines exhibit changes in the root architecture with a longer 
primary root length and more lateral roots compared with 
the wild type, and the coordination of C and N assimilation 
results in a much improved nutrient status, which is essential 
for biomass accumulation and enhancing the NUE [39].

In addition, the constitutive location of AtNLP8 in the 
nucleus is involved with stimulating seed germination where 
this requires directly binding to the promoter of CYP707A2, 
which encodes an abscisic acid (ABA) catabolic enzyme 
[91], thereby reducing the ABA levels in a nitrate-dependent 
manner, and thus the crosstalk between nitrate signaling and 
ABA signaling may govern seed germination [92].

In maize, the overexpression of ZmNLP6 and ZmNLP8 
in Arabidopsis nlp7-4 mutants rescues the loss of PNR phe-
notypes [43]. These transgenic lines have a longer primary 
root length and higher lateral root number compared with the 
wild type and/or Arabidopsis nlp7-4 mutants with a higher 
NUE under limited nitrate conditions, thereby confirming 
the roles of ZmNLP6/8 in the nitrate signaling pathway by 
regulating nitrate assimilation under low-nitrate conditions 
[33, 43]. Similar results were obtained by overexpressing 
ZmNLP3.1 in an nlp7-1 background in Arabidopsis [42].

Recently, it was shown that the overexpression of 
OsNRT1.1A/OsNPF6.3 increases the nuclear location of 
OsNLP3 and OsNLP4 to enhance the expression levels of 
genes involved with nitrate uptake and assimilation [93]. 
These overexpression lines have a higher NUE and yield, 
thereby demonstrating the important roles of OsNRT1.1A/
OsNPF6.3-OsNLP3/4 in coordinating the uptake and assimi-
lation of nitrate to improve crop yields [93].

NLPs participate in nodule formation

In M. truncatula, MtNIN has central roles in coordinating 
diverse symbiotic developmental processes to regulate tem-
poral and spatial nodulation downstream of the early nod 
factor signaling pathway [94, 95]. MtNIN competitively 
inhibits ERF required for nodulation (ERN1) to repress the 
expression levels of Early Nodulin 11 (ENOD11) in the root 
epidermis and increase the mRNA levels of the cytokinin 
receptor Cytokinin Response 1 (CRE1) in the root cortex 
to integrate cytokinin signaling and nodule organogenesis 
processes in the roots of M. truncatula [94, 95]. In addition, 
MtNLP1 is retained in the nucleus in the response to nitrate, 
which allows it to interact with MtNIN via their homologous 
carboxy-terminal PB1 domains [69]. However, the interac-
tion between MtNLP1 and MtNIN in the nucleus hinders the 
activation by MtNIN of genes involved in nodule formation, 
such as CRE1 and Nuclear Factor-Y Subunit A1 (NF-YA1), 
which inhibits rhizobial infection and nodule formation in 
a nitrate-dependent manner [69]. The roles of NF-YA1 in 
rhizobial infection depend on the MtNIN-centered network 
[96]. A remote cis-regulatory region that contains putative 
cytokinin response elements was identified upstream of the 
MtNIN gene in M. truncatula, and it is required for nodule 
primordium formation, where it triggers the expression of 
B-type response regulator PR1, thereby indicating a role for 
cytokinin signaling in the initiation of nodule primordium 
formation [97]. In addition, MtNLP4 has similar roles to 
MtNLP1 in the inhibition of nodule formation in response 
to nitrate in M. truncatula [69].

Interestingly, the NITRATE UNRESPONSIVE SYMBIO-
SIS 1 (NRSYM1) gene in L. japonicus encodes LjNLP4 and 
it also functions in the regulation of nitrate-dependent nod-
ule formation [98]. The nrsym1 mutants fail in responding 
to N environment and regulating nodule number by utiliz-
ing autoregulation of nodulation (AON), which behaves as 
a systemic long-range signals between roots and shoots [98, 
99]. NRSYM1/LjNLP4 is also retained in the nucleus in 
response to nitrate and it binds directly to the promoters of 
CLE-ROOT SIGNAL 2 (CLE-RS2) to regulate nodule forma-
tion [98]. The small secreted peptides CLE-RS2 function 
as root-derived signals to interact with HYPERNODULA-
TION ABERRANT ROOT FORMATION 1 (HAR1) in 
shoot, and to trigger secondary shoot-derived signals that 
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are transported back to root to negatively regulate nodule 
development [99, 100]. These findings suggest that NLP has 
essential roles in nodule formation in legumes.

In addition to legumes, the CgNLP gene CgNIN from 
Casuarina glauca was characterized using both phylogenetic 
and transgenic approaches as an essential component impli-
cated in root nodule symbioses with Frankia [101]. CgNIN 
can complement the phenotypes with failure to initiate nod-
ule formation in nin legume mutants, and the expression of 
CgNIN is activated by infection with Frankia [101, 102]. 
The loss-of-function mutants exhibit impaired functions in 
terms of the nodule formation and early root hair deforma-
tion responses, and thus CgNIN may have essential roles in 
actinorhizal and rhizobial nodulation [101]. Other studies 
identified a NIN-activating factor CgNINA that activates 
CgNIN in the pre-infection stages of F. casuarinae infec-
tion to regulate root hair development [103].

Other functions of NLPs in plants

Interestingly, the well-known AtNLP7 has a role in root 
cap cell release in Arabidopsis [41, 104]. Border-like cells 
(BLCs) are cells located in the last layer of the root cap and 
they are released from the root cap in a finely tuned devel-
opment-driven manner [41]. AtNLP7 mRNA is accumulated 
at high levels in BLCs and it is promoted by low pH [41]. 
Mutation of AtNLP7 allows BLCs to be released as single 
cells rather than the entire layer, which is related to changes 
in the cell wall components and the expression levels of 
several genes that encode cell wall-loosening enzymes [41]. 
Genetic analysis confirmed that the function of AtNLP7 in 
BLC release requires the inhibition of the expression of 
CELLULASE5 (CEL5) [41]. In addition, AtNLP7-mediated 
BLC release is not implicated in gravity sensing and root cap 
cell identity [104].

Conclusions and perspectives

In recent years, systems biology has been applied to iden-
tify new components and layers [105], and provides insights 
into global N signaling and assimilation, thereby facilitating 
NUE improvements in crop production [106–108]. These 
emerging integrated approaches are helping to understand 
the central roles of NLPs in the plant nitrate signaling path-
ways. Analyses of the evolution of NLPs have indicated the 
three origins of this gene family, where Group 3 has the 
most ancestral genes originating from green algae. The well-
known AtNLP6 and AtNLP7 genes belong to Group 3. The 
central roles of NLPs in the uptake and assimilation of N 
have been confirmed by the studies of the Ca2+-dependent 
nitrate signaling pathway, and several key components of 
this regulatory network have been identified. In addition 

to nitrate signaling, the roles of NLPs in the N starvation 
response, N and P interaction, nodule formation, and root 
cap release have been elucidated in recent years. These 
results have greatly enhanced our understanding of the 
multiple roles of NLPs in plant growth and environmen-
tal responses, as well as the underlying molecular mecha-
nisms involved. However, several aspects of the signaling 
processes facilitated by NLPs still require further investiga-
tion. For example, how do increases in the nitrate level in 
the cytosol enhance the activities of PLCs and what are the 
roles of NPF6.3/NRT1.1 in this process? Where are NLPs 
phosphorylated by CPKs? What are the roles of nuclear Ca2+ 
in the phosphorylation of NLPs? Identifying the molecu-
lar mechanisms that underlie the sensing and regulation 
of nitrate by answering these questions will contribute 
to a more comprehensive understanding of the processes 
involved in the uptake and assimilation of N, and the devel-
opment of efficient strategies for improving the NUE in crop 
production. Moreover, our current knowledge of NLPs is 
based mainly on the studies in Arabidopsis and legumes, and 
no NLPs from woody plants have been functionally charac-
terized. The growth of woody plants requires large amounts 
of N [109, 110] and the complex environment for annual 
growth may mean that the regulatory network is much more 
complicated than that in herbaceous plants [111]. However, 
the information obtained from studies of these processes 
in Arabidopsis could help to elucidate similar pathways in 
woody plants. Thus, our current knowledge of NLPs might 
represent only a small fraction of their diverse roles and 
much research is required to elucidate their more detailed 
features in the future.
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