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Abstract
Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including 
hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expres-
sion with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks 
are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral 
fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting 
that miR-124-3p is downregulated post-TBI (z-score = − 5.146, p < 0.05). Droplet digital polymerase chain reaction (ddPCR) 
and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p < 0.05). Quantitative PCR analysis of 
two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r = − 0.647, 
p < 0.05; r = − 0.629, p < 0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein 
expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis 
and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed 
drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational 
value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in 
the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic 
downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p 
is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and 
in humans.
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Introduction

Traumatic brain injury (TBI) affects approximately 10 mil-
lion people worldwide each year [1]. In addition to the 
impact-induced primary injury, TBI triggers a cascade of 
secondary cellular pathologies, including progressive neu-
ronal loss, axonal and myelin injury, and neuroinflamma-
tion. Many of these pathologies underlie the development 
of functional deficits in somatomotor and cognitive func-
tions, as well as in mental health. On the other hand, some 
of them, like axonal plasticity and neurogenesis, can support 
the recovery process [2, 3]. The complexity of the post-TBI 
aftermath presents both a challenge and an opportunity for 
identifying molecular pathways that could be targeted by 
pharmacotherapies. One approach is to apply an unbiased 
genome-wide bioinformatics analysis to pinpoint the master 
regulators of molecular pathways that are modulated by TBI, 
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and use them to design treatments to alleviate or prevent 
comorbidogenesis over the course of days to months after 
TBI.

MicroRNAs (miRNAs) are a class of small, 18–23 
nucleotide long, non-coding RNAs [4]. miRNAs suppress 
gene expression by binding to the 3′ untranslated region of 
messenger RNA (mRNA) [4, 5], thereby preventing pro-
tein translation. As one miRNA can regulate hundreds of 
mRNAs, miRNAs control the expression of the entire pro-
tein network rather than an individual protein, allowing us 
to gain a more thorough understanding of disease pathology 
[6].

Previous studies in various experimental models of TBI 
demonstrated that TBI induces remarkable changes in miR-
NAs, in both the brain [7–20] and plasma/serum [21]. Stud-
ies in humans with various types of TBI also exhibit changes 
in miRNAs in the brain [22], plasma/serum [23–25], and 
cerebrospinal fluid [23, 26]. The first proof-of-concept 
studies demonstrated the potential of miRNA-based thera-
pies to improve the post-TBI cellular outcome, particu-
larly blood–brain barrier damage-related edema [27, 28], 
neuroinflammation, and neurogenesis [29], apoptosis [30, 
31], and even post-TBI functional recovery [32]. Despite 
the evolution of functional impairments as well as recovery 
over a period of several months post-TBI [33–35], only one 
study has assessed the chronic regulation of transcriptomic 
changes [36].

Here we tested the hypothesis that bioinformatics analy-
sis of chronic transcriptome data will reveal specific miR-
NAs regulating the expression of several proteins that form 
a molecular network related to ongoing chronic cellular 
pathologies after TBI. We chose to investigate the dentate 
gyrus that is one of the key brain areas involved in the post-
TBI pathologies [37, 38], and the most damaged hippocam-
pal subfield after lateral fluid-percussion injury [39].

Materials and methods

Animals

From an original cohort of 30 adult male Sprague–Daw-
ley rats, 11 (body that weighed 300–354 g at the time of 
injury, Envigo, Horst, The Netherlands [36]) were used for 
the PCR analyses in the TBI experiment. The rest of the 
animals were used in another project. A separate cohort of 
13 rats (350–400 g, Envigo, Udine, Italy) was used for in situ 
hybridization after TBI. In addition, 25 rats (350–400 g, 
Medical Research Centre, Warsaw, Poland) were used for 
PCR and in situ hybridization in SE experiments. Rats were 
housed in a controlled environment (temperature 22 ± 1 °C; 
humidity 50–60%; lights on from 07:00 to 19:00 h). Water 
and pellet food were provided ad libitum.

All animal procedures for TBI rats and SE rats were 
approved by the Animal Ethics Committee of the Provincial 
Government of Southern Finland and the Ethical Committee 
on Animal Research of the Nencki Institute, respectively. 
All animal work was carried out in accordance with the 
guidelines of the European Community Council Directives 
2010/63/EU.

Human samples

Autopsy hippocampal samples were obtained from patients 
(Table 1) at the Department of Neuropathology at the Aca-
demic Medical Center (AMC) in Amsterdam, The Nether-
lands. Control samples (n = 5; 3 males, 2 females, median 
age 48, range 35–71) were obtained at the autopsy of adult 
subjects without any history of neurologic disease. All sam-
ples were collected within 24 h after death. Informed con-
sent was obtained for the use of brain tissue and for access 
to the medical records. Tissue was obtained and used in 
accordance with the Declaration of Helsinki and the AMC 
Research Code provided by the Medical Ethics Committee.

Lateral FPI‑induced TBI

Rats were subjected to lateral FPI (PCR, n = 12 controls, 
n = 18 TBI; in situ hybridization, n = 3 naïve, n = 6 control, 
n = 6 TBI) as described previously [40, 41]. Rats were anes-
thetized by intraperitoneal injection (6 ml/kg) of a mixture 
of sodium pentobarbital (58 mg/kg), magnesium sulfate 
(127.2 mg/kg), propylene glycol (42.8%), and absolute etha-
nol (11.6%), and placed in a Kopf stereotactic frame (David 
Kopf Instruments, Tujunga, CA, USA). The anesthetic 
cocktail used for the PCR cohort also contained 60 mg/kg 
chloral hydrate. A midline scalp incision was made and the 
underlying periosteum dissected. A 5-mm circular craniec-
tomy was performed with a trephine over the left parietal 
lobe, midway between lambda and bregma, with the lat-
eral edge of the craniectomy adjacent to the lateral ridge. 
A modified Luer–Lock cap was cemented into the craniec-
tomy (Selectaplus CN, Dentsply DeTRey GmbH, Dreieich, 
Germany) and filled with saline. At 90 min after admin-
istration of the anesthesia, animals were connected to the 
fluid-percussion device (AmScien Instruments, Richmond, 
VA, USA) through the male Luer–Lock fitting and brain 
injury was induced (PCR: 3.20 ± 0.02 atm, in situ hybridiza-
tion: 3.28 ± 0.13 atm; no difference between cohorts). Dura-
tion of apnea and occurrence of acute post-impact seizures 
were monitored. Sham-operated control animals received 
anesthesia and underwent all surgical procedures without 
lateral FPI. For PCR, we used the samples from animals (6 
TBI and 5 controls) included in the original transcriptomic 
profiling [36].
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Induction of SE with electrical amygdala stimulation

Induction of SE by electrical amygdala stimulation was per-
formed as previously described in detail [42, 43]. Briefly, 
animals were anesthetized by an injection of butorphanol 
(Butomidor, Richter Pharma AG, Wells, Austria; 0.5 mg/
kg ip). Surgery was performed under isoflurane anesthesia 
(2–2.5% in 100% O2). A stimulating and recording bipo-
lar wire electrode (Plastics One Inc., Roanoke, VA, USA 
#E363-3-2WT-SPC) was implanted into the left lateral 
nucleus of the amygdala 3.6 mm posterior and 5.0 mm lat-
eral to bregma, 6.5 mm ventral to the brain surface [44]. A 
stainless steel screw electrode (Plastics One Inc. #E363/20) 
was implanted contralaterally into the skull over the right 
frontal cortex (3.0  mm anterior and 2.0  mm lateral to 
bregma) as a surface electroencephalography recording elec-
trode. Two stainless steel screw electrodes were placed bilat-
erally over the cerebellum (10.0 mm posterior and 2.0 mm 
lateral to bregma) as ground and reference electrodes. The 
socket contacts of all the electrodes were placed in a multi-
channel electrode pedestal (Plastics One Inc. #MS363) that 
was attached to the skull with dental acrylate (Duracryl 
Plus). At 2 weeks post-operation, SE was induced by elec-
trical stimulation via the intra-amygdala electrode. Stimula-
tion comprised a 100-ms train of 1-ms biphasic square-wave 
pulses (400 µA peak to peak) delivered at 60 Hz every 0.5 s 
for 30 min. If the animal did not enter SE, stimulation was 
continued for an additional 10 min. The SE was intercepted 
after 1.5–2 h with an intraperitoneal injection of diazepam 
(20 mg/kg). If the first dose of diazepam did not suppress 
the SE, the animal received subsequent doses of diazepam 
at 5 mg/kg. Time-matched control animals had electrodes 
implanted but did not receive electrical stimulation.

Sampling of the dentate gyrus

Animals used for PCR after TBI and SE

The sampling and dentate gyrus dissection procedures were 
described in Puhakka et al. [36] for TBI animals and in Bot 
et al. [43] for SE animals. We used only the 7-days post-SE 
miRNA data published by Bot et al. [43] for comparative 
analysis, as these data well-correspond to the epileptogen-
esis phase [42, 45]. Briefly, rats were anesthetized with 
CO2 at 7 day post-SE or 3 months post-TBI and decapitated 
with a guillotine. Their brains were removed, and the left 
hippocampus was dissected out and immersed in ice-cold 
RNAlater RNA Stabilization Reagent (#76106, Qiagen, 
Hilden, Germany). The hippocampus was then cut into thin 
coronal slices from which the dentate gyrus was separated 
(Fig. 1) and used for gene expression analysis. Samples were 
snap-frozen and stored at − 20 °C.Ta
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Animals used for in situ hybridization after TBI

To assess miR-124-3p cellular localization via in situ 
hybridization, the animals (3 naïve, 3 controls, 5 TBI) 
were perfused at 3 months post-TBI. Animals were anes-
thetized by an intraperitoneal injection of pentobarbital 
(60 mg/kg, ip). Thereafter, they were transcardially per-
fused with 0.9% sodium chloride solution (30–35 ml/min 
for 2 min) followed by 4% paraformaldehyde (PFA) in 
0.1 M sodium phosphate buffer (PB), pH 7.4 (5 ml/min 
for 20 min). The brain was removed from the skull and 
post-fixed in 4% PFA in 0.1 M PB for 4 h.

After the post-fixation procedure, the brains were 
rinsed in tap water for 30 min and then placed in a Tis-
sue-Tek Mega-Cassette (Sakura, #4173). They were infil-
trated with paraffin as follows (Shandon Citadel 2000): 
1 h in 50% ethanol; 1 h in 80% ethanol; 1 h, and then 
2 h twice in 96% ethanol; 3 h, then 2 h twice in absolute 
ethanol; 30 min twice in xylene; and 2 h twice in paraf-
fin. The paraffin-embedded brains were stored at room 
temperature.

The brains were cut into 6-µm-thick sections using a 
Microm 355 microtome with a Leica 818 blade and the 
sections were mounted on Superfrost microscope slides 
(Thermo Scientific, Gerhard Menzel GmbH, Braunsch-
weig, Germany). One brain from the 3-month post-TBI 
group had to be removed from the analysis due to the poor 
quality of the sections.

Animals used for in situ hybridization after SE

At 7 day post-TBI, the rats were anesthetized with CO2 
and decapitated with a guillotine. The brains were quickly 
removed from the skull and fresh frozen in −  80  °C 
heptane. The samples were stored at − 80 °C until pro-
cessed. The brains were cut into 10-μm-thick coronal 
sections using a cryostat. The sections were mounted on 
Superfrost® Plus slides (Thermo Scientific), dried at room 
temperature for 5 min, and stored at − 80 °C until use.

Human brain samples

Human brain tissue was fixed in 10% buffered formalin and 
embedded in paraffin. Paraffin-embedded tissue was sec-
tioned at 5 µm, mounted on pre-coated glass slides (Star 
Frost, Waldemar Knittel, Braunschweig, Germany), and 
processed for in situ hybridization.

Bioinformatics analysis of upstream regulators 
of chronically altered gene expression after TBI

First, we analyzed gene expression in the rat dentate gyrus 
at 3 months after lateral FPI using the Affymetrix gene 
array [for details, see Puhakka et al. [36]. To determine the 
upstream regulators of gene expression with a focus on miR-
NAs, genes with significantly (p < 0.05) altered expression 
levels were included in the Ingenuity Upstream Regulator 
analysis using the Ingenuity Pathway Analysis (IPA) soft-
ware (QIAGEN Redwood City, CA, USA, http://www.qiage​
n.com/ingen​uity). The analysis revealed a significant change 
in 31 of 844 targets of the brain-enriched miR-124-3p, and 
we thus focused on further analyses of brain tissue on this 
miRNA. The protein–protein interactions between the 
31 miR-124-3p target gene products were analyzed with 
STRINGv10 [46], and the results were visualized with 
Cytoscape [47].

To determine if the gene networks predicted by the 
STRING analysis were enriched in the gene expression 
data derived from the dentate gyrus, we performed Gene 
Set Enrichment Analysis (GSEA) [48, 49]. A pre-ranked 
gene list was created from the dentate gyrus gene expression 
data, containing 11,704 genes in the TBI dataset and 11,870 
in the SE dataset. Genes on the pre-ranked list were divided 
into negative and positive groups based on the fold change 
in expression. The genes on the list were then ranked accord-
ing to their p values: the greater the p value, the closer the 
rank to 0. A negative rank value indicated downregulation 
and a positive rank indicated upregulation of gene expres-
sion. The miR-124-3p targets and the genes derived from 
the STRING analysis were then pooled into a single gene 

Fig. 1   Tissue sampling. At 
3 months after traumatic brain 
injury (TBI), rats were decapi-
tated. The ipsilateral dentate 
gyrus was dissected as shown 
with the dashed line in a the 
schematic drawing and b Nissl-
stained section, and used for 
molecular analyses. Scale bar in 
b 200 µm

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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list (miR-124-3p interactome) and compared to the rank list. 
Based on the results of the STRING analysis and GSEA, two 
of the genes were selected for further quantitative reverse 
transcription PCR (qRT-PCR) analysis.

To further investigate the STRING protein networks, we 
used the gene set list (miR-124-3p interactome) to review 
their molecular function with Reactome v60 [50, 51, avail-
able at http://www.react​ome.org]. In addition, we used 
L1000 Characteristic Direction Signature Search Engine 
(L1000CDS2) that is based on the LINCS database (a library 
of integrated network-based cellular signatures) to compare 
miR-124-3p regulated gene network changes (miR-124-3p 
interactome) to the gene expression profile of human cell 
lines treated with various chemical compounds.

Reverse transcription

miRNA PCR

To validate the miRNA findings, total RNA was translated 
to complementary DNA (cDNA) with the TaqMan miRNA 
Reverse Transcriptase Kit (#4366596, Applied Biosystems, 
Foster City, CA, USA http://www.appli​edbio​syste​ms.com) 
according to the manufacturer’s instructions. First, the total 
RNA concentration in the sample was assessed with a 2100 
Bioanalyzer Instrument (Agilent Technologies, Santa Clara, 
CA, USA) using the manufacturer’s RNA 6000 Nano Kit for 
mRNA samples and the Small RNA Analysis Kit for miRNA 
samples. The sample (15 µl) was prepared by mixing 7 µl 
of the RT master mix with 5 μl of RNA solution (10 ng 
RNA/5 μl nuclease-free water) and 3 µl of 5× RT primer for 
miR-124-3p (mmu-miR-124-3p). Reverse transcription was 
then performed using a T100™ Thermal Cycler (Bio-Rad 
Laboratories Inc, Hercules, CA, USA) as follows: 16 °C for 
30 min, 42 °C for 30 min, 85 °C for 5 min, and 4 °C thereaf-
ter. Samples were stored at − 20 °C until further processing.

mRNA PCR

To validate the post-TBI change in the expression of miR-
124-3p mRNA targets, 1 µg of total RNA from each sample 
was converted to cDNA using a High Capacity RNA-to-
cDNA Kit (#4387406, Applied Biosystems) according to the 
manufacturer’s protocol (http://tools​.lifet​echno​logie​s.com/
conte​nt/sfs/manua​ls/cms_04724​9.pdf).

Quantitative RT‑PCR

Plp2 and Stat3 mRNA

The PCR mixture was prepared using 12 ng of cDNA (RNA 
equivalents) as a template, gene-specific primers, and probes 
(pre-validated Taqman Gene Expression Assay for Plp2 ID: 

Rn01525076_g1; Stat3 ID: Rn01456553_m1, and Gapdh 
(internal control) ID: Rn99999916_s1, Applied Biosys-
tems), and TaqMan Gene Expression Master Mix (Applied 
Biosystems). Quantitative RT-PCR was run with the Ste-
pOnePlus Real-Time PCR System (Applied Biosystems) as 
follows: 95 °C for 10 min, then 40 cycles (15 s each) at 
95 °C and 60 °C for 60 s. A five-point standard curve was 
prepared using 75 ng, 37.5 ng, 18.8 ng, 9.4 ng, and 4.7 ng 
of cDNA as the template. Quantity values were normal-
ized relative to Gadph according to the following formula: 
QuantityNorm = Quantity(gene of interest)/Ct(Gapdh).

miR‑124‑3p

The miR-124 expression in the brain samples at 7 day post-
SE was determined from the same miRNA samples used for 
the microarray experiment [43]. Reverse transcription was 
performed using TaqMan® microRNA Reverse Transcrip-
tion kit (#4366596, Thermo Fisher Scientific) according 
to the manufacturer’s instruction. Real-time PCR was per-
formed in triplicate with the cDNA template in a 20-µl reac-
tion volume. The reaction contained 2× TaqMan Universal 
Master Mix, no UNG (#4440047, Thermo Fisher Scientific), 
and probe for miR-124-3p (Thermo Fisher Scientific). Quan-
titative PCR was run using the 7900HT Fast Real-Time Sys-
tem (Applied Biosystems) under the following conditions: 
95 °C for 10 min, then 40 cycles of 95 °C for 15 s, followed 
by 60 °C for 60 s. The miRNA expression was normalized 
to miR-9a-5p. Fold changes were calculated by the 2−ΔΔCt 
method (Livak and Schmittgen 2001).

Droplet digital PCR

The amount of mature miR-124-3p in the dentate gyrus at 
3 months post-TBI was determined with ddPCR. Reaction 
mixtures were prepared as described in Bio-Rad’s Droplet 
Digital™ PCR Applications Guide (Bio-Rad, http://www.
bio-rad.com/). Briefly, for each 20 μl reaction, 1.33 μl of 
cDNA was mixed with 1 μl of TaqMan Small RNA Assay 
(20×), 10 μl of Bio-Rad’s ddPCR supermix for probes, and 
7.67 μl nuclease-free water (#AM9939, Ambion, Austin, 
TX, USA). Samples were loaded into the middle row of DG8 
Cartridges (#1864008, Bio-Rad). Then, 70 μl of Droplet 
Generation Oil for Probes (#1863005, Bio-Rad) was added 
to the bottom wells of the cartridge. The cartridge was cov-
ered with a DG8™ Gasket (#1863009 Bio-Rad) and placed 
into the QX200 droplet generator (Bio-Rad). After drop-
let generation was completed, droplets (40 μl) were gently 
pipetted into the wells of a 96-well PCR plate (#951020303, 
Eppendorf, Hamburg, Germany), and the plate was sealed 
with pierceable sealing foil (#1814040 Bio-Rad) using a 
PX1 PCR Plate Sealer (Bio-Rad). PCR was run using the 
PTC-200 Thermal Cycler (ramp rate 2 °C/s; MJ Research) 

http://www.reactome.org
http://www.appliedbiosystems.com
http://tools.lifetechnologies.com/content/sfs/manuals/cms_047249.pdf
http://tools.lifetechnologies.com/content/sfs/manuals/cms_047249.pdf
http://www.bio-rad.com/
http://www.bio-rad.com/
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under the following conditions: 95 °C for 10 min, then 40 
cycles (15 s each) at 95 °C followed by 1 cycle at 60 °C 
(60 s), and finally, 98 °C for 10 min (see Miotto et al. [52]). 
After the PCR, the fluorescence of each droplet was meas-
ured with a QX100 Droplet Reader (Bio-Rad). The results 
were analyzed with QuantaSoft software v1.7 (Bio-Rad) to 
determine the copy number of miR-124-3p in each sample. 
All samples were run as triplets. The amounts of positive 
droplets in the triplets were combined together and used for 
statistical analysis.

In situ hybridization

TBI model

Sections were deparaffinized with xylene three times for 
3 min each, followed by 1 min twice in absolute ethanol 
and 1 min in 70% ethanol and finally, washed with water. 
To undo protein crosslinking, the sections were incubated 
in a 90 °C water bath in preheated citrate buffer (0.1 M cit-
ric acid and 0.1 M trisodium citrate mixed 11.5:88.5, pH 
6.0) for 90 min and then washed with Milli-Q water. In situ 
hybridization for miR-124-3p was performed using 5′–3′ 
fluorescein (FAM)-labeled probes (FAM-GgcAuuCac-
CgcGugCcuuA [capital letters indicate locked nucleic acids, 
whereas lower case letters indicate 2′-O-methylated nucleic 
acids], RiboTask APS, Odense, Denmark). Sections were 
prehybridized in hybridization mix (50% vol/vol formamide, 
600 mM NaCl, 10 mM HEPES buffer pH 7.5, 5× Denhardt’s 
reagent, 200 µg/ml denatured herring sperm DNA [D6898, 
Sigma-Aldrich, St. Louis, MO, USA]) for 15 min at 56 °C in 
a hybridization oven. The probe was diluted with hybridiza-
tion mix to a final concentration of 500 nM and heated for 
5 min at 95 °C while shaking before hybridization. Sec-
tions were hybridized for 1 h at 56 °C in the hybridization 
oven. After hybridization, the sections were washed with 
2× saline–sodium citrate buffer (SSC; #A1396,1000, Appli-
Chem, Darmstadt, Germany) buffer for 2 min, 0.5× SSC 
for 2 min at hybridization temperature, and then in 0.2× 
SSC for 1 min while shaking, and finally twice with PBS at 
room temperature. The sections were blocked with blocking 
buffer (1% bovine serum albumin, 0.02% Tween20, 1:100 
normal goat serum) for 15 min. The signal was detected 
by incubating the sections with alkaline phosphate-labeled 
anti-fluorescein (Roche Diagnostics, Mannheim, Germany) 
diluted 1:500 in blocking buffer for 1 h. Section were washed 
three times with PBS and twice in TBS-Tween (0.05 M 
Tris, 0.15 M NaCl, 0.1% Tween20). Color was developed 
in NBT/BCIP (nitro-blue tetrazolium chloride)/5-bromo-4-
chloro-3′-indolylphosphate p-toluidine salt, Roche Diagnos-
tics, Mannheim, Germany) diluted 1:50 to NTM-T buffer 
(100 mM Tris, pH 9.5, 100 mM NaCl, 50 mM MgCl2, 0.05% 

Tween20) for 40 min. Sections were washed with Milli-Q 
water, air-dried for 10 min, and coverslipped.

SE model

In situ hybridization was performed using LNA probes com-
plementary to miR-124-3p and labeled with digoxigenin at 
both the 3′ and 5′ ends (EQ-88066-15, Exiqon). Hybridi-
zations with LNA scramble-miR probe (EQ-99004-15, 
Exiqon) were used as a negative control. Briefly, the cryo-
sections were thawed, fixed in 4% PFA, followed by gentle 
stirring in 0.1 M ethanolamine and 2.5% acetic anhydride 
for 10 min to block the endogenous alkaline phosphatase 
activity. Prehybridization was performed for 2 h in the 
hybridization oven with 500 ml of prehybridization buffer: 
50% formamide, 5× SSC, 5× Denhardt’s, 500 mg/ml salmon 
sperm DNA, and 2% blocking reagent (Roche) in diethyl 
pyrocarbonate-treated water. The probes were hybridized in 
50% formamide, 5× SSC, 5× Denhardt’s solution, 500 μg/
ml salmon sperm DNA, and 2% blocking reagent diethyl 
pyrocarbonate-treated water overnight at 60  °C. After 
post-hybridization washes with 50% formamide, 2× SSC 
at 60 °C, and 2× SSC at room temperature, sections were 
blocked and incubated overnight with mouse anti-digoxi-
genin-AP (1:500, Roche), and the signal was visualized 
using BCIP/NBT (Roche). When each probe yielded a strong 
signal, the reactions were stopped by washing with PBS. The 
signal was visualized by standard light microscopy.

Human samples

In situ hybridization was carried out with the same protocol 
used for TBI rat samples, but with a probe concentration of 
250 nM.

STAT3 immunohistochemistry

For STAT3 immunohistochemistry we used 25-µm-thick 
sections from our tissue bank. Sections were obtained from 
6 TBI animals (3 months post-TBI) and 3 control animals 
(1 from 3 months post-operation, 2 from 1 month post-
operation). For each animal, we stained two sections (sec-
tions 300 µm apart from each other).

First, the sections were washed three times with 0.02 M 
KPBS pH 7.4. To remove the endogenous peroxidase 
activity, the sections were incubated in 1% H2O2 in 0.02 M 
KPBS at room temperature for 15 min. The sections were 
washed three times with 0.02 M KPBS. Thereafter, sec-
tions were incubated in preheated 0.05 M sodium citrate 
buffer (pH 6.0) at 80 °C for 30 min and washed three times 
with 0.02 M KPBS. Non-specific binding was blocked with 
blocking buffer [10% normal horse serum (NHS) and 0.5% 
Triton-X in KPBS] for 2 h at room temperature. Sections 



4563miR‑124‑3p is a chronic regulator of gene expression after brain injury﻿	

1 3

were incubated for 2 days at + 4 °C in the mouse monoclo-
nal anti-STAT3 antibody (#ab119352, Abcam, Cambridge, 
UK) diluted 1:2000 with a solution containing 1% NHS 
and 0.5% Triton-X in KPBS. The sections were washed 
three times (2% NHS in 0.02 M KPBS) and incubated 
for 1 h with biotinylated anti-mouse secondary antibody 
(1:200, #BA-2000, Vector Laboratories, Burlingame, CA, 
USA) at room temperature. Thereafter, the sections were 
washed three times with KPBS, incubated for 45 min in 
avidin–biotin solution (1:200, PK-4000, Vector Labora-
tories), and washed three times with KPBS. Steps from 
the secondary antibody to the KPBS wash were repeated 
with recycled antibody and avidin–biotin solution. The 
secondary antibody was visualized with 0.1% 3,3′-diam-
inobenzidine (Pierce Chemicals, Rockford, IL, USA) and 
0.08% H2O2 in 0.02 M KPBS (1 min at room temperature). 
The sections were then washed with KPBS and 0.1 M PB. 
Thereafter, sections were dried overnight at 37 °C. The 
color was intensified with osmium (OsO4) thiocarbohy-
drate according to the method of Lewis et al. [53].

Parvalbumin immunohistochemistry

To investigate if miR-124 is regulated in inhibitory 
interneurons, we chose to conduct parvalbumin immuno-
histochemistry as this subclass of interneurons is the most 
vulnerable to lateral FPI [36]. For parvalbumin immuno-
histochemistry we used 6-µm-thick sections of paraffin-
embedded brain. We conducted in situ hybridization as 
described previously, with exception that after deparaffi-
nization the endogenous peroxidase was blocked with 
0.3% H2O2 in methanol. After developing the color with 
NBT/BCIP, sections were washed three times with 0.02 M 
KPBS. To prevent non-specific binding, sections were 
incubated 2 h in the blocking buffer [10% normal horse 
serum (NHS) and 0.5% Triton-X in KPBS]. Next, sections 
were incubated 3 nights at + 4 °C in mouse monoclonal 
antibody raised against PARV (Swant, Bellizona, Switzer-
land) diluted 1:1000 in solution containing 1% NHS and 
0.5% Triton-X in KPBS. Sections were washed three times 
in 2% NHS diluted to 0.02 M KPBS and incubated for 2 h 
with biotinylated anti-mouse secondary antibody (1:100, 
# BA-2000, Vector Laboratories, Burlingame, CA, USA) 
at room temperature. Next, sections were washed with 
2% NHS in KPBS and incubated for 2 h in avidin–biotin 
solution (1:100, PK-4000, Vector Laboratories). Thereaf-
ter, sections were washed with 2% NHS in KBPS and the 
secondary antibody was vizualised with 0.1% 3,3′-diam-
inobenzidine (Pierce Chemicals, Rockford, IL, USA) and 
0.08% H2O2 in 0.02 M KPBS (5 min at room temperature). 
The sections were then washed with KPBS and 0.1 M PB. 

Thereafter, sections were dried overnight at 37 °C and 
coverslipped.

Assessment of the intensity of miR‑124‑3p in situ 
hybridization and STAT3 immunohistochemistry

The RGB digital photographs of miR-124-3p in situ hybridi-
zation and STAT3 immunolabeling were obtained with an 
Axio Imager M2 microscope (Carl Zeiss Microimaging 
GmbH). All images were captured with identical exposure 
parameters using a 20× objective. ZEN 2 software (Carl 
Zeiss Microimaging GmbH) was used for image process-
ing. The staining intensity was measured from digital pho-
tographs using ImageJ software by drawing a region of inter-
est (ROI) around the dentate gyrus (see Fig. 1) at AP level 
− 2.8 from bregma. The color threshold was adjusted to be 
comparable to the staining intensity of the original RGB 
photomicrograph. The RGB images were then converted to 
grayscale. The mean optical density was measured from the 
whole dentate gyrus ROI. Background staining (background 
ROI) was measured from the fimbria for in situ hybridi-
zation analysis and from the internal capsule for immuno-
histochemistry analysis. Staining density was calculated 
by the following equation: (mean intensity of background 
ROI − mean intensity of the ROI)/mean intensity of back-
ground ROI. For technical restrictions, the in situ hybridi-
zation analysis was performed with one section per animal, 
whereas the STAT3 staining analysis was conducted on two 
sections per animal, and statistical tests were performed 
using the mean intensity of the two sections.

To further confirm that the miR-124 downregulation 
was not caused by neuronal loss, we measured the mean 
intensity of 100 cells inside the ROI (50 cells located in 
the CA3c area and 50 cells in the granule cell layer). The 
density was assessed using same equation and background 
ROI described above.

The changes in miR-124 expression in human samples 
were analyzed by measuring the intensity of in situ hybridi-
zation from a total of 150 cells per patient along the granule 
cell layer as well as 30–50 cells in the CA3. The mean inten-
sity of the TBI cases was compared with that of all controls 
combined. The change in the miR-124 level is presented as 
a percentage compared with the control level.

Assessment of post‑TBI neuronal loss

To determine the possible contribution of neuronal loss 
to the downregulation of miRNAs, we assessed the sever-
ity of neurodegeneration in Nissl-stained preparations (for 
the detailed protocol, please see Huusko et al. [39]) from 
the dentate gyrus at 3 months post-TBI. We then analyzed 
the expression of miR-124-2 and miR-124-3, the two pre-
forms of mature miR-124, which would be expected to 
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decrease if expression of the mature form was due solely to 
neurodegeneration.

To investigate the localization of miR-124 after TBI, we 
performed in situ hybridization on a small subset of 7 day 
post-TBI sections from our tissue bank. In situ hybridization 
was conducted as described above. To examine the subcel-
lular localization of miR-124, we counterstained some of 
the sections with hematoxylin and eosin (H&E; #03971 
and #HT110116, Sigma-Aldrich). To investigate the cell-
type specific localization of miR-124, we double-labeled 
the sections with NeuN (neuronal nuclei, MAB377, clone 
A60, Chemicon, Temecula, CA, USA), Iba1 (microglia, 019-
19741, WAKO, Tokyo, Japan), and glial fibrillary acidic 
protein (GFAP; astrocytes, G-3893, Clone G-A-5, Sigma-
Aldrich, Munich, Germany) using a BrightVision plus kit 
(Immunologic, Duiven, The Netherlands) and 3,3-diamin-
obenzidine (AEC) as the chromogen. After in situ hybridi-
zation, the sections were washed three times with PBS and 
incubated with primary antibody (NeuN 1:2000, Iba1 1:200, 
GFAP 1:2000) for 60 min at room temperature. The sections 
for the anti-NeuN immunohistochemistry were then washed 
three times with PBS and then blocked with post-antibody 
blocking solution (included in the BrightVision plus kit) for 
15 min at room temperature. All sections were then washed 
three times with PBS. Next poly-HRP-GAMs/Rb IgG solu-
tion was pipetted onto the sections and the slides were incu-
bated for 30 min at room temperature. Peroxidase activity 
was detected with AEC (in 0.05 M saline buffer, pH 4.9 
with 0.01% H2O2). Thereafter, the sections were incubated 
with AEC for 8 min in the dark. The reaction was stopped 
by washing the sections first with deionized water and then 
with tap water. The sections were dehydrated by incubat-
ing them for 1 min in 70% ethanol, then twice for 1 min in 
absolute alcohol, and three times in xylene. Sections were 
coverslipped with glycerol gelatin.

Comparison of miR‑124‑3p expression after TBI 
to that after SE

We obtained previously published [43] miRCURY LNA™ 
microRNA Array 7th (#208500, Exiqon, Denmark) and 
GeneChip® Rat Gene 1.1 ST array (Affymetrix, Santa Clara, 
CA, #901627) data from 7 day post-SE rats. The microRNA 
array was used to investigate the miR-124 expression. The 
transcriptomics data was used to generate the rank list for 
GSEA analysis, as described above. To compare the TBI and 
SE models, enrichment of the 31 targets of miR-124 as well 
as the STRING network were compared to the SE rank list.

Data analysis

Statistical analyses were performed using IBM SPSS Statis-
tics 21.0 (IBM Corp., Armonk, NY, USA). Differences in the 

qRT-PCR, ddPCR, and density analysis between control and 
TBI and SE animals were analyzed using the Mann–Whitney 
U test. Correlations between the miR-124-3p copy number 
in ddPCR and the intensity of the expression of each of its 31 
target mRNAs in the array were determined with Spearman’s 
test. Similarly, correlation of the miR-124-3p copy number 
with the relative quantity of Plp2 and Stat3 in qRT-PCR was 
determined with Spearman’s test. To detect possible outli-
ers, we performed the Grubbs’ test using GraphPad’s online 
calculator (available: https​://www.graph​pad.com/quick​calcs​
/grubb​s2/). One control animal among the seven post-SE 
animals was identified as an outlier (p < 0.05) based on the 
qRT-PCR results. Thus, the animal was excluded from the 
further analysis of the qRT-PCR results. A p value less than 
0.05 was considered statistically significant. All data are pre-
sented as mean ± SEM.

The function of the miR-124 targets was also assessed 
with text mining. The Scopus database was used to compile 
keywords from articles related to the targets. For each tar-
get, the search terms “gene name, e.g., Stat3” and “gene” 
were used. From the search results, 2000 latest articles 
(before December 20th, 2017) for each miR-124 target were 
included into the analysis. Word Cloud Generator (https​://
www.jason​davie​s.com/wordc​loud/) was used to visualize 
the most common key words. In the visualization, the spiral 
“Archimedean” and the scale “logarithm of n” were used.

Results

Mortality

TBI PCR

Acute mortality within 48 h post-TBI was 22% (4/18). One 
rat died due to an unknown cause during the follow-up.

TBI in situ hybridization

Acute mortality within 48 h post-TBI was 17% (1/6). One 
control rat died during the surgery.

Bioinformatics analysis predicted the miR‑124‑3p 
downregulation at 3 months post‑TBI

IPA analysis for upstream regulators revealed 31 genes 
(Bmp6, C2orf88, Ccl2, Cdk6, Ctdsp1, Eci2, Foxq1, Frmd8, 
Gsn, Lamc1, Limch1, Lrrc57, Myo10, Plp2, Ppfibp2, Prkd1, 
Prrx1, Ptbp1, Rab27a, Rbms1, Rhoj, Slc7a2, Stat3, Swap70, 
Tjp2, Tln1, Tmbim1, Tom1L1, Vat1, Vim, Zfp36l2) with 
a common predicted regulator, miR-124-3p (p < 0.05). 
Of these, 30 genes were upregulated and 1 (Lrrc57) was 
downregulated. The activation z-score for miR-124-3p was 

https://www.graphpad.com/quickcalcs/grubbs2/
https://www.graphpad.com/quickcalcs/grubbs2/
https://www.jasondavies.com/wordcloud/
https://www.jasondavies.com/wordcloud/
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− 5.146, which suggested its downregulation. The gene 
expression changes are summarized in Table 2.

STRINGv10 was used to explore the protein–protein 
interactions between the protein products of the above given 
31 target genes. Nine of them (CCL2, CDK6, GSN, PRLD1, 
RBMS1, STAT3, TJP2, TLN1, TOM1L1) formed a network 
(Fig. 2a). When other targets were reanalyzed individually, 
16 other networks were discovered (Fig. 2a).

To validate the IPA analysis, we compared the miR-
124-3p target gene list to the Affymetrix array data with 
GSEA. As expected, the upregulated targets were positively 
enriched with an enrichment score (ES) of 0.92 and false 
discovery rate (FDR) of less than 0.01 (Fig. 2b1). In addi-
tion, to determine if some of the networks were enriched in 
the gene expression analysis of the dentate gyrus, all genes 

encoding proteins belonging to the STRING networks were 
pooled. The GSEA of the 144 genes revealed that 86 (59%) 
were present in the ranking list (data not shown). Of these 
86 genes, 30 were enriched with a score of 0.53 and an FDR 
of < 0.01 (Fig. 2b2), and thus upregulated in the expression 
data (black circles in Fig. 2a). Among these 30 genes, 24 
were miR-124-3p targets. Of the miR-124-3p targets, Plp2 
was the most enriched and thus chosen for qRT-PCR vali-
dation. The ranks of the proteins varied between 9 and 633. 
The Reactome analysis (Table 3) and data mining (Fig. 2c) 
connected the miR-124 targets and interactome especially 
to signal transduction, the immune system, gene expression, 
and proliferation. The top 20 most regulated molecular path-
ways in the Reactome analysis are presented in Table 3.

Table 2   Targets of miR-124-3p 
according to ingenuity pathway 
analysis and their expression in 
the dentate gyrus at 3 months 
post-TBI

*p < 0.05, **p < 0.01, ***p < 0.001

Gene symbol Gene description Fold change

Bmp6 Bone morphogenetic protein 6 1.24**
C2orf88 Chromosome 2 open reading frame 88 1.44**
Ccl2 Chemokine (C–C motif) ligand 2 1.10**
Cdk6 Cyclin-dependent kinase 6 1.16*
Ctdsp1 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide 

A) small phosphatase 1
1.16*

Eci2 Enoyl-CoA delta isomerase 2 1.14**
Foxq1 Forkhead box Q1 1.11*
Frmd8 FERM domain containing 8 1.08*
Gsn Gelsolin 1.36***
Lamc1 Laminin, gamma 1 1.12*
Limch1 LIM and calponin homology domains 1 1.10*
Lrrc57 Leucine rich repeat containing 57 − 1.14*
Myo10 Myosin X 1.13*
Plp2 Proteolipid protein 2 (colonic epithelium-enriched) 1.28***
Ppfibp2 PTPRF interacting protein, binding protein 2 (liprin beta 2) 1.11*
Prkd1 Protein kinase D1 1.12**
Prrx1 Paired related homeobox 1 1.11**
Ptbp1 Polypyrimidine tract binding protein 1 1.13*
Rab27a RAB27A, member RAS oncogene family 1.17*
Rbms1 RNA binding motif, single stranded interacting protein 1 1.13*
Rhoj ras homolog gene family, member J 1.09*
Slc7a2 Solute carrier family 7 (cationic amino acid transporter, y + system), 

member 2
1.20**

Stat3 Signal transducer and activator of transcription 3 1.12**
Swap70 SWAP switching B-cell complex 70 1.09*
Tjp2 Tight junction protein 2 1.13*
Tln1 Talin 1 1.13*
Tmbim1 Transmembrane BAX inhibitor motif containing 1 1.14**
Tom1L1 Target of myb1 like 1 membrane trafficking protein 1.08*
Vat1 Vesicle amine transport protein 1 homolog (T californica) 1.17*
Vim Vimentin 1.53**
Zfp36l2 Zinc finger protein 36, C3H type-like 2 1.15*
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PCR validation confirmed the downregulation 
of miR‑124‑3p and upregulation of its targets 
after TBI

To confirm the bioinformatics-based prediction of 

miR-124-3p downregulation at 3 months post-TBI, we per-
formed ddPCR analysis of miR-124-3p in the same samples 
from the dentate gyrus that were used for the gene expres-
sion analysis. Our data revealed significant downregulation 
of miR-124-3p expression (FC = 0.88, p < 0.05) compared 
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with controls (Fig. 3a). Moreover, receiver operating curve 
analysis indicated that at 3 months post-TBI, the reduced 
miR-124-3p expression in the dentate gyrus differentiated 
TBI animals from controls (area under the curve 0.883, 
p < 0.05).

Stat3 was selected for wet lab analysis as it is a direct 
target of miR-124-3p [55], and is activated after TBI [56, 
57] and pilocarpine-induced SE [58]. To also analyze genes 
outside the STAT3 network, Plp2 was selected for valida-
tion as the most enriched gene in GSEA. Subsequent qRT-
PCR showed a 1.7-fold upregulation of Plp2 and a 1.4-fold 
upregulation of Stat3 (p < 0.01, Fig. 3b, c).

We then correlated the miR-124-3p expression level in 
ddPCR with the expression levels of its 31 target genes 
in the array (Fig. 3d). Expression of 33% (6 of 18) of the 
target genes negatively correlated with the expression 
of miR-124-3p (p < 0.05). Notably, miR-124-3p expres-
sion was negatively correlated with Plp2 expression in 
the array (r = − 0.770, p < 0.01), whereas it only tended to 
negatively correlate with Stat3 expression (p = 0.053). On 
the other hand, miR-124-3p expression was significantly 
negatively correlated with the qRT-PCR results of both 
Plp2 (r = − 0.647, p < 0.05; Fig. 3e) and Stat3 (r = − 0.629, 
p < 0.05; Fig. 3f).

In situ hybridization confirmed miR‑124 
downregulation and addresses differential 
expression of miR‑124 in subfields of dentate gyrus

In situ hybridization of miR-124-3p was conducted to inves-
tigate the site of the downregulated miR-124-3p in more 
detail at 3 months post-TBI (Fig. 4b) compared with con-
trol animals (Fig. 4a). At 3 months post-TBI, miR-124 was 
27-fold downregulated compared with controls (Fig. 4c, 
p < 0.01). To further pinpoint the layer-specific downregu-
lation of miR-124, we measured the staining intensity in 50 
cells in each section of the CA3c and granule cell layer. The 

analysis revealed no difference between the control and TBI 
groups in the CA3c, but a robust downregulation of miR-
124 after TBI in the granule cell layer (Fig. 4d, FC = 0.62, 
p < 0.01).

Next, we quantified the immunohistochemical staining 
intensity of one of the miR-124-3p targets, STAT3. Our 
analysis showed a fourfold upregulation of STAT3 (p < 0.05, 
Fig. 5) at 3 months post-TBI.

We subsequently extended the miR-124-3p in situ hybrid-
ization analysis to the human dentate gyrus samples. We 
compared the intensity of the in situ hybridization between 
patients with no known neurologic disease and patients with 
TBI. Our analysis revealed that miR-124 robustly decreased 
post-TBI in both the granule cell layer (91% at 1 month and 
39% at 25 years compared with controls) and CA3 area (91% 
at 1 month and 69% at 25 years compared with controls; 
Fig. 6).

Does neuronal loss explain the reduction 
in miR‑124‑3p after TBI?

Lateral FPI results in ~ 50% loss of hilar neurons and 10% 
loss of granule cells in the dentate gyrus [39, 41, 54]; 
(Fig. 7a–c). Therefore, we wondered whether the observed 
miR-124-3p downregulation could be explained simply by 
neurodegeneration. Our array data in the dentate gyrus, 
however, indicated that expression of the long premature 
forms of miR-124-3p, i.e., miR-124-2 and miR-124-3, was 
comparable to that in controls (Fig. 7d, e). If neurodegen-
eration accounted for the downregulation, then the levels 
of miR-124-3p premature forms would also be decreased. 
Thus, these data suggest that the reduction in miR-124-3p 
is related to impaired miRNA processing.

To determine where in the cell and in which brain cell 
type miR-124 is expressed, we prepared sections with miR-
124 in situ hybridization (Fig. 7f) combined with either 
hematoxylin and eosin staining (Fig. 7g) or immunohisto-
chemical staining of microglial, astrocytic, and neuronal 
markers (Fig. 7h–m). Together these histologic prepara-
tions confirmed that in control rats and after TBI, miR-124 
is expressed in the cytosol and solely in neurons. Moreo-
ver, we showed that in addition to excitatory granule cells 
(Fig. 7j–m), miR-124 is downregulated also in the parval-
bumin-positive interneurons (Fig. 7n–q).

miR‑124‑3p expression at 7 days after SE is similar 
to chronic TBI

Finally, we compared the miR-124-3p expression after lat-
eral FPI to the SE model. We focused our analysis on 7 day 
post-SE samples, representing the epileptogenesis phase. 
The miRCURY microRNA array indicated downregula-
tion of miR-124-3p at 7 days post-SE (p < 0.01, Fig. 8a). 

Fig. 2   Enrichment of genes coding protein networks targeted by miR-
124-3p at 3  months after TBI. a STRING analysis of miR-124 tar-
gets revealed 17 networks. From 31 targets, 9 (CCL2, CDK6, GSN, 
PRLD1, RBMS1, STAT3, TJP2, TLN1, TOM1L1) belonged to a 
“STAT3 network”. According to GSEA, 24 of 31 miR-124-3p tar-
gets were enriched in the dataset (b1, ES = 0.92, FDR < 0.01). The 
genes coding the proteins in the STRING network (a) were pooled 
and analyzed with Gene Set Enrichment Analysis (GSEA) (b2). 
From them, 30 of 86 were enriched in the original dataset (ES = 0.53, 
FDR < 0.01). Color codes: orange, miR-124-3p target; black cir-
cle around orange, enriched in the GSEA; black circle around blue, 
enriched in the GSEA; blue, proteins added to the network by the 
STRING analysis. The most enriched gene was Plp2. c Text mining 
highlights the role of miR-124 targets in inflammation and prolifera-
tion. The word cloud presents the most common keywords among 
articles related to the 30 upregulated miR-124 targets after TBI. ES 
enrichment score, FDR false discovery rate. Annotations for proteins 
are presented in Online Resource 1

◂
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Quantitative RT-PCR validated the downregulation in the 
same samples (FC = 0.82, p < 0.05, Fig. 8b). Similar to TBI 
analysis, transcriptomic profiling data after SE showed an 
upregulation of two miR-124-3p targets, Plp2 (p < 0.01, 
Fig.  8c) and Stat3 (p < 0.01, Fig.  8d). Next, we used 
GSEA to compare the expression of the 31 differentially 
expressed targets in the TBI dataset. Of these, 15 were posi-
tively enriched at 7 days post-SE (ES = 0.657, FDR < 0.01, 
Fig. 8e). Among the 144 genes belonging to the miR-124 
interactome, 22 were positively enriched in the SE dataset 
(ES = 0.322, FDR < 0.05, Fig. 8f). Importantly, qualitative 
analysis of in situ hybridization of miR-124-3p showed a 
detectable downregulation of miR-124-3p (Fig. 8g, h) after 
SE as compared to a control rat.

L1000CDS predicted novel compounds to reverse 
the miR‑124‑3p‑dependent signature after TBI

We used the L1000CDS2 search engine to compare the miR-
124 interactome to signatures of different chemical com-
pounds, including pharmaceuticals, to explore drugs that 

could be repurposed to reverse or mimic the post-TBI miR-
124 interactome. The results with complete information of 
the 50 top compounds, their mechanism of action, the cell 
lines, overlapping signature molecules and, if applicable, the 
disease targeted by the compound (ClinicalTrials.gov) are 
presented in the supplementary material [Online Resource 2. 
(reverse) and Online Resource 3. (mimic)]. The compounds 
with the highest overlap score [0, 1] for reversing the miR-
124 interactome after TBI were TW37, importazole, and 
IKK-16 (Fig. 9a). Respectively, the top three compounds 
that mimic the miR-124 interactome after TBI were Obato-
clax (S1057), torin-1, and ingenol 3,20-dibenzoate (Fig. 9b). 
Compounds reversing (Fig. 9c) or mimicking (Fig. 9d) the 
miR-124 interactome after TBI often targeted proliferation, 
transcription, translation, and protein processing.

Discussion

The present study aimed to identify the mechanisms that 
maintain chronic transcriptomic changes in the dentate gyrus 
after TBI. Our bioinformatics analysis suggested that down-
regulation of brain-enriched miR-124-3p is a master regula-
tor for a set of upregulated genes, even at 3 months post-TBI. 
Our laboratory validation studies confirmed that miR-124-3p 
is chronically regulated after TBI in both the experimental 
animal model and in humans with TBI, as well as in another 
brain injury model, amygdala stimulation-induced SE. Our 
data implicate miR-124-3p as a potential treatment target 
with a wide therapeutic window to combat the evolution of 
hippocampus-dependent functional impairments after brain 
injuries.

Chronic downregulation of miR‑124‑3p 
after TBI in the dentate gyrus is not related 
to neurodegeneration

IPA analysis of regulated genes in the dentate gyrus in rats 
decapitated at 3 months after lateral FPI-induced TBI indi-
cated the upregulation of 30 genes that were miR-124-3p 
targets. The bioinformatics analysis predicted the down-
regulation of miR-124-3p at 3 months post-TBI, which was 
confirmed by ddPCR. Interestingly, Miao et al. [10] showed 
a downregulation of miR-124-3p in the perilesional cortex 
at 6 h after controlled cortical impact injury-induced TBI. 
These findings suggest a wide time window for the down-
regulation of miR-124-3p and consequent upregulation of its 
target genes. However, there is still a need for investigation if 
the level of miR-124-3p is connected to the disease severity 
and functional outcome.

As lateral FPI results in 10–20% loss of principal 
cells and up to 50% loss of different types of inhibitory 
interneurons [39, 41, 54], we next assessed whether 

Table 3   The reactome analysis of proteins in the STRING network 
connects the targets of miR-124 to several immune system-related 
pathways

*Twenty pathways with most mapped proteins are presented. 
**”Entities found” refers to the number of mapped proteins that 
match the pathway

Pathway name* Entities 
found**

Entities p value

Signal transduction 65 4.32E−05
Immune system 57 2.77E−04
Cytokine signaling in immune system 38 2.05E−08
Innate immune system 37 7.87E−04
Signaling by interleukins 35 4.02E−11
Developmental biology 32 1.92E−04
Axon guidance 27 1.19E−07
Signaling by NGF 25 1.02E−07
Downstream signal transduction 23 8.43E−09
DAP12 signaling 23 9.70E−09
DAP12 interactions 23 2.10E−08
Signaling by PDGF 23 3.39E−08
NGF signaling via TRKA from the 

plasma membrane
23 4.55E−08

Signaling by EGFR 22 6.96E−08
VEGFA–VEGFR2 pathway 20 3.76E−07
Signaling by VEGF 20 5.44E−07
IGF1R signaling cascade 19 2.25E−07
Signaling by type 1 insulin-like growth 

factor 1 receptor (IGF1R)
19 2.36E−07

Signaling by SCF-KIT 19 1.30E−06
Cell cycle 19 3.32E−03
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Fig. 3   Wet lab validation of chronic regulation of miR-124-3p and 
two of its targets after TBI. a Droplet digital PCR (ddPCR) analy-
sis of the samples used for the mRNA microarray analysis showed 
a downregulation of miR-124-3p (FC 0.88, p < 0.05). Quantitative 
RT-PCR validation of the gene expression analysis results of two 
miR-124-3p targets confirmed the upregulation of b Plp2 (FC 1.70, 
p < 0.01) and c Stat3 (FC 1.4, p < 0.01) at 3  months post-TBI. d 
Correlation analysis revealed that upregulation of 11 of the 31 miR-
124-3p targets (gene array) correlated with the miR-124-3p downreg-

ulation (ddPCR) at 3 months post-TBI. Note that the correlation with 
Stat3 expression was not statistically significant. Correlation analysis 
performed using gene expression measured with qRT-PCR, however, 
revealed an inverse correlation between the expression of miR-124-3p 
and e Plp2 (p < 0.05) as well as with e Stat3 (p < 0.05). Plp2 prote-
olipid protein 2, r correlation coefficient, Stat3 signal transducer and 
activator of transcription 3, TBI traumatic brain injury. Statistical sig-
nificance: *p < 0.05, **p < 0.01 (Mann–Whitney U)
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miR-124-3p downregulation was associated with cell loss 
in the dentate gyrus rather than regulation of its expres-
sion. Previous studies demonstrated that miR-124-3p is 
consistently expressed in glutamatergic projection neu-
rons as well as in parvalbumin- and somatostatin-positive 
GABAergic neurons [59]. Our data showed that miR-
124-3p is equally downregulated in the excitatory granule 
cells and parvalbumin-positive interneurons after TBI. 
Previous analysis of our Affymetrix gene expression array 

indicated that the granule cell layer is not affected by TBI 
whereas interneuronal markers are downregulated [36]. 
Our in situ hybridization analysis revealed downregula-
tion of miR-124 in individual neurons. Furthermore, our 
analysis of the human dentate gyrus suggests that chronic 
miR-124 expression is also impaired in patients with TBI, 
although additional studies are needed to confirm these 
findings and to identify heterogeneity between patients. 

Fig. 4   Intensity analysis of miR-124 in  situ hybridization revealed 
downregulation of miR-124 in neurons of the dentate gyrus after 
TBI. a, b Representative photomicrographs of miR-124-3p in  situ 
hybridization (ISH) in the dentate gyrus in a control (a) and TBI rat 
(b). Higher magnification images of CA3c and granule cell layers 
are shown in (a1, b1) and (a2, b2), respectively. c Bar graphs show a 
remarkable reduction in the overall neuronal intensity of miR-124-3p 
at 3 months post-TBI compared with the control group (p < 0.05). d 
As shown in a and b, the difference between the TBI and control sec-

tions was smaller in the CA3c area (b1 vs. a1) than in the granule 
cell layer (b2 vs. a2). To quantify the differences, we analyzed the 
mean intensity of in situ hybridization signals in 50 individual cells 
in CA3c and the granule cell layer from all sections. After TBI, there 
was a trend toward downregulation of miR-124-3p in neurons in the 
CA3c area and a robust downregulation in the granule cell layer (d, 
p < 0.01). CA3c cornu ammonis 3c, gcl granule cell layer, TBI trau-
matic brain injury. Scale bar a, b 500 µm, a, b 50 µm. Statistical sig-
nificance *p < 0.05, **p < 0.01 (Mann–Whitney U)

Fig. 5   Chronic upregulation of the miR-124-3p target gene STAT3 
after TBI. Representative images from sections of dentate gyrus in 
a control (a) and injured rat (b) stained with anti-STAT3 antibody. 
High-magnification photomicrographs (a1, a2 control, b1, b2 TBI 
rat) highlight the upregulation of STAT3. Quantitative comparison of 

the staining intensity between control and TBI animals revealed sig-
nificant upregulation of STAT3 in the dentate gyrus (c, p < 0.05). TBI 
traumatic brain injury. Scale bar a, b 200 µm, a, b 50 µm. Statistical 
significance *p < 0.05 (Mann–Whitney U)
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Moreover, in our datasets, the pre-miRNA forms of miR-
124-3p remained at control levels after TBI and SE (data 
not shown for SE), indicating that the miR-124-3p reduc-
tion was related to reduced maturation of miRNA rather 
than to cell loss in the dentate gyrus.

Chronic upregulation of miR‑124‑3p targets 
after TBI reveals possible function of miR‑124‑3p 
in post‑injury neurogenesis and the inflammatory 
response

Text mining of the function of 30 chronically upregulated 

Fig. 6   In situ hybridization of miR-124 in the human dentate gyrus 
showed chronic post-TBI downregulation of miR-124 in the granule 
cell layer and CA3. In situ hybridization was performed with human 
dentate gyrus samples from a patient with no neurologic disor-
ders (n = 5, a, b) and a patient that had suffered TBI 1 month (c, d) 

or 25 years earlier (e, f). g Analysis of the mean intensity of in situ 
hybridization revealed downregulation of miR-124 in both the gran-
ule cell layer and CA3 of dentate gyrus. GLC, granule cell layer, TBI 
traumatic brain injury
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Fig. 7   Post-TBI downregulation of miR-124 is not caused solely by 
neuronal loss. Lateral fluid-percussion injury results in a loss of hilar 
cells, as seen in representative photomicrographs of thionin-stained 
sections of sham-operated control (a) and a rat with TBI (b, 3 months 
post-TBI), and notable gliosis, as seen in immunohistologic staining 
against a microglia marker combined with miR-124 in  situ hybridi-
zation (gliosis marked with arrows in b and c). In the transcrip-
tomic profiling data, the expression of two miR-124-3p precursors 
in the mRNA array (d) miR-124-2 or (e) miR-124-3, did not differ 
from that in controls at 3 months post-TBI (both p > 0.05), suggest-
ing that neurodegeneration was not the sole cause of the transcription 
changes. To investigate the cellular location of miR-124-3p, we first 
performed miR-124 in situ hybridization (example in f) together with 
hematoxylin and eosin (H&E) staining (g) or double-labeling with 
Iba1 (h, microglia), GFAP (i, astrocytes) or NeuN (j–m, neurons). 

These histologic preparations showed that miR-124 is located solely 
in the cytosol of neurons in both control rats and animals after TBI. 
Our analysis indicated no change in the miR-124 level in the neurons 
located in the CA3c (j, k). However, in the granule cell layer, there 
was a robust loss of miR-124 intensity (l, m). To determine if there 
is difference in the expression of miR-124 in different subtypes of 
neurons, we conducted miR-124 in  situ hybridization together with 
parvalbumin double-labeling (n–q). These results indicated that miR-
124 is also downregulated in the parvalbumin-positive interneurons 
located in the granule cell layer of the dentate gyrus. Similar to all 
NeuN positive neurons, parvalbumin immunoreactive cells located in 
the CA3c still had evident miR-124 labeling after TBI. H&E hema-
toxylin & eosin, PARV parvalbumin, TBI traumatic brain injury. Scale 
bar a–c 200 µm, a, b 20 µm
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Fig. 8   Regulation of miR-124-3p and its targets 7  days after status 
epilepticus. a1 According to microarray gene expression analysis, 
miR-124-3p expression was decreased at 7  days post-SE (p < 0.01). 
a2 Further qRT-PCR analysis also revealed downregulation of miR-
124-3p (p < 0.05). Transcriptomics profiling data (microarray analy-
sis) showed upregulation of two miR-124-3p targets, b Plp2 and c 
Stat3. d In the GSEA analysis, 15 of 31 miR-124 targets were posi-
tively enriched at 7  days post-SE (ES = 0.657, FDR < 0.01). e From 
the molecules in the STRING networks, 76 genes were present in 

the dataset and 22 of those were enriched (ES = 0.322, FDR < 0.05). 
In situ hybridization was used to detect miR-124-3p–positive cells. f, 
g The color of sections indicates that the control animals have higher 
miR-124-3p expression levels than SE animals in the dentate gyrus. 
ES enrichment score, FDR false discovery rate, Plp2 proteolipid pro-
tein 2, SE status epilepticus, Stat3 signal transducer and activator of 
transcription 3. Scale bar 50  µm. Statistical significance *p < 0.05, 
**p < 0.01 (Mann–Whitney U)
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miR-124-3p targets highlighted the role of miR-124 in 
inflammation and proliferation. More detailed data min-
ing indicated that these targets regulate several TBI-related 
secondary pathologies, particularly neurogenesis (BMP6, 
CTDSP1, CDK6, PTBP1, GSN, MYO10, and STAT3) and 
neuroinflammation (CCL2, CDK6, and STAT3).

At 3 months post-TBI, CTDSP1 remained upregulated 
1.16-fold. CTDSP1 is a nuclear phosphatase that stabilizes 
RE1-silencing transcription factor (REST; also known as 
neuron-restrictive silencer factor, NRSF; [60]), allowing it 
to function as a suppressor of neuron-specific gene expres-
sion [61–65]. Similarly, another target of REST, BMP6, was 
upregulated 1.24-fold. BMP6 is a bone morphogenetic pro-
tein that reduces cell proliferation in neural stem cells [66]. 
REST maintains the pluripotency of embryonic stem cells, 
as when REST targets are activated, stem cells and even 
myoblasts can convert to neurons [67–69]. To our knowl-
edge, there are no data on CTDSP1 or REST expression 
in experimental or human TBI. Previous studies, however, 
revealed an up to two- to threefold increase in the expres-
sion of REST after kainate-induced brain injury [70]. BMP6 
levels are increased in the peripheral blood at 3 days after 
lateral FPI [71]. Whether upregulation of CTDSP1 and 
BPM6 is needed for post-injury stabilization of increased 
REST levels, and whether the upregulation is related to miR-
124-3p downregulation, however, remain to be explored.

Cyclin-dependent kinase 6 (CDK6) was also upregulated 
1.16-fold at 3 months post-TBI. CDK6 is a member of the 
Cdk family of proteins that regulate cell cycle progression 
[72]. Cdk6 is expressed in the dentate and subventricular 
precursor cells, but not in post-mitotic neurons [73]. In the 
dentate gyrus of Cdk6−/− mice, neuronally committed pre-
cursors exhibit a lengthened G1 phase and exit the cell cycle 
prematurely, indicating that Cdk6 specifically regulates adult 
neurogenesis [73].

Polypyrimidine tract binding (PTB) proteins are pro-
posed to regulate cell-type specific splicing [74]. Here we 
demonstrated that PTBP1 was upregulated 1.13-fold at 
3 months post-TBI. Previous studies reported that PTBP1 
binds to pyrimidine-rich exon sequences of pre-mRNAs, 
and consequently inhibits splicing of closely located 
neuron-specific exons [75]. PTBP1 is expressed in most 

mammalian tissues [76]. In normal brain, however, PTBP1 
is replaced by its paralogous protein, PTBP2 [77]. PTBP2 
is highly expressed in proliferating and post-mitotic neu-
rons where its main role is to prevent the expression of 
exons [78]. Interestingly, PTBP1 and PTBP2 counteract 
each other’s functions via competitive binding to pre-
mRNA, resulting in a change in its codons, and conse-
quently, a nonsense-mediated decay [79, 80]. In CAD and 
Neuro2a neuroblastoma cell lines, overexpression of miR-
124-3p suppresses PTBP1 expression, which promotes 
PTBP2-mediated neuron-specific splicing [81]. These 
studies suggest that the PTBP1/PTBP2 interaction forms 
a miR-124-3p-dependent post-transcriptional switch for 
neuronal differentiation [78, 79, 81]. Our data suggest that 
such a switch, favoring the dominance of PTBP1, could 
also be operational after TBI.

Finally, we also found a 1.12-fold increase in STAT3 
expression with the array and a 1.4-fold upregulation with 
qRT-PCR at 3 months post-TBI. In addition, our immunohis-
tochemical analysis at 3 months post-TBI also confirmed the 
upregulation of STAT3 protein. Induction of STAT3 signal-
ing is crucial for forming and preserving the subgranular 
zone in the dentate gyrus, as adult mice with conditional 
STAT3 knock-out in neural stem cells exhibit impaired 
proliferation and neurogenesis in the dentate gyrus [82]. 
Interestingly, the level of active phosphorylated STAT3 is 
increased two- to threefold between 6 and 24 h after induc-
tion of lateral FPI [56], and normalizes within a week [57]. 
STAT3 is mainly localized in the nuclei of reactive astro-
cytes [56]. Most interestingly, Grabenstatter et  al. [83] 
showed that administering a propenamide analog, WP1066, 
which is a weak inhibitor of the Jak/STAT pathway, reduces 
the frequency and severity of spontaneous seizures devel-
oping after pilocarpine-induced brain injury. They also 
reported that WP1066 alleviates a decrease in GABA(A)
R α1 protein levels after controlled cortical impact (CCI)-
induced TBI. Furthermore, WP1066 treatment improved the 
degree of recovery of vestibular motor function after CCI 
injury. It remains to be tested whether miR-124-3p upregula-
tion will show favorable disease-modifying effects on post-
TBI secondary damage via the STAT3 pathway.

Two of the upregulated miR-124-3p targets, GSN and 
Myo10, have not been directly linked to neurogenesis. Mice 
deficient in the extracellular protein GSN, however, exhibit 
impaired migration of adult neuronal progenitors from the 
subventricular zone to the olfactory bulb [84]. Interestingly, 
Myo10 regulates microtubule stability during neuronal 
development and is critical for axonal development and 
outgrowth [85–87]. As both axonal injury-related microtu-
bular disorganization and axonal growth are hallmarks of 
TBI-associated pathology, our data are consistent with stud-
ies suggesting a role for miR-124-3p in axonal repair and 
plasticity [88–90].

Fig. 9   L1000CDS2 search of chemical compounds reversing or mim-
icking the miR-124 interactome emphasizes the complexity of miR-
124 controlled pathways. The L1000 Characteristic Direction Signa-
ture Search Engine was used to compare the miR-124 interactome 
and expression profile that chemical compounds invoke in different 
human cell lines to find drugs that could either reverse (a) or mimic 
(b) the miR-124 interactome. c PubChem database searches revealed 
that mechanisms of actions for compounds reversing the TBI-induced 
miR-124 interactome were most commonly related to proliferation 
and gene expression. Mimics for the TBI-induced miR-124 interac-
tome were connected to, e.g., growth and gene expression

◂
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In addition to neurogenesis, 3 of the 30 upregulated 
miR-124-3p targets contribute to the post-injury inflam-
matory response. CCL2 is a widely studied chemokine that 
induces angiogenesis through activation of the Ets-1 tran-
scription factor [91]. Ccl2 mediates its signal by binding to 
the chemokine C–C motif receptor 2 (CCR2), which regu-
lates brain infiltration by monocytes (for a review, see Chu 
et al. [92]). In mice with mild lateral FPI, deletion of Ccr2 
reduces the acute lesion volume and axonal damage, but 
also increases tau mislocation in the cortex and hippocam-
pus [93]. CDK6 promotes expression of the inflammation-
related transcription factors NF-κB and AP-1 (in HeLa cells, 
[94, 95]) as well as STAT families (B cells, [96]). STAT3, 
in turn, induces the expression of pro-inflammatory genes 
[97, 98]. STAT3 is a transcription factor that translocated 
to the nucleus after induction of an inflammatory response 
by lipopolysaccharide injection [99]. Thus, our data suggest 
that downregulation of miR-124-3p contributes to post-TBI 
inflammation through a consequent increase in STAT3.

To summarize, upregulation of many neuronal miR-
124-3p targets either directly or indirectly facilitates the 
astrocytic fate of progenitor cells in the subgranular zone 
of the dentate gyrus during neurogenesis. Another TBI-rel-
evant pathology relates to the induction and maintenance of 
inflammation through the Jak/STAT pathway. Several stud-
ies in rodents and humans revealed enriched miR-124-3p 
in the brain tissue [100–102]. The neuron specificity of 
miR-124-3p was initially demonstrated in in vitro stud-
ies of human primary cultured cells [102], and confirmed 
by in vivo studies of tissue samples from mice, rats, and 
humans [103, 104].

Consistent with previous studies, our in situ hybridiza-
tion analysis of miR-124-3p revealed its neuronal expres-
sion in the dentate gyrus both in controls and in rats with 
TBI, as well as in human hippocampus (data not shown). 
As some of the functions assigned to miR-124-3p appear 
to be in astrocytes, it is interesting to note that miR-124-3p 
is transported through gap junctions to adjacent U87 and 
C6 glioblastoma cells [105]. Moreover, miR-124-3p is also 
found in exosomes, which could explain why neuronally 
expressed miR-124-3p can regulate gene expression in non-
neuronal cells [106].

miR‑124‑3p and its targets in different brain injury 
models

According to our study, miR-124-3p targets were also 
upregulated at 7 days after amygdala stimulation-induced 
SE. In the SE model, the upregulation of miR-124-3p tar-
gets is associated with the downregulation of miR-124-3p 
at 7 days [43]. Our data are consistent with the observations 
of Gorter et al. [107] that miR-124-3p is downregulated in 
the dentate gyrus at acute (1 day and 1 week post-SE) time 

points in a perforant pathway stimulation model of SE. In 
a systemic pilocarpine model of SE; however, hippocampal 
miR-124-3p levels are elevated at 24 h post-SE, suggesting 
some injury-type specificity [108].

In addition to the previously mentioned genes, we found 
that C2orf88, Foxq1, Frmd8, Plp2, Ppfibp2, Rab27a, Rhoj, 
Slc7a2, Tjp2, Tln1, Tmbim1, Vim, and Vat1 were upregu-
lated, and Lrrc57 was downregulated. Vim was found to be 
upregulated at 24 h after blast-induced TBI in rats [109] 
and deiminated at 2 weeks after blast injury in swine [110]. 
To our knowledge, a connection between the remaining 
genes and brain injury has not been demonstrated. Never-
theless, Foxq1 promotes glioma proliferation [111], Rab27a 
promotes exosome secretion [112], and Rhoj is crucial for 
endothelial cell formation [113]. Plp2-deficient mice are 
more prone to endoplasmic reticulum stress, which increases 
the risk for neonatal hypoxia–ischemia encephalopathy 
[114]. Our data indicate uncharted functions of miR-124-3p, 
whose dysregulation could contribute to TBI pathology.

Analysis of the miR‑124 interactome reveals novel 
compounds to combat TBI‑induced hippocampal 
pathologies

The fact that one miRNA can regulate hundreds of mRNAs 
makes miRNAs attractive treatment targets, but the sheer 
number of possible targets makes it difficult to predict the 
outcome of changes to miRNA function. Thus, it might be 
beneficial to study pharmaceutical compounds that could be 
used to target a specific pathway to either support or dampen 
the effect of a miRNA. Our analysis with L1000CDS2 soft-
ware indicated that the miR-124 interactome has a role in 
proliferative functions. Furthermore, miR-124 regulates 
gene expression through histone modifications.

The three compounds with the highest overlap score for 
reversing the miR-124 interactome suppress proliferation. 
TW-37 inhibits the anti-apoptotic BCL-2 family of proteins 
[115]. Importazole, an anti-proliferative drug that inhibits 
transport receptor importin-β [116], has a key role in trans-
porting proteins to the nucleus [117] and is crucial for mito-
sis [118]. IKK-16 is an IkB kinase inhibitor that suppresses 
the NF-kB signal transduction cascade, thereby reducing 
lymphocyte proliferation and growth, which modulates the 
immune response [119]. Overall, the analysis highlights 
drugs known to affect proliferation (PK-11195, importazole, 
and MLN4924), DNA replication (topoisomerase inhibi-
tors teniposide, camptothecin, and epirubicin), or to arrest 
the cell cycle (NSC 663284, cyclosporine A, SB218078), 
suggesting that miR-124 also restricts cell multiplication. 
PK-11195, a benzodiazepine receptor ligand, disturbs cancer 
cell proliferation in vitro [120–122]. PK-11195, however, is 
also used as a tracer of microglial function [123]. In addi-
tion, two histone deacetylase I and II inhibitors, vorinostat 
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and trichostatin A, came up multiple times in different cell 
lines (4/50 and 9/50, respectively). Increased acetylation of 
histones leads to altered gene expression. Both drugs induce 
cell cycle arrest and apoptosis in cancer cells [124–128].

Interestingly, the top compound to mimic the miR-124 
interactome, obatoclax, is a Bcl-2 inhibitor and thus pro-
apoptotic [129]. The other major regulators were torin-1 
and Ingenol 3,20-dibenzoate. Torin-1 directly targets 
mTOR (mechanistic target of rapamycin) [130]. Inactiva-
tion of mTOR promotes autophagy and induces apoptosis 
in cancer cells [131, 132]. Studies using a mouse CCI model 
revealed that treatment with an mTOR inhibitor reduces 
synaptic reorganization of granule cells, which could lead 
to the development of spontaneous seizures [133, 134]. 
Everolimus, an mTOR inhibitor, decreased the volume of 
a subependymal giant cell astrocytoma and inhibited epi-
leptogenesis associated with tuberous sclerosis [135–137]. 
Ingenol 3,20-dibenzoate is protein kinase C agonist [138] 
that in turn inhibits autophagy [139].

The list of “mimicking” drugs includes several com-
pounds, such as histone deacetylase inhibitors and topoi-
somerase inhibitors that are also present in “reversing” path-
ways. This highlights the complexity of miRNA-controlled 
pathways, and supports the idea of using big data to search 
for tailored compounds to target only limited beneficial cel-
lular functions.

Conclusions

miR-124-3p is chronically downregulated and its targets 
upregulated in the dentate gyrus in two clinically relevant 
brain injury models, TBI and SE, as well as in human 
TBI patients. Whether downregulation of miR-124-3p is 
pathological or compensatory mechanism after brain inju-
ries remains to be studied. We identified 30 chronically 
upregulated miR-124-3p targets known to contribute to 
post-injury cellular pathologies. We propose that these tar-
get genes could serve as novel treatment targets for brain 
injuries. Our bioinformatics analysis predicted importazole, 
trichostatin A, and IKK-16 as top candidate compounds to 
reverse miR-124-3p-dependent gene expression regulation 
after TBI. Proof-of-concept in vivo studies in animal models 
of TBI and SE demonstrated that inhibition of one of the 
miR-124-3p targets, STAT3, by WP1066 improves post-TBI 
recovery [57, 75]. Despite this small piece of evidence, more 
studies are needed to determine whether inhibition of miR-
124 targets could benefit treatment of post-TBI pathologies.
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